
Generalized Universal Domain Adaptation with Generative Flow
Networks

Didi Zhu
∗

Zhejiang University

Hangzhou, China

didi_zhu@zju.edu.cn

Yinchuan Li
∗

Huawei Noah’s Ark Lab

Beijing, China

liyinchuan@huawei.com

Yunfeng Shao

Huawei Noah’s Ark Lab

Beijing, China

shaoyunfeng@huawei.com

Jianye Hao

Tianjin University

Huawei Noah’s Ark Lab

Tianjin, China

jianye.hao@tju.edu.cn

Fei Wu

Kun Kuang

Zhejiang University

Hangzhou, China

wufei@zju.edu.cn

kunkuang@zju.edu.cn

Jun Xiao

Chao Wu
†

Zhejiang University

Hangzhou, China

junx@cs.zju.edu.cn

chao.wu@zju.edu.cn

ABSTRACT
We introduce a new problem in unsupervised domain adaptation,

termed as Generalized Universal DomainAdaptation (GUDA), which

aims to achieve precise prediction of all target labels including un-

known categories. GUDA bridges the gap between label distribution

shift-based and label space mismatch-based variants, essentially

categorizing them as a unified problem, guiding to a comprehen-

sive framework for thoroughly solving all the variants. The key

challenge of GUDA is developing and identifying novel target cate-

gories while estimating the target label distribution. To address this

problem, we take advantage of the powerful exploration capability

of generative flow networks and propose an active domain adap-

tation algorithm named GFlowDA, which selects diverse samples

with probabilities proportional to a reward function. To enhance

the exploration capability and effectively perceive the target label

distribution, we tailor the states and rewards, and introduce an

efficient solution for parent exploration and state transition. We

also propose a training paradigm for GUDA called Generalized

Universal Adversarial Network (GUAN), which involves collabo-

rative optimization between GUAN and GFlowNet. Theoretical

analysis highlights the importance of exploration, and extensive

experiments on benchmark datasets demonstrate the superiority

of GFlowDA.
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1 INTRODUCTION
Deep neural networks have been widely employed in various visual

tasks and made revolutionary advances [7, 13, 17, 31, 48, 51, 69–

71, 73, 76, 77]. However, deep learning algorithms highly rely on

massive labeled data, and models trained with limited labeled data

do not generalizewell on domainswith different distributions. Unsu-

pervised domain adaptation (UDA) [2] has emerged as a promising

solution to address this limitation by adapting models trained on

a source domain to perform well on an unlabeled target domain.

Recent literature [8, 11, 15, 29, 30, 32, 42, 49, 57, 61, 66, 67, 75, 78]

addresses the UDA problem under covariate assumption [74], for

which methods perform importance weighting or aim at aligning

the marginal distributions. However, these methods increase the

general loss on the target domain when facing label heterogeneity.

UDA variants with label heterogeneity can be categorized based

on the variation of label distribution, label space, and label predic-

tion space. The label distribution can be split into conditions ①

𝑃𝑠(𝑌) ≠ 𝑃𝑡 (𝑌) and ② 𝑃𝑠(𝑋 ⋃︀𝑌) ≠ 𝑃𝑡 (𝑋 ⋃︀𝑌). 𝑃{𝑠,𝑡}(𝑌) and 𝑃{𝑠,𝑡}(𝑋 ⋃︀
𝑌) indicate the margin label distribution and the class-conditional

distribution, respectively. The label shift (LS) problem [74] corre-

sponds to ①, while the generalized label shift (GLS) problem [74]

corresponds to ① ∧②. The label space can be split into conditions:

③ 𝒴𝑠 ≠ ∅ & unknown and ④ 𝒴𝑡 ≠ ∅ & unknown with 𝒴
{𝑠,𝑡} de-

noting the private label space. The label prediction space, denoted
as ⋃︀ ⧹︂𝒴⋃︀, includes two conditions: ⑤ ⋃︀ ⧹︂𝒴⋃︀ = 𝑘 + 1, where all target pri-
vate labels are considered as "unknown"; and ⑥ ⋃︀ ⧹︂𝒴⋃︀ = 𝑘 + 𝑛, where
𝑘 and 𝑛 denote the size of the common label set and the target

private label set, respectively. Partial domain adaptation (PDA) [72]

assumes private classes only exist in the source domain (③), while
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Figure 1: Illustration of GUDA and some subproblems of GUDA. GUDA contains most domain adaptation tasks from the
perspective of label distribution, label space and label prediction space.

open set domain adaptation (OSDA) [46] assumes they only ex-

ist in the target domain (④ ∧ ⑤). Universal domain adaptation

(UniDA) [64] is a more general case with no knowledge about the

label space relationship, summarized as ③ ∧ ④ ∧ ⑤.

Label distribution based variants mainly focus on estimating

label ratio to reweight source samples, whereas label space based

variants aim to design heuristic rules to determine whether the sam-

ples belong to the private label set. However, methods for these two

types of variants are incapable of resolving one another. In practice,

it is difficult to identify which variant is being encountered, and

real-world scenarios may involve a combination of these variants,

making it challenging to apply any single method. Furthermore, the

label space based variants can only identify unseen categories as

"unknown", limiting their ability to achieve fine-grained recognition.

These dilemmas highlight the necessity for a unified framework to

address both label distribution and label space variants, while also

enabling precise prediction of unknown categories.

In this paper, we propose a new problemGeneralized Universal
Domain Adaptation (GUDA) to take a unified view of these above

problems, as illustrated in Fig. 1, which can be represented as ① ∧②

∧③ ∧④ ∧⑥. The key challenge of GUDA is developing and identi-

fying novel categories that exist in the target domain while estimat-

ing the overall label distribution for subsequent feature alignment.

To address GUDA, we take the benefit of the powerful exploration

capability of Generative Flow Networks (GFlowNets) [3] and pro-

pose an active domain adaptation framework named GFlowDA,
which could explore the overall target label distribution by anno-

tating a subset of target data. Unlike the previous active domain

adaptation (ADA) works [6, 10, 14, 34, 39, 62, 63], which either

focus on designing metrics [9, 34, 63] that may have some bias or

minimizing the feature distance while easily falling into the trap

of sub-optimal solutions [6, 14, 39, 62], our insight is to learn a

generative policy that generates a distribution with probabilities

proportional to the distance of the original target distribution. We

consider the selected target subset as a compositional object and

formulate the ADA problem as a distribution generative process

by sequentially selecting a target sample through GFlowNets. To

facilitate GFlowNets to better perceive the target label distribution,

we customize the states and rewards, and introduce an efficent par-

ent exploration and state transition approach. Finally, we propose

a weighted adaptive model named Generalized Universal Adver-

sarial Network (GUAN), which enables efficient domain alignment

through a reciprocal relationship between GFlowNets and GUAN.

Main Contribution: (1) We introduce GUDA, which covers

most UDA variants with label heterogeneity and aims to recognize

all target classes including unknown classes. (2) To address this chal-

lenge, we propose GFlowDA to select and annotate target samples

to estimate the overall target label distribution. (3) We define the

design paradigm for states and rewards, and introduce an efficient

solution for parent exploration and state transition in the GFlowDA

training process. We also propose a new training paradigm called

GUAN, which involves collaborative optimization between GUAN

and GFlowNet. (4) Theoretical analysis and extensive experiments

show that the effectiveness of our GFlowDA.

2 RELATEDWORKS
2.1 Unsupervised Domain Adaptation
For LS and GLS problems in the literature of UDA, most works [16,

18, 41, 50, 54, 79] seek to estimate the label ratio 𝑃𝑡 (𝑌)⇑𝑃𝑠(𝑌) to
weight the source feature, which requires that the source label dis-

tribution 𝑃𝑠(𝑌) cannot be zero. This underlying constraint limits

the generalization of the methods for LS and GLS to OSDA [37, 46]

and UniDA [64] scenarios due to the existence of target private

labels. Numerous methods for OSDA and UniDA either utilize pre-

diction uncertainty [9, 28, 35, 44, 45, 55, 64], or incorporate self-

supervised learning techniques [1, 20, 43, 56, 80]. However, these

methods often fail to explore fine-grained discriminative knowl-

edge in the unknown set and do not take label distribution shift into

account within the common label space. Additionally, most PDA

methods [5, 27, 72] aim to weight source samples with heuristic

criteria, which suffe from the same limitations as OSDA and UniDA.

While recent methods such as OSLS [12] and AUDA [34] attempt

to address some of the above limitations, they may not be suitable

for GUDA. Further research is needed to develop more effective

methods that can overcome the challenges posed by GUDA.

2.2 Generative Flow Networks
GFlowNets [4] is a generative model which aims to solve the prob-

lem of generating diverse candidates. It has been effective in various
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fields such asmolecule generation [3, 36], discrete probabilistic mod-

eling [68], graph neural networks [21, 23] and causal discovery [22].

Another research direction aims to address and extend the inherent

assumptions of the original GFlowNet [24–26, 60]. Compared to

reinforcement learning (RL) methods [53], which focus on maximiz-

ing the expected return by generating a sequence of actions with

the highest reward, GFlowNets offer the ability to explore diverse

reward distributions by sampling trajectories with probabilities

proportional to the expected rewards. This feature allows for more

effective estimation of the target distribution.

2.3 Active Domain Adaptation
The pioneering study [40] demonstrates how active learning (AL)

and DA can collaborate to enhance AL in DA. Recent efforts [10,

52, 62] design some criterion by introducing advanced techniques

like adversarial training, multiple discriminators and free energy

model. Besides, some parallel works [34, 39] suggest using clus-

tering to choose samples. In addition, distance-based works [6,

14, 34, 39, 63, 65] choose samples based on their distance to the

source or the target domain. Overall, existing works mainly rely

on manually-designed criteria or distance, leading to overfitting

to specific scenarios and easily falling into sub-optimal solutions.

Unlike the existing ADA methods, we consider the query batch

as a compositional object and formulate the ADA as a generative

process. The generative policy network can automatically explore

how to find the most informative samples in an essential way.

3 PROBLEM FORMULATION
Denoting 𝒳 , 𝒴 , 𝒵 as the input space, label space and latent space,

respectively. Let 𝑋 , 𝑌 and 𝑍 be the random variables of 𝒳 , 𝒴 ,
𝒵 , and 𝑥 , 𝑦 and 𝑧 be their respective elements. Let 𝑃𝑠 and 𝑃𝑡 be

the source distribution and target distribution. We are given a

labeled source domain 𝒟𝑠 = {𝑥𝑖 ,𝑦𝑖)}𝑚𝑖=1 and an unlabeled target

domain 𝒟𝑡 = {𝑥𝑖}𝑛𝑖=1 are respectively sampled from 𝑃𝑠 and 𝑃𝑡 ,

where𝑚 and 𝑛 denote the numbers of source samples and target

samples. Denote 𝒴𝑠 and 𝒴𝑡 as the label sets of the source and target
domains, respectively. Suppose the feature transformation function

is 𝑔 ∶ 𝒳 → 𝒵 ⊆ R𝑑𝑧 where 𝑑𝑧 is the length of each feature vector,

and the discrimination function of the label classifier is ℎ ∶ 𝒵 → 𝒴 .
Given 𝒴𝑐 = {1, 2, . . . , 𝑘} as the common label space between the

source and target domain. We denote 𝒴𝑡 = {𝑘 + 1, . . . , 𝑘 +𝑛} as the
target private label space and 𝒴𝑠 the source private label space, i.e.,
𝒴𝑠 = 𝒴𝑐 ∪ 𝒴𝑠 , 𝒴𝑡 = 𝒴𝑐 ∪ 𝒴𝑡 . Then we have GUDA in Definition 1.

Definition 1 (GUDA). GUDA is characterized by conditions ①

∧ ② ∧ ③ ∧ ④ ∧ ⑥, i.e.,

𝑃𝑠(𝑋 ⋃︀𝑌) ≠ 𝑃𝑡 (𝑋 ⋃︀𝑌) > 0, 𝑃𝑠(𝑌) ≠ 𝑃𝑡 (𝑌) > 0, ∃𝑌 ∈ 𝒴𝑐 ,
and 𝒴𝑠 ≠ ∅, 𝒴𝑡 ≠ ∅, ⋃︀ ⧹︂𝒴⋃︀ = 𝑘 + 𝑛,

(1)

where 𝒴𝑠 and 𝒴𝑡 are both unknown.

GUDA focuses on predicting all target labels, including the pri-

vate label set, while also accounting for unknown label spaces and

generalized label shift. Therefore, the target risk of GUDA can be

divided into two parts: the target common risk for classifying com-

mon classes and the refined target private risk for classifying the

target private classes:

𝜖𝑡 (ℎ ○ 𝑔) = E(𝑋,𝑌)∼𝒟𝑡
ℓ(ℎ ○ 𝑔(𝑋), 𝑌) (2)

=
𝑘

∑
𝑖=1

𝑃𝑡 (𝑌 = 𝑖)𝜖𝑠,𝑖(ℎ ○ 𝑔)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
target common risk

+
𝑘+𝑛

∑
𝑗=𝑘+1

𝑃𝑡 (𝑌 = 𝑗)𝜖𝑠,𝑗(ℎ ○ 𝑔)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
refined target private risk

.

To minimize the target risk, an AL strategy can be employed to

annotate a small portion of the target dataset to recover the target

distribution. We denote 𝒟𝑙 = (𝑥𝑖 ,𝑦𝑖)𝑏𝑖=1 as the selected labeled

target dataset and the probability distribution of 𝒟𝑙 as 𝑃𝑙 .

4 METHOD
4.1 Towards GUDA from a Theoretical View
To start with, we provide a theoretical analysis of the proposed

GUDA. First, we introduce the definitions of two performance met-

rics for the predictor ℎ ○ 𝑔:

Definition 2 (Balanced Error Rate [54]). Given a distribution
𝑃𝑠 , the balanced error rate (BER) of a predictor ℎ ○𝑔 on 𝑃𝑠 is given by:

𝜀𝑠(⧹︂𝑌 ⋃︀⋃︀𝑌) ∶= max

𝑗∈𝒴
𝑃𝑠(⧹︂𝑌 ≠ 𝑌 ⋃︀ 𝑌 = 𝑗),

where ⧹︂𝑌 = ℎ ○ 𝑔(𝑋).

Definition 3 (Conditional Error Gap [54]). Given two distri-
butions 𝑃𝑠 and 𝑃𝑡 , the conditional error gap (CEG) of a classifier ℎ ○𝑔
on 𝑃𝑠 and 𝑃𝑡 is given by

Δ𝑠,𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌) ∶= max

𝑗≠𝑖∈𝒴
⋃︀𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) − 𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗)⋃︀.

BER measures max prediction error on 𝑃𝑠 , reflecting the clas-

sification performance of a single domain. CEG characterizes the

max discrepancy between the classifier’s predictions on 𝑃𝑠 and

𝑃𝑡 , reflecting the degree of conditional feature alignment across

domains.

Then we present the target risk upper bound for GUDA in Theo-

rem 1 based on these two definitions, proved in the appendix.

Theorem 1 (Target Risk Upper Bound for GUDA). Let 𝑌𝑐 ,
𝑌𝑙 and 𝑌 𝑡 be random variables taking values from 𝒴𝑐 , 𝒴𝑙 and 𝒴𝑡
respectively, with 𝒴𝑙 being the selected target label space. For any
classifier ⧹︂𝑌 = (ℎ ○ 𝑔)(𝑋), we have

𝜖𝑡 (ℎ ○ 𝑔) ≤ 𝜖𝑠(ℎ ○ 𝑔) + 𝜖𝑙(ℎ ○ 𝑔) + 𝛿𝑠,𝑡 + 𝛿𝑙,𝑡 + 𝜀𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌 𝑡 ),
where

𝛿𝑠,𝑡 = ∏︁𝑃𝑠(𝑌𝑐) − 𝑃𝑡 (𝑌𝑐)∏︁
1
⋅ 𝜀𝑠(⧹︂𝑌 ⋃︀⋃︀𝑌𝑐) + 2(𝑘 − 1)Δ𝑠,𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌𝑐),

𝛿𝑙,𝑡 = ∏︁𝑃𝑙(𝑌𝑙) − 𝑃𝑡 (𝑌𝑙)∏︁1 ⋅ 𝜀𝑙(⧹︂𝑌 ⋃︀⋃︀𝑌𝑙) + 2(𝑣 − 1)Δ𝑙,𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌𝑙)
with 𝑘 = ⋃︀𝒴𝑐 ⋃︀ and 𝑣 = ⋃︀𝒴𝑙 ⋃︀, ∏︁𝑃𝑠(𝑌𝑐) − 𝑃𝑡 (𝑌𝑐)∏︁1 = ∑𝑖∈𝒴𝑐

⋃︀𝑃𝑠(𝑌 = 𝑖)
−𝑃𝑡 (𝑌 = 𝑖)⋃︀ being the 𝐿1 distance between 𝑃𝑠(𝑌) and 𝑃𝑡 (𝑌) on the
common label space 𝒴𝑐 .

Remark 1. The upper bound 𝜖𝑡 (ℎ○𝑔) contains five terms. The first
two terms represent the source risk on 𝒴𝑐 and the selected target risk
on 𝒴𝑙 . The third and fourth terms contain ∏︁𝑃𝑠(𝑌𝑐) − 𝑃𝑡 (𝑌𝑐)∏︁1 and
∏︁𝑃𝑙(𝑌𝑙) − 𝑃𝑡 (𝑌𝑙)∏︁1 respectively, which both measure the distances
of the marginal label distributions across domains. The former is a
constant that only depends on 𝒟𝑠 and 𝒟𝑡 while the latter changes
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Figure 2: Overall framework of GFlowDA. GFlowNet selects and labels target samples, which are then fed as𝒟𝑙 to GUAN. GUAN
is optimized based on 𝒟𝑙 , 𝒟𝑠 and 𝒟𝑡 . The resulting reward is fed back to GFlowNet, which is then optimized by combining the
reward with the inflows and outflows obtained through the parent exploration and state transition process.

dynamically since the construction of 𝒟𝑙 varies with the AL strategy.
𝜀𝑎(⋅) with 𝑎 ∈ {𝑠, 𝑙, 𝑡} in the last three terms measure classification
performance on the corresponding domains. Δ𝑎,𝑡 (⋅) with 𝑎 ∈ {𝑠, 𝑙}
in the third and fourth terms measures the performance discrepancy
between 𝑃𝑎(𝑌) and 𝑃𝑡 (𝑌).

The difficulty in minimizing the upper bound stems from the

unknown nature of the target label distribution 𝑃𝑡 (𝑌𝑡 ) and the

label space 𝒴𝑡 . One potential solution is to minimize the label

distribution distance ⋃︀𝑃𝑙(𝑌𝑙) − 𝑃𝑡 (𝑌𝑙)⋃︀1 while making ⋃︀𝒴𝑙 ⋃︀ close
to ⋃︀𝒴𝑡 ⋃︀. To achieve this goal, it is crucial to develop an effective

AL strategy to select informative and representative samples for

constructing 𝒟𝑙 that preserves the entire target label distribution
and label space. By doing so, 𝒴𝑙 can be considered a proxy of 𝒴𝑡
and 𝑃𝑙 a proxy of 𝑃𝑡 . We propose GFlowDA based on a GFlowNet

generator to generate𝒟𝑙 by sequentially adding one sample at each

step until the budget is used up. We give the formal definition of

GFlowDA in Definition 4.

Definition 4 (GFlowDA). Given a source distribution 𝑃𝑠 and a
target distribution 𝑃𝑡 , GFlowDA aims to find the best forward genera-
tive policy 𝜋(𝜃) based on flow network to generate a distribution 𝑃𝑙
automatically, which can serve as a proxy of 𝑃𝑡 . The probability of
sampling the distribution 𝑃𝑙 satisfies

𝜋(𝑃𝑙 ;𝜃) ∝ 𝑟(𝑃𝑠 , 𝑃𝑡 , 𝑃𝑙), (3)

where 𝜃 is the parameter of flow network, 𝑟(⋅) is the reward function
based on 𝑃𝑠 , 𝑃𝑡 and 𝑃𝑙 .

4.2 DAG Construction of GFlowDA
Consider a direct acyclic graph (DAG) 𝒢 = (𝒮,𝒜), where 𝒮 and

𝒜 are state/node and action/edge sets, respectively. Elements of

them at step 𝑡 are denoted as 𝑠𝑡 and 𝑎𝑡
1
The complete trajectory is

1

Unless otherwise specified, the subscript "t" denotes "step" when used in conjunction

with "s" and "a", and "target" when used in conjunction with "𝑥" and "𝒟".

a sequence of states 𝜏 = (𝑠0, . . . , 𝑠𝑓 ). To construct 𝒢, we first define
the state, action and reward function.

Definition 5 (State). A state 𝑠𝑡 ∈ 𝒮 ⊆ R𝑛×4 in GFlowDA at step
𝑡 describes the entire target information based on𝒟𝑡 and the currently
labeled data 𝒟𝑙 , where 𝑠𝑡 = {𝑠𝑖𝑡}𝑛𝑖=1 and 𝑠𝑖𝑡 is the state representation
of the 𝑖-th target sample.

We use 𝑠
𝑖
𝑡 (𝑎), 𝑎 ∈ {0, 1, 2, 3} denotes the 𝑎-th column of the

state matrix. The first column of the state denotes the maximum

similarity between target features and selected target features at

step 𝑡 . Intuitively, selecting samples with low maximum similarity

values can ensure the instance-level diversity, i.e.,

𝑠
𝑖
𝑡 (1) = max𝑥 𝑗 ∈𝒟𝑙

cos(𝑔(𝑥𝑖), 𝑔(𝑥 𝑗)). (4)

The second column of the state denotes the maximum similarity

between target features and active target prototypes, which ensures

class-level diversity, i.e.,

𝑠
𝑖
𝑡 (2) = max𝑗∈𝒴𝑙

cos(𝑔(𝑥𝑖), 𝜇 𝑗𝑙 ), (5)

where 𝜇
𝑗

𝑙
is the prototype of class 𝑗 in 𝒟𝑙 , calculated as follows:

𝜇
𝑗

𝑙
=
∑(𝑥,𝑦)∈𝒟𝑙

1{𝑦 = 𝑗}𝑔(𝑥)
∑(𝑥,𝑦)∈𝒟𝑙

1{𝑦 = 𝑗} . (6)

The third column of the state denotes the uncertainty of the target

samples, which is calculated by the entropy of the label probabilities

𝑦𝑖 = ℎ ○ 𝑔(𝑥𝑖), i.e.,
𝑠
𝑖
𝑡 (3) = 𝐻(𝑦𝑖)). (7)

The last column of the state is an indicator variable to represent

whether a sample has been labeled or not, i.e.,

𝑠
𝑖
𝑡 (4) = 1{𝑥𝑖 ∈ 𝒟𝑙}. (8)

Definition 6 (Action). An action 𝑎𝑡 ∈ 𝒜 at step 𝑡 in GFlowDA
determines which target instance will be selected from candidate target
dataset 𝒟𝑡 /𝒟𝑙 .
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Definition 7 (Reward Function). A reward function 𝑟(𝑠𝑓 ) of
the terminal state 𝑠𝑓 in GFlowDA refers to a comprehensive metric
measuring the quality of 𝒟𝑙 , by taking into account the diversity and
informativeness, which is expressed as:

𝑟(𝑠𝑓 ) = −MMD(𝑔(𝑋𝑡 ), 𝑔(𝑋𝑙) +ℳ(⧹︂𝑌,𝑌𝑡 ), (9)

where ⧹︂𝑌 = ℎ ○ 𝑔(𝑋), MMD(⋅) represents the Maximum Mean Dis-
crepancy (MMD) [33] between the source and target marginal feature,
andℳ(⋅) means the classification accuracy used to evaluate the
performance of ℎ ○ 𝑔.

Remark 2. MMD distance can encourage diverse sample selection
that preserves the entire target distribution. To make the selected
samples more informative, we incorporate the classification accuracy
of the model on the target domain as part of the reward.

4.3 Flow Modeling of GFlowDA
To achieve Eq. 3, a non-negative function 𝐹(⋅) is introduced to mea-

sure the probabilities associated with 𝑠𝑡 , where 𝐹(𝑠𝑡 , 𝑎𝑡 ) = 𝐹(𝑠𝑡 →
𝑠𝑡+1) corresponds to an action/edge flow. The trajectory flow is

denoted as 𝐹(𝜏) and the state flow is the sum of all trajectory

flows passing through that state, denoted as 𝐹(𝑠) = ∑𝑠∈𝜏 𝐹(𝜏). Our
objective is to ensure that the DAG 𝒢 operates analogously as a

water pipe, where water enters at 𝑠0 and flows out through all 𝑠𝑓 ,

satisfying the condition 𝐹(𝑠0) = ∑ 𝐹(𝑠𝑓 ) = ∑ 𝑟(𝑠𝑓 ). To achieve

this, we need to calculate the inflows and outflows of each state,

corresponding to the parent exploration and state transition, re-

spectively. As illustrated in Fig. 3, in the parent exploration process,

we explore all direct parent states of 𝑠𝑡 , i.e., 𝑠 ∈ 𝒮𝑝(𝑠𝑡 ) with 𝒮𝑝(𝑠𝑡 )
being the parent set. We have the following proposition to guide

the exploration procedure:

Proposition 1. For a state 𝑠𝑡 in GFlowDA, the number of its
parent nodes is equal to the number of labeled samples currently, i.e.,
⋃︀𝒮𝑝(𝑠𝑡 )⋃︀ = ⋃︀⋃︀𝑠𝑡 (4)⋃︀⋃︀0.

Based on Proposition 1, one of 𝑠𝑡 ’s parents is obtained by three

steps: (a) selecting the 𝑗-th element in the vector 𝑠𝑡 (4) and setting

its value from 1 to 0 to obtain a new vector 𝑠𝑡−1(4), (b) updat-
ing the instance-level similarity and (c) updating the class-level

similarity based on 𝑠𝑡−1(4). Notably, 𝑠𝑡 (3) remains fixed as the

domain adaptation model updates only at the terminal state. How-

ever, directly computing all parent states using Eq.4 and Eq.5 is

too time-consuming. Therefore, we propose a more efficient ap-

proach to update the similarities. For instance-level similarity, we

pre-calculate a cosine similarity matrix SIM(𝑋𝑡 ) between all target

domain samples at the start of the generative process. The state of

the 𝑖-th target sample in the first column can be updated as follows.

𝑠
𝑖
𝑡−1(1) = max(𝑠𝑖𝑡 (1), SIM𝑖, 𝑗), (10)

where SIM𝑖, 𝑗 denotes the similarity between the 𝑖-th target sample

and the 𝑗-th target sample. For class-level similarity, we just need

to update 𝜇
𝑐
𝑡 with 𝑐 being the label of the selected 𝑗-th sample. 𝜇

𝑐
𝑡−1

can be quickly calculated based on 𝜇
𝑐
𝑡 , which is given by

𝜇
𝑐
𝑡−1 =

𝜇
𝑐
𝑡 ⋅ (∑𝑥∈𝒟𝑙

1{𝑦 = 𝑐}) − 𝑔(𝑥 𝑗)
∑𝑥∈𝒟𝑙

1{𝑦 = 𝑐} − 1 . (11)

Parent Exploration State Transition

Parent State

Parent State

Current State Child State

unlabeled target samples
selected target samples
selected target prototypes

pre-calculated
re-calculated

Figure 3: Illustration of efficient parent exploration and state
transition. Left: At state 𝑠𝑡 , 𝑥3 and 𝑥4 are labeled as 𝑦1 and
𝑦2, resulting in two parent states. Right: Due to 𝑎𝑡 = 𝑥3 , 𝑥3 is
labeled at 𝑠𝑡+1, and the prototype 𝜇2 needs to be updated.

Then the state of the 𝑖-th target sample in the second column can

be updated as follows:

𝑠
𝑖
𝑡−1(2) = max(𝑠𝑖𝑡 (2), cos(𝜇𝑐𝑡−1, 𝑥𝑖)). (12)

In the state transition process, if 𝑠𝑡 is not a terminal state, we

update the dynamic features of 𝑠𝑡 to obtain its child state 𝑠𝑡+1.

This process can be considered an inverse repetition of the parent

exploration process. Specifically, once 𝑎𝑡 = 𝑗 is sampled, the 𝑗-

th element in vector 𝑠𝑡 (4) is updated from 0 to 1, resulting in a

new vector 𝑠𝑡+1(4). Based on 𝑠𝑡+1(4),𝑠𝑡+1(1) can be updated by

utilizing Eq. 10. To update 𝑠𝑡+1(2), we use a similar equation as

Eq.12. Since we need to add a new sample instead of removing one

as in Eq.11, 𝜇
𝑐
𝑡+1 is updated as follows:

𝜇
𝑐
𝑡+1 =

𝜇
𝑐
𝑡+1 ⋅ (∑𝑥∈𝒟𝑙

1{𝑦 = 𝑐}) + 𝑔(𝑥 𝑗)
∑𝑥∈𝒟𝑙

1{𝑦 = 𝑘} + 1 . (13)

Overall, efficient exploration reduces complexity and accelerates

the training of the generative policy network with flow matching

loss (discussed in the next subsection).

4.4 Training Procedure
As illustrated in Fig. 2, GFlowDA consists of two primary compo-

nents: a generative policy network for selecting and annotating the

most useful target samples, and a domain adaptation network that

utilizes the annotated samples to adapt the target domain.

Genrative Policy Network. Based on the parent set 𝒮𝑝(𝑠𝑡 ) and
child set 𝒮𝑐(𝑠𝑡 ) obtained through the above exploration and tran-

sition process, we can calculate the corresponding inflows and
outflows. The inflows are calculated by∑𝑠∈𝒮𝑝(𝑠𝑡 )

𝐹(𝑠), which rep-

resents the sum of action flows from all parent states. The outflows

are flows passing through it, which is given by ∑𝑠∈𝒮𝑐(𝑠𝑡 )
𝐹(𝑠).

Starting from an empty set, GFlowDA draws complete trajectories

𝜏 = (𝑠0, 𝑠1, . . . , 𝑠𝑓 ) by iteratively sampling target samples until the

budget is used up. After sampling a buffer, we train the policy 𝜋(𝜃)
to satisfy Eq. 3, by minimizing the loss over the flow matching
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Table 1: Average class accuracies (%) and JSD (%) on Office-31 with 5% target data as the labeling budget.

Method

A→ D A→W D→ A D→W W→ A W→ D Avg

Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD

Random 46.23 16.22 60.79 15.80 55.67 3.14 67.98 14.39 61.80 3.57 67.46 15.64 59.99 11.46

Entropy [59] 53.85 27.93 57.12 23.53 65.88 15.09 70.12 22.96 67.16 4.93 70.91 35.04 64.17 21.58

TQS [10] 63.10 16.02 67.80 15.92 65.72 2.67 82.40 16.84 66.85 3.01 80.65 21.93 71.09 12.73

CLUE [39] 56.89 23.96 66.12 15.36 61.01 3.97 81.37 16.39 60.13 7.23 75.27 22.06 66.80 14.83

EADA [62] 46.63 27.15 65.40 21.10 51.05 7.60 72.40 28.39 54.22 7.11 73.02 22.93 60.45 19.05

SDM-AG [63] 62.76 22.85 68.20 17.38 65.3 5.67 79.40 21.42 64.41 3.49 72.43 25.87 68.75 16.11

AUDA [62] 65.13 21.36 67.36 18.32 67.12 5.01 79.60 20.87 63.78 4.12 77.14 19.36 70.02 14.84

RLADA (Ours) 67.36 20.33 71.23 16.79 70.56 3.67 79.88 16.03 65.98 3.20 76.78 19.66 71.96 13.28

GFlowDA (Ours) 70.50 15.01 73.00 13.54 74.80 1.72 82.60 11.93 67.51 1.51 80.75 14.40 74.86 9.68

Table 2: Average class accuracies (%) and JSD (%) on Office-Home with 5% target data as the labeling budget.

Method

Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Avg (12 tasks)

Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD

Random 38.80 7.24 63.92 6.06 63.67 6.91 42.38 12.14 61.69 5.47 65.48 5.40 52.20 7.76

Entropy [59] 37.39 8.79 65.79 7.20 57.75 22.09 38.52 14.70 56.22 10.92 55.37 12.49 48.36 14.72

TQS [10] 43.55 6.15 68.94 8.38 64.47 5.37 39.39 11.37 59.63 6.12 54.00 7.74 52.49 8.04

CLUE [39] 42.14 7.12 70.12 5.88 65.12 4.78 41.57 7.54 63.11 7.23 56.23 7.17 53.98 7.16

EADA [62] 40.36 5.65 69.06 7.44 62.19 6.17 30.67 10.68 65.14 9.47 54.53 7.64 50.28 9.32

SDM-AG [63] 40.01 8.43 69.25 7.99 62.26 8.54 38.21 9.74 53.13 10.98 51.51 9.78 42.84 10.83

LAMDA [14] 42.19 8.59 59.75 7.22 70.51 9.25 44.80 17.49 67.17 6.21 52.47 10.21 53.86 11.37

RLADA (Ours) 47.56 7.12 72.69 6.73 65.81 7.33 40.37 10.67 66.52 8.64 60.46 6.48 55.32 7.68

GFlowDA (Ours) 51.89 5.01 74.77 4.87 72.99 5.46 44.23 7.12 72.29 6.18 67.11 5.03 59.32 5.65

condition:

ℒ(𝜏) = ∑
𝑠𝑡 ∈𝜏≠𝑠0

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
log ⌊︀𝜖 + ∑

𝑠∈𝒮𝑝(𝑠𝑡 )

𝐹
′}︀

− log ⌊︀𝜖 + 1𝑠𝑡=𝑠𝑓 𝑟 (𝑠𝑓 ) + 1𝑠𝑡≠𝑠𝑓 ∑
𝑠∈𝒮𝑐(𝑠𝑡 )

𝐹
′}︀
[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀

2

,

(14)

where 𝐹
′ = exp(log 𝐹(𝑠)), and the reward 𝑟(𝑠𝑓 ) is computed

by Eq. 9. For internal states, we only calculate outflows based on

action distributions. For terminal states, we calculate their rewards

to evaluate the efficacy of 𝒟𝑙 . To acquire a dependable reward, we

introduce a new domain adaptation network as follows.

Generalized Universal Adversarial Network. In the GFlowDA

framework, we propose a novel weighted adaptive model for GUDA

named Generalized Universal Adversarial Network (GUAN). In

addition to the feature extractor 𝑔 and classifier ℎ, GUAN also

includes a domain discriminator 𝑑 ∶ 𝒵 → R, which aims to align the

source and target features adversarially. The weighted alignment

losses of source data and labeled target data are formally described

as follows

ℒ𝑠
adv
= −E𝑥∼𝑃𝑠𝑤𝑠 log (𝑑(𝑧)) − E𝑥∼𝑃𝑡𝑤𝑡 log (1 − 𝑑(𝑧)) (15)

ℒ𝑙
adv
= −E𝑥∼𝑃𝑙 log (𝑑(𝑧)) − E𝑥∼𝑃𝑡𝑤

′

𝑡 log (1 − 𝑑(𝑧)) , (16)

where 𝑧 = 𝑔(𝑥). 𝑤𝑠 in Eq. 15 indicates the ratio between the esti-

mated target label distribution and the source label distribution if

𝑥 is determined to belong to 𝒴𝑐 , which is defined as follows:

𝑤𝑠 = 1(𝑦 ∈ 𝒴 ′) ⋅ (𝑃𝑙(𝑦)⇑𝑃𝑠(𝑦)) + (1 − 1(𝑦 ∈ 𝒴
′)) ⋅ 𝜆

where𝒴 ′ = 𝒴𝑙 ∩𝒴𝑠 acting as an approximation of the common label

space 𝒴𝑐 , and 𝜆 is a constant working as a remedy for compatibility

with the potential inconsistency between 𝒴 ′ and 𝒴𝑐 .
𝑤𝑡 (𝑥) in Eq. 15 and𝑤

′

𝑡 (𝑥) in Eq. 16 indicate the probability of

a target sample 𝑥 belonging to the source label set 𝒴𝑠 and the se-

lected labeled target label set 𝒴𝑙 , respectively. We use the predicted

probabilities over all labels in 𝒴𝑠 and 𝒴𝑙 respectively to estimate

the probabilities, as described below:

𝑤𝑡 =
1

𝑢
∑
𝑖∈𝒴𝑠

𝒚̂(︀𝑖⌋︀, 𝑤
′

𝑡 =
1

𝑣
∑
𝑖∈𝒴𝑙

𝒚̂(︀𝑖⌋︀ (17)

where 𝑘 = ⋃︀𝒴𝑐 ⋃︀ and 𝑣 = ⋃︀𝒴𝑙 ⋃︀, 𝒚̂ = ℎ(𝑧) represents the prediction

probability vector.

The classification loss for GUAN aims to minimize the cross-

entropy loss for both source and labeled target samples:

ℒ
cls
= − E𝑥∼𝑃𝑠𝐿 (𝑦,𝑦) − E𝑥∼𝑃𝑙 𝐿 (𝑦,𝑦) , (18)

where 𝑦 = ℎ ○ 𝑔 (𝑥) and 𝐿(⋅) is the cross entropy loss.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We perform experiments on five benchmarks including

Office-31 [42], Office-Home [58], PACS [19] and VisDA [38]. To

evaluate our algorithm on GUDA, we modify the source and target

dataset by combining two subsampling protocols [54, 64]. These

protocols are tailored for GLS and UniDA respectively. See the

appendix for more details.

Evaluation metrics. Besides reporting the average class accu-
racy, we also compared the Jensen-Shanon divergence (JSD) be-

tween the label distribution of the selected samples and the original
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Table 3: Average class accuracies (%) and JSD (%) on PACS and with 1% target data as the labeling budget.

Method

PACS (%) VisDA (%)

A→ C A→ P A→ S C→ A C→ P Avg (12 tasks) S→ R

Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD

Random 52.80 0.29 81.86 9.69 60.24 1.58 58.35 0.02 82.80 11.98 63.27 4.30 55.52 0.46
Entropy [59] 44.53 3.05 67.01 15.58 60.65 1.42 35.71 5.99 84.44 16.94 58.38 8.20 50.45 8.42

TQS [10] 63.82 5.82 83.89 5.71 80.43 2.77 44.48 4.39 87.65 3.47 63.12 6.37 82.87 5.10

EADA [62] 35.18 9.01 28.46 34.67 38.21 5.42 23.97 7.67 40.66 26.67 34.38 11.16 84.73 1.98

SDM-AG [63] 68.76 3.91 90.63 7.81 84.03 2.39 51.63 2.55 74.90 6.73 63.16 4.18 80.69 2.60

LAMDA [14] 53.20 1.62 82.67 6.66 55.87 2.96 58.81 1.04 91.08 9.81 65.97 5.85 - -

RLADA (Ours) 59.78 3.28 90.12 4.32 67.03 0.80 57.03 2.78 87.21 4.07 66.00 2.94 81.23 3.23

GFlowDA (Ours) 64.34 1.06 91.38 4.11 67.23 0.55 56.66 0.61 90.54 1.87 68.26 1.93 85.23 1.03
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Figure 4: Average class accuracies (%) and JSD (%) on Office-31 and Office-Home with different budget.

target samples, denoted by 𝑑
JS
(𝑃𝑌𝑙 , 𝑃

𝑌
𝑡 ). JSD can provide an intu-

itive reflection of the label distribution reduction and exploration

ability of AL strategies. A smaller JSD value indicates that the se-

lected samples are better able to estimate the original distribution.

Compared baselines and Implementation details are introduced in

Sec B.2 and Sec B.3 in the Appendix.

5.2 Main Results of GFlowDA
Performance ofGFlowDAonGUDA.The experimental results of

different methods on Office-31, Office-Home, PACS and VisDA are

shown in Table 1, Table 2 and Table 3 respectively, demonstrating

that GFlowDA surpasses all the baselines by a large margin in both

accuracy and JSD. It is worth noting that the random strategy out-

performs most heuristic rule-based methods in terms of JSD, which

is statistically intuitive that random selection is an independent and

identically distributed (i.i.d.) procedure. However, random selection

is unstable, which may explain why it achieves comparable JSD

but 14.87% lower accuracy than GFlowDA on Office-31. Further-

more, two learning-based active strategies, GFlowDA and RLADA,

achieve optimal and suboptimal accuracy on Office-31, Office-Home

and PACS, indicating that such strategies have stronger exploration

ability. However, it should be noted that GFlowDA can achieve

better performance and exploration than RLADA.

Transferability of GFlowDA on GUDA. The active policy

network of GFlowDA is capable of effectively transferring to tasks

with varying degrees of label distribution shift and label space mis-

match. To prove this, we adjust the degree of label heterogeneity

by controlling the JSD distance between the source and target la-

bel distribution, denoted as 𝑑
JS
(𝑃𝑌𝑠 , 𝑃𝑌𝑡 ). As this distance increases,

Table 4: Comparison results on more settings and methods.

Method

Office31-Origin OH-RUST Office31-GUDA OH-GUDA

Acc JSD Acc JSD Acc JSD Acc JSD

AUDA 90.43 16.32 59.43 14.85 66.53 17.35 50.35 12.10

LAMDA 89.91 15.97 61.26 13.07 70.02 14.84 53.86 11.37

GFlowDA 92.85 15.67 63.19 11.34 74.86 9.68 61.40 5.65

DA tasks become more challenging. Fig. 6 represents the transfer-

ability of our method compared with existing ADA methods in

A→W on Office-31 (More results are available in the appendix).

The term "GFlowDA" refers to directly loading the active policy

network pre-trained on the original dataset. "GFlowDA trained"

indicates that the policy model has been fine-tuned on the new

tasks by training 30 epochs. Our experimental results demonstrate

that GFlowDA can directly transfer to new tasks without training,

and outperforms non-learning based methods in most cases. Fur-

thermore, ‘GFlowDA trained” improves performance on specific

tasks compared to ‘GFlowDA ”.

5.3 Further Analysis of GFlowDA
Performance of GFlowDA on Existing Settings. To demon-

strate the effectiveness of GFlowDA in handling the variants in-

cluded in GUDA, we evaluated its performance on Office31-Origin

and OfficeHome-RUST. The former represents the original setting

without label heterogeneity, while the latter represents the GLS

scenario [14]. As shown in Table 4, our method outperforms or

achieves comparable results to other methods.

Performance of Existing methods on GUDA. Due to the ab-

sence of AL in previous label space mismatch and label distribution
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GFlowDA -- Acc: 73.00  JSD:13.54 Random -- Acc: 60.79  JSD:15.80 Entropy -- Acc: 57.12  JSD:23.53 TQS -- Acc: 67.80  JSD:15.36
Source
Target
Queries

Figure 5: Feature visualization on the Office-31 A→W task. Selected samples are shown as black dots in the plots.

Figure 6: Left: Accuracy (%) with varying 𝑑JS(𝑃𝑌𝑠 , 𝑃𝑌𝑡 ) values.
Right: Label distribution with varying 𝑑JS(𝑃𝑌𝑠 , 𝑃𝑌𝑡 ) values.

(a) Contribution of Reward Feature (b) Contribution of State Feature

Figure 7: Ablation Study. “dis” indicates the MMD distance. “i-
sim” and “c-sim” indicate instance and class-level similarity.

shift methods, as well as differences in prediction space (⋃︀ ˆ𝒴⋃︀ = 𝑘+1),
it is unfair and impractical to directly compare GFlowDAwith those

methods. To ensure fairness and gain a deeper understanding of

GFlowDA, we analyze AUDA and LAMDA separately, which are

AL methods developed for the UniDA and GLS settings respectively.

As shown in the Tbale 4, their performance significantly decreases

when applied to the GUDA setting.

Qualitative Analysis As illustrated in Fig. 5, we present the

feature visualization on Office-31 A→Wwith 5% budget. It is ob-

vious that the samples selected by GFlowDA can effectively restore

the target label distribution, thus contributing to addressing GUDA

problems. In comparison, the Random method provides a certain

level of estimation for the target distribution compared to Entropy,

it lacks stability and does not consider sample informativeness. The

Entropy and TQS methods prioritize prediction uncertainty in sam-

ple selection, resulting in the inclusion of distant samples from the

source domain. Consequently, these methods may not fully restore

the target label distribution, leading to suboptimal performance.

Varying the Label Budget. To demonstrate the effectiveness

of GFlowDA, we conducted experiments with varying the labeling

budget from 0% to 10%, as shown in Figure 4. Across both Office-

31 and Office-Home datasets, GFlowDA consistently outperforms

baselines in terms of accuracy and JSD, showcasing GFlowDA can

provide excellent performance across varying labeling budgets,

making it a promising solution to address GUDA.

Contribution of State and Rewad Features. We further in-

vestigate the impact of the state features introduced in Section 4.2.

To study how each feature affects the learned policy, we remove

them from the state space individually and examine the resulting

performance. The experimental results are illustrated in Figure 7

(b), which shows the performance of GFlowDA with three variants

of the state on Office-31. It can be observed that removing any of

the features can result in a drop in accuracy. We further analyzed

the contribution of reward on GFlowDA’s performance. Figure 7

(a) shows the results. Ignoring either component would lead to a

passive impact on the overall performance of GFlowDA. Overall, it

is suggested that the unique combination of state and reward can

effectively address GUDA.

6 CONCLUSION
In this work, we propose a comprehensive problem GUDA, which

aims to obtain accurate predictions for unknown categories while

addressing label heterogeneity. We develop an AL domain adap-

tation method, GFlowDA, by leveraging GFlowNets’ exploration

capabilities. To achieve this, we propose a design paradigm of state

and reward, along with an efficient solution for parent exploration

and state transition. Additionally, GFlowDA introduces a training

framework named GUAN for GUDA. Experimental results demon-

strate GFlowDA’s superior performance in five benchmarks.
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A PROOF OF THEOREM 1
Before we give the proof of Theorem 1, we first present the error

decomposition theorem proposed by [54] under the assumption

that 𝒴𝑠 = 𝒴𝑡 , which is stated as follows.

Theorem 2 (Error Decomposition Theorem [54]). For any
classifier ⧹︂𝑌 = (ℎ ○ 𝑔)(𝑋),

⋃︀𝜖𝑠(ℎ ○ 𝑔) − 𝜖𝑡 (ℎ ○ 𝑔)⋃︀
≤ ∏︁𝑃𝑠(𝑌) − 𝑃𝑡 (𝑌)∏︁

1
⋅ 𝜀𝑠(⧹︂𝑌∏︁𝑌) + 2(𝑘 − 1)Δ𝑠,𝑡 (⧹︂𝑌∏︁𝑌).

Proof of Theorem 1. Followed by [54], we denote 𝛾𝑠,𝑗 = 𝑃𝑠(𝑌 = 𝑗)
for simplicity. The following identity holds for 𝑎 ∈ {𝑠, 𝑙, 𝑡} by the

law of total probability:

𝜖𝑎(ℎ ○ 𝑔) = E(𝑋,𝑌)∼𝑃𝑎
ℓ(ℎ ○ 𝑔(𝑋), 𝑌)

= E
(𝑋,𝑌)∼𝑃𝑎

𝑃𝑎(⧹︂𝑌 ≠ 𝑌)
= ∑
𝑖≠𝑗

𝑃𝑎(⧹︂𝑌 = 𝑖,𝑌 = 𝑗)

= ∑
𝑖≠𝑗

𝛾𝑎,𝑗𝑃𝑎(⧹︂𝑌 = 𝑖 ⋃︀ 𝑌 = 𝑗).

We further decompose the target risk 𝜖𝑡 (ℎ ○ 𝑔) and the source

risk 𝜖𝑠(ℎ ○𝑔) based on their common and private label space. Then

we have:

𝜖𝑡 (ℎ ○ 𝑔) − 𝜖𝑠(ℎ ○ 𝑔)
=E
(𝑋,𝑌)∼𝒟𝑡

𝑃𝑡 (𝑌 ≠ ⧹︂𝑌) − E(𝑋,𝑌)∼𝒟𝑠
𝑃𝑠(𝑌 ≠ ⧹︂𝑌)

=∑
𝑖≠𝑗

𝛾𝑡, 𝑗𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) −∑
𝑖≠𝑗

𝛾𝑠,𝑗𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗)

≤
∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
∑

𝑖≠𝑗, 𝑗∈𝒴

𝛾𝑡, 𝑗𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) − ∑
𝑖≠𝑗, 𝑗∈𝒴

𝛾𝑠,𝑗𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗)
∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

+ ∑
𝑖≠𝑗, 𝑗∈𝒴𝑡

𝛾𝑡, 𝑗𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) − ∑
𝑖≠𝑗, 𝑗∈𝒴𝑠

𝛾𝑠,𝑗𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗).

Based on Theorem 2, we can obtain:

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
∑

𝑖≠𝑗, 𝑗∈𝒴𝑐

𝛾𝑡, 𝑗𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) − ∑
𝑖≠𝑗, 𝑗∈𝒴𝑐

𝛾𝑠,𝑗𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗)
∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

≤ ∏︁𝑃𝑠(𝑌𝑐) − 𝑃𝑡 (𝑌𝑐)∏︁
1
⋅ 𝜀𝑠(⧹︂𝑌∏︁𝑌𝑐) + 2(𝑘 − 1)Δ𝑠,𝑡 (⧹︂𝑌∏︁𝑌𝑐),

Using the above inequality, we have:

E
(𝑋,𝑌)∼𝒟𝑡

𝑃𝑡 (𝑌 ≠ ⧹︂𝑌) − E(𝑋,𝑌)∼𝒟𝑠
𝑃𝑠(𝑌 ≠ ⧹︂𝑌)

≤ ∏︁𝑃𝑠(𝑌𝑐) − 𝑃𝑡 (𝑌𝑐)∏︁
1
⋅ 𝜀𝑠(⧹︂𝑌∏︁𝑌𝑐) + 2(𝑘 − 1)Δ𝑠,𝑡 (⧹︂𝑌∏︁𝑌𝑐)

+ ∑
𝑖≠𝑗, 𝑗∈𝒴𝑡

𝛾𝑡, 𝑗𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) − ∑
𝑖≠𝑗, 𝑗∈𝒴𝑠

𝛾𝑠,𝑗𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗).

Recall that the source risk can be decomposed into two parts:

E
(𝑋,𝑌)∼𝒟𝑠

𝑃𝑠(𝑌 ≠ ⧹︂𝑌) =

∑
𝑖≠𝑗, 𝑗∈𝒴𝑠

𝛾𝑠,𝑗𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) + ∑
𝑖≠𝑗, 𝑗∈𝒴𝑐

𝛾𝑠,𝑗𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗).

Combining the above inequality and identity, we have:

E
(𝑋,𝑌)∼𝒟𝑡

𝑃𝑡 (𝑌 ≠ ⧹︂𝑌)
≤ ∏︁𝑃𝑠(𝑌) − 𝑃𝑡 (𝑌)∏︁

1
⋅ 𝜀𝑠(⧹︂𝑌∏︁𝑌) + 2(𝑘 − 1)Δ𝑠,𝑡 (⧹︂𝑌∏︁𝑌)

+ ∑
𝑖≠𝑗, 𝑗∈𝒴𝑡

𝛾𝑡, 𝑗𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) + ∑
𝑖≠𝑗, 𝑗∈𝒴𝑐

𝛾𝑠,𝑗𝑃𝑠(⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗).

For simplicity, we still use 𝜖𝑠(ℎ○𝑔) to denote the classification error
on common label space, i.e., the last term of the above inequality.

We have:

𝜖𝑡 (ℎ ○ 𝑔) ≤ 𝜖𝑠(ℎ ○ 𝑔)
+ ∏︁𝑃𝑠(𝑌) − 𝑃𝑡 (𝑌)∏︁

1
⋅ 𝜀𝑠(⧹︂𝑌∏︁𝑌) + 2(𝑘 − 1)Δ𝑠,𝑡 (⧹︂𝑌∏︁𝑌)

+ ∑
𝑖≠𝑗, 𝑗∈𝒴𝑇

𝛾𝑡, 𝑗𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗).

Moreover, we have

∑
𝑖≠𝑗, 𝑗∈𝒴𝑇

𝛾𝑡, 𝑗𝑃𝑡 (⧹︂𝑌 = 𝑖 ⋃︀𝑌 = 𝑗) ≤ 𝜀𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌 𝑡 ),

where

𝜀𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌 𝑡 ) ∶= max

𝑗∈𝒴𝑡

𝑃𝑠(⧹︂𝑌 ≠ 𝑌 ⋃︀ 𝑌 = 𝑗),

and hence,

𝜖𝑡 (ℎ ○ 𝑔) ≤ 𝜖𝑠(ℎ ○ 𝑔)
+ ∏︁𝑃𝑠(𝑌) − 𝑃𝑡 (𝑌)∏︁

1
⋅ 𝜀𝑠(⧹︂𝑌∏︁𝑌) + 2(𝑘 − 1)Δ𝑠,𝑡 (⧹︂𝑌∏︁𝑌)

+𝜀𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌 𝑡 ).
It is worth noting that the above target upper bound only involves

the source domain𝒟𝑠 . Since AL is required in GUDA, an additional

domain 𝒟𝑙 corresponding to the selecting labeled target data is

introduced. Similar to the above inequality, for the error decompo-

sition between the target and the selected labeled target domain,

we have:

𝜖𝑡 (ℎ ○ 𝑔) ≤ 𝜖𝑙(ℎ ○ 𝑔)
+ ∏︁𝑃𝑙(𝑌𝑙) − 𝑃𝑡 (𝑌𝑙)∏︁1 ⋅ 𝜀𝑙(⧹︂𝑌∏︁𝑌𝑙) + 2(𝑣 − 1)Δ𝑙,𝑡 (⧹︂𝑌∏︁𝑌𝑙)
+𝜀𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌 𝑡 ).

Note that the common label space between the selected target

domain 𝒟𝑙 and the original target domain 𝒟𝑡 is 𝒴𝑙 due to 𝒴𝑙 ⊆ 𝒴𝑡 .
Finally, combining the above two inequalities, we get:

𝜖𝑡 (ℎ ○ 𝑔) ≤ 𝜖𝑠(ℎ ○ 𝑔) + 𝜖𝑙(ℎ ○ 𝑔) + 𝛿𝑠,𝑡 + 𝛿𝑙,𝑡 + 𝜀𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌 𝑡 ),
where

𝛿𝑠,𝑡 = ∏︁𝑃𝑠(𝑌𝑐) − 𝑃𝑡 (𝑌𝑐)∏︁
1
⋅ 𝜀𝑠(⧹︂𝑌 ⋃︀⋃︀𝑌𝑐) + 2(𝑘 − 1)Δ𝑠,𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌𝑐)

𝛿𝑙,𝑡 = ∏︁𝑃𝑙(𝑌𝑙) − 𝑃𝑡 (𝑌𝑙)∏︁1 ⋅ 𝜀𝑙(⧹︂𝑌 ⋃︀⋃︀𝑌𝑙) + 2(𝑣 − 1)Δ𝑙,𝑡 (⧹︂𝑌 ⋃︀⋃︀𝑌𝑙).
Above all, we complete the proof of Theorem 1.

B EXPERIMENTS
B.1 Dataset Setup under GUDA
Office-31: For Office-31, we use the middle 10 classes as the com-

mon label set, i.e., 𝒴 = {10−19}, then in alphabetical order, the first

10 classes are used as the source private classes, i.e., 𝒴𝑠 = {0 − 9},
and the rest 11 classes are used as the target private classes, i.e.,

𝒴𝑡 = {20 − 31}. Then we only consider 30% of source samples in

common classes {0-4} and private classes {10-14}.

Office-Home: For Office-Home, we use the middle 10 classes as

the common classes, i.e., 𝒴 = {30−39}. Then the first 30 classes are

used as the source private classes, i.e., 𝒴𝑠 = {0 − 29}. Correspond-
ingly, the last 25 classes are used as the target private classes, i.e.,

𝒴𝑡 = {40 − 64}. To construct a large label distribution, we consider

30% of source samples in common classes {0-14} and private classes
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Table 5: Remaining Results on Office-Home with 5% budget. Boldface and underline represent the best and second best scores.

Method

Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg

Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD

Random 50.23 12.42 45.80 7.08 51.25 7.18 40.39 11.01 41.91 6.23 60.89 5.94 52.20 7.76

Entropy [61] 36.19 14.89 40.56 15.91 57.29 18.16 37.46 17.79 41.09 15.44 56.73 18.22 48.36 14.72

TQS [9] 45.03 11.81 45.56 9.31 58.16 6.78 42.73 11.42 43.41 5.75 64.97 6.23 52.49 8.04

CLUE [39] 48.14 9.54 46.74 8.17 62.12 5.73 42.78 12.48 42.81 5.19 66.91 5.11 53.98 7.16

EADA [62] 42.15 11.52 40.22 7.53 55.94 14.28 42.15 16.88 36.13 5.60 64.85 8.95 50.28 9.32

SDM-AG [62] 42.84 10.83 40.92 8.81 55.81 12.12 40.65 10.42 39.25 7.33 60.69 11.92 42.84 10.83

LAMDA [14] 43.75 10.88 46.78 8.75 63.46 16.31 49.12 17.18 38.47 5.04 67.79 10.73 53.86 11.37

RLADA (Ours) 47.92 9.87 45.23 6.52 60.39 7.28 47.73 9.22 43.89 6.17 65.28 6.09 55.32 7.68

GFlowDA (Ours) 50.78 8.78 48.36 5.29 63.14 4.69 50.03 7.52 48.79 4.33 67.46 3.28 59.32 5.65

Table 6: Remaining Results on PACS with 1% labeling budget. Boldface and underline represent the best and second best scores.

Method

C→ S P→ A P→ C P→ S S→ A S→ C S→ P Avg

Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD Acc JSD

Random 50.14 0.44 54.46 7.46 60.36 6.62 71.87 3.05 49.65 2.52 53.81 4.84 82.88 3.10 63.27 4.30

Entropy [59] 49.98 6.21 53.89 2.33 63.82 6.78 79.98 2.24 45.76 3.40 50.07 16.55 64.74 17.86 58.38 8.20

TQS [10] 74.76 2.27 58.77 11.08 63.68 9.23 75.34 2.38 31.19 10.57 36.45 9.67 56.92 9.05 63.12 6.37

EADA [62] 33.10 5.80 27.09 7.17 24.77 7.69 20.98 5.04 46.04 5.51 40.25 5.31 53.87 14.01 34.38 11.16

SDM-AG [63] 69.88 2.10 41.08 7.08 58.46 4.49 74.84 4.31 43.00 1.74 46.53 1.05 54.18 6.04 63.16 4.18

LAMDA [14] 46.37 2.31 60.21 3.05 59.01 3.48 76.73 6.29 62.41 9.25 55.87 5.93 89.40 17.77 65.97 5.85

RLADA (Ours) 44.52 2.26 59.21 2.18 58.41 3.81 58.57 2.16 62.20 2.85 59.32 1.41 88.57 5.32 66.00 2.94

GFlowDA (Ours) 45.61 3.51 62.36 0.74 64.03 2.92 59.03 1.99 63.15 3.12 61.82 1.03 93.02 1.66 68.26 1.93

{30-34}, 30% of target samples in common classes {35-39} and private

classes {40-49}.

PACS: For PACS, we only consider one class labeled as “2” as

the common label space to construct a large label space gap, which

means that 𝒴 = {2}. We use the first two classes as the source

private classes denoted by 𝒴𝑠 = {0, 1} and use the last four classes

as the target private classes denoted by𝒴𝑡 = {3, 4, 5, 6}. We consider

30% of source samples in class 0 and 30% of target samples in

common class 2 and private class 3.

VisDA: For VisDA, we use classes 5 and 6 as the common classes

denoted by 𝒴𝑠 = {5, 6}. The first five classes are used as the source

private classes denoted by𝒴𝑠 = {0−4}. The last five classes are used
as the target private classes denoted by 𝒴𝑡 = {7− 11}. We consider

30% of source samples in common class 5 and source private classes

{0,1,2} and consider 30% of target samples in common class 5 and

target private classes {7,8,9}.

B.2 Comparison Baselines
We compare GFlowDA against several AL and ADA methods in-

cluding (1) Random, (2) Entropy [59], (3) TQS [10], (4) CLUE [39],

(5) EADA [62], (6) SDM-AG [63], (7) LAMDA [14]. Furthermore,

to illustrate the superiority of GFlowDA, we also implemented a

new algorithm by changing the policy network from GflowNet to

Proximal Policy Optimization [47] and keeping everything else the

same, named (8) Reinforcement Learning Active Domain Adapta-

tion, abbreviated as RLADA. RLADA is proposed by us to fill the gap

of learning-based approaches in the ADA literature. We compare

GFlowADA with RLADA to reflect the advantages of GFlowNet

over traditional reinforcement learning algorithms such as Proximal

Policy Optimization(PPO) [47].

B.3 Implementation Details
Domain Adaptation Model: For Random, Entropy, LAMDA and

GFlowDA, we apply ResNet50 [13] models pre-trained on Ima-

geNet [17] as a feature extractor. We use Adadelta optimizer train-

ing with a learning rate of 0.1 and a batch size of 32. The classifier is

implemented by a fully-connected layer. The domain discriminator

contains a fully-connected layer and a sigmoid activation layer.

For other active domain adaptation methods, we use default hy-

perparameters and network architecture introduced in their works

except that keeping using ResNet50 pretrained on ImageNet as the

backbone. We train 1 epoch in the training process for GFlowDA

and 40 epochs for other baselines.

Policy Network Model: For GFlowDA and RLADA, we im-

plement the policy network as a two-layer MLP with a hidden

layer size of 8. We use Adam as the optimizer with a learning rate

of 0.001. The policy network is trained for a maximum of 2000

episodes with a trajectory size of 5. All methods are implemented

based on PyTorch, employing ResNet50 [13] models pre-trained on

ImageNet [17]. Besides, we run each experiment three times and

report mean accuracies and JSD values.

B.4 More Results
Performance of GFlowDA. Table 5 and Table 6 present the com-

plete experimental results of GFlowDA and compared baselines on

all subtasks of the Office-Home and PACS datasets. These tables

demonstrate the superiority and robustness of GFlowDA, which

outperforms other methods in all datasets.
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