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ABSTRACT
Context-aware methods achieved great success in supervised scene
text recognition via incorporating semantic priors from words. We
argue that such prior contextual information can be interpreted as
the relations of textual primitives due to the heterogeneous text and
background, which can provide effective self-supervised labels for
representation learning. However, textual relations are restricted to
the finite size of dataset due to lexical dependencies, which causes
the problem of over-fitting and compromises representation ro-
bustness. To this end, we propose to enrich the textual relations
via rearrangement, hierarchy and interaction, and design a uni-
fied framework called RCLSTR: Relational Contrastive Learning
for Scene Text Recognition. Based on causality, we theoretically
explain that three modules suppress the bias caused by the contex-
tual prior and thus guarantee representation robustness. Experi-
ments on representation quality show that our method outperforms
state-of-the-art self-supervised STR methods. Code is available at
https://github.com/ThunderVVV/RCLSTR.

1 INTRODUCTION
Self-supervised learning (SSL), especially contrastive learning meth-
ods [5, 7–9, 15, 17, 41, 47], has achieved great success in computer
vision tasks for natural images. An excellent visual representation
learned from unlabeled data is attractive for scene text recognition
(STR). Otherwise, a mass of labeled data is usually needed for train-
ing to decode the contained text from images [12, 25, 45]. Directly
transferring the contrastive learning methods of natural images to
scene text images is sub-optimal since the characteristics of scene
text images are quite different from natural images. We argue that
text images mainly have the following essential characteristics.
First, foreground (𝑖 .𝑒 ., text) and background are heterogeneous in
text images, and text recognition relies primarily on text rather than
the background. Second, text images are known to have a left-to-
right structure. Third, besides the whole image, text images contain
the sequence of characters and structure of multi-granularity. Sig-
nificantly these text characteristics should be fully explored and
accordingly propose a new framework of SSL on scene text images.

Some pioneering works [1, 27, 50] have explored how to con-
struct variants of contrastive learning for text recognition. Seq-
CLR [1] considers scene text images as a sequence of subwords
and thus proposes an instance-mapping function, which makes
the atoms of contrastive learning to be sequential frames (𝑖 .𝑒 ., the
subwords) rather than images (𝑖 .𝑒 ., the whole image). PerSec [27]
conducts contrastive learning on low-level and high-level features,
aiming to simultaneously learn the representations from stroke and
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Figure 1: Textual Relations. (a) In the dataset, the context is
limited. By rearrangement (shuffling and concatenating), we
can create a richer context for regularization. (b) Text images
naturally have hierarchical features on multiple levels. The
most granular level is character. Multiple characters form a
subword, andmultiple subwords form a word.We use “CL" to
denote contrastive learning. (c) For cross-hierarchy relations,
the character presents higher similarity with the subword
from the same region than the subwords in other regions.
Similarly, the subword shows higher similarity with theword
from the same image than the words in other images.

semantic context. DiG [50] directly integrates contrastive learn-
ing and masked image modeling (MIM) into a unified model for
text recognition, while the gains mainly come from the power-
ful ViT [11] and MIM [49]. These above self-supervised methods
are mainly transferred from natural images and only partially ex-
plore the text characteristics. Unlike them, our idea is rooted in the
supervised text recognition in our community, aiming at fully ex-
ploring the characteristics of the text. In particular, context-aware
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methods [13, 36, 51] achieved great success by incorporating se-
mantic priors from words in a supervised fashion. We argue that
such contextual information can be interpreted as the relations of
textual primitives, thus, can be utilized in an unsupervised way.
Unfortunately, textual relations are restricted to the finite size of
the dataset, which usually causes the problem of over-fitting due
to lexical dependencies [42]. To address this problem, we propose
to enrich the textual relations via rearrangement, hierarchy and
interaction, resulting in a more complete contrastive mechanism.
For “rearrangement”, text images can be divided and rearranged
into new context relations. For “hierarchy”, there are multi-level
relations in text images, such as words, subwords and characters.
For “interaction”, we can leverage the interactions among the ob-
jects of different levels, 𝑒.𝑔., character-subword and subword-word
similarities.

Correspondingly, we propose RCLSTR: Relational Contrastive
Learning for Scene Text Recognition, with three novel modules
to fully explore the relations in texts. First, we design a relational
regularization module to generate new word images, enriching
the variety and diversity of relations. Instead of enumerating all
possible relations in texts, which is impractical, we turn to creating
new images on-the-fly. The rearrangement of images creates richer
context relations. For example, as shown in Figure 1 (a), words (𝑒.𝑔.,
“justify" and “notice") can be broken up into subwords of roots and
affixes and new words of “justice" and “notify” can be achieved by
rearrangement. In practice, we generate new permuted images by
horizontal division and concatenation, since text images usually
have left-to-right direction. Note that the position labels of roots
and affixes are unavailable in SSL, so the ideal image division is not
attainable. Our experiments further study multiple strategies for
image division and find that ideal division is not necessary for this
module. Second, a hierarchical structure is proposed to conduct
representation learning at multiple levels of primitives, which is
motivated by the fact that texts have multiple objects with different
granularities. As shown in Figure 1 (b), at the highest level, one
image is taken as a whole to learn the representations of words.
The words can be divided into subwords (𝑒.𝑔., roots and affixes)
in the middle level, and they work as functional language units
from the linguistic perspective [38]. The lowest level of characters
is the atomic elements of texts. We hypothesize that mining multi-
level relations in a hierarchical structure could enrich semantic
information and enhance representation learning. Third, besides
the intra-hierarchical relations, we further propose consistency
constraints to explore the inter-hierarchical relations. As shown in
Figure 1 (c), the characters (at the lowest level) and subwords (at the
middle level) from the same locations (in the same images) share
similar attributes in color and stroke, thus showing higher similarity
in the feature space. The same phenomenon is also found across
the levels of subwords and words. Therefore, we are motivated to
explicitly constrain the consistency of semantic similarity across
the hierarchical levels of text images. We hypothesize that enabling
interaction across multiple levels can facilitate the learning of high-
quality representations in a more effective manner.

We summarize the contributions of this work as follows:

• We propose to explore the relations in text images for self-
supervised learning. Text images encode rich contextual

information in the relations among textual primitives, which
are essential for contrastive learning.

• Wepropose a novel framework RCLSTR:RelationalContrastive
Learning for Scene Text Recognition, which includes three
novel modules for exploring relational regularization, hier-
archical relations and inter-hierarchy relational consistency.

• Our RCLSTR achieves superior performance over the state-
of-the-art self-supervised STR methods on representation
quality. Moreover, the effectiveness of key model compo-
nents is verified by the ablation study.

2 RELATEDWORK
2.1 Self-Supervised Learning
For natural image self-supervised learning, contrastive learning
methods [5, 7–9, 15, 17, 41, 47] show great success, which per-
forms the instance discrimination task to classify different data-
augmentation views from the same image into a class. In NPID [47],
the task of instance discrimination is proposed, and noise con-
trastive estimation (NCE) is used for contrastive learning, which
is further replaced by InfoNCE [41]. MoCo [17] and SimCLR [7]
improve the quality of learned representations, which proposes
the momentum encoder and uses a single network with a large
batch size, respectively. SwAV [5] constrains the consistency of
cluster allocation of different data-augmentation views. Recently,
BYOL [15] and Simsiam [9] further propose asymmetric frame-
works which do not need negative samples. More recently, some
works [33, 34, 46, 55] propose to use KL divergence to constrain
relative consistency in the form of similarity distribution. However,
these self-supervised methods are designed for natural images,
which is quite different from text images. Considering the char-
acteristics of text, we need to specially design the self-supervised
method for text images.

2.2 Self-Supervised Text Recognition
Some pioneering works [1, 3, 27, 29, 50] explored self-supervised
methods in text recognition and have achieved promising results.
We summarize these methods into three main categories. The first
approach is based on contrastive learning. SeqCLR [1] maps se-
quence features of words to instances as atomic elements of con-
trast learning. They only consider the text sequence structure. Per-
Sec [27] proposed to conduct contrastive learning on the low-level
stroke and the high-level semantic features of text images corre-
sponding to visual and semantic information. The second is based
on mask image model. DiG [50] proposed a self-supervised frame-
work for text recognition that combines contrastive learning and
masked image models(MIM). Concurrent work [30] also uses MIM
for STR. However, these MIM methods are directly transferred
from natural image methods. The third is based on generative learn-
ing, and a representative work is SimAN [29], which proposes to
reconstruct the images from the decoupled content and style in-
formation. In sum, the above methods have not fully explored the
characteristics of text images. Our approach takes into account the
heterogeneity of texts, the left-to-right structure and the hierarchi-
cal structure of the sequence to fully explore the text characteristics.
We propose a novel contrastive learning framework to enrich the
textual relations via rearrangement, hierarchy and interaction.
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Figure 2: Block diagram. Each image in a batch is augmented twice and then fed separately into the online branch (top) and the
momentum branch (bottom) of the encoder and projector to create pairs of representation maps. In relational regularization
module, we randomly permute the image patches and undo permutation on their features. Next, for the hierarchical contrastive
learning of these representations, we apply three predictors that transform them into frames, subwords and words, respectively.
In relational consistency module, the corresponding positions on three circles represent the same spatial positions across
different hierarchical levels. And we take the corresponding frame & subword or subword & word as positive pairs. The diagram
uses the corresponding colors to represent the three levels.

3 METHOD
Based on the structure of MoCo [17], an efficient and effective
baseline, we propose the relational contrastive learning framework
for text recognition (RCLSTR). As shown in Figure 2, we introduce a
novel permutation stage in the online branch (upper branch) to yield
horizontal permuted images from the original, which is denoted as
relational regularization module (Sect. 3.2). In addition, we design a
hierarchical structure to learn relations at each level, which is called
hierarchical relation module (Sect. 3.3). Meanwhile, we propose a
cross-hierarchy relational consistency module (Sect. 3.4) so that the
network learns the relation between hierarchies.

3.1 Preliminaries
Text recognition framework. As we focus on general contrastive
learning for text images, we follow SeqCLR [1] and use a general
text recognition framework in [2]. This framework is the founda-
tion of many text recognizers, which consists of an encoder and a
decoder. In the encoder, we use a Thin Plate Spline (TPS) transfor-
mation [39] and a feature extraction network. The decoder can be a
CTC-based decoder [14] or attention-based decoder [10]. Note that
there are other kinds of text recognition architectures [13, 25, 45, 48]
in recent research, and it is expected our RCLSTR can also be applied
to them.
Contrastive learning. Contrastive learning methods [6–8, 17]
perform an instance discrimination pretext task in the pre-training
phase. This pretext task trains themodel to discriminate the positive
view from the negative views. The query view X𝑞

𝑖
and positive view

X𝑝
𝑖
are encoded as q and p. To avoid the need for large batchsize,

we follow MoCo to maintain a queue of size 𝐾 , and there are 𝐾
negative features {n𝑘 }𝐾𝑘=1 from other images. Then, the contrastive
loss of InfoNCE is written as:

L𝑖𝑛𝑓 𝑜 (q, p, n) = − log exp(q·p/𝜏𝑖𝑛𝑓 𝑜 )∑
u∈{n𝑘 }𝐾𝑘=1∪{p}

exp(q·u/𝜏𝑖𝑛𝑓 𝑜 ) , (1)

where 𝜏𝑖𝑛𝑓 𝑜 is a temperature hyper-parameter. This loss function
aims to pull closer together features of positive pairs and to push
all the other negative examples farther apart.
Naive relational contrastive learning. Relational contrastive
learning aims at learning not only the relation between query views
and positive views, but also the relation between query views and
negative views. Inspired by [44, 46, 55], we calculate the similarity
between the positive and the negatives (𝑖 .𝑒 . 𝑃 ) and that between the
query and the negatives (𝑖 .𝑒 . 𝑄). We encourage the agreement of
two similarity distributions. Formally, we use symmetric Kullback-
Leibler (KL) Divergence as the measure of disagreement, imposing
consistency between 𝑃 and 𝑄 :

𝑄𝑖 (q, n) =
exp(q · n𝑖/𝜏𝑘𝑙 )∑𝐾
𝑘=1 exp(q · n𝑘/𝜏𝑘𝑙 )

,

𝑃𝑖 (p, n) =
exp(p · n𝑖/𝜏𝑘𝑙 )∑𝐾
𝑘=1 exp(p · n𝑘/𝜏𝑘𝑙 )

,

L𝑘𝑙 (q, p, n) =
1
2
𝐷KL (𝑃 ∥𝑄) +

1
2
𝐷KL (𝑄 ∥𝑃),

(2)

where 𝜏𝑘𝑙 is also a temperature hyper-parameter. The total rela-
tional loss is a weighted average of the InfoNCE loss term and the
KL loss term:

L𝑟𝑒 (q, p, n) = L𝑖𝑛𝑓 𝑜 (q, p, n) + 𝛼L𝑘𝑙 (q, p, n), (3)

where 𝛼 denotes the coefficient to balance the two terms. The first
term is the absolute similarity constraint between q and p. The
second term is the relative similarity constraint, which aims to
keep the similarity distribution consistency of q and p with the
negatives.

However, due to the finite size of the dataset, the textual relations
are restricted, and the performance of naive relational contrastive
learning is limited. Therefore, we propose relational regulariza-
tion, hierarchical relation and cross-hierarchy relation modules to
learn richer textual relations, building a more complete relational
contrastive learning framework.
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Figure 3: An illustration of the random permutation opera-
tion, which generates features for relational regularization.

3.2 Relational Regularization
STR model usually treats each feature in a sequence as the atom
for prediction. Previous works [42, 54] have pointed out that text
recognizers are prone to over-dependence on context. It should
be noted that the previous methods are used for supervised learn-
ing, while our method is proposed for unsupervised learning. In
order to alleviate this context-dependent problem, we propose a
permutation module to generate new text images. The generated
images contain more diversity of context relations, encouraging
the encoder not to over-fitting finite contexts in the dataset. Gener-
ally, the process goes like 1) dividing text images horizontally into
several patches, 2) randomly shuffling and concatenating patches
to generate permuted images, and 3) adding a regularization loss
term corresponding to these permuted images.

Specifically, the permutation operation is performed directly
on the input images, as shown in Figure 3. Firstly, we divide each
image horizontally into 𝑁 patches, where the default 𝑁 is 2. Next,
we take𝑀 images as a group to randomly shuffle the 𝑁𝑀 patches
in each group, where the default 𝑀 is 2. Then, every 𝑁 patches
are concatenated horizontally to make new images. Therefore, we
produce shuffled images, denoted as {x𝑟𝑒𝑔}.

We only feed x𝑟𝑒𝑔 into the online encoder and projector to get
frame features, and such an implementation empirically performs
better, which shares the same spirit of a multi-cropping strategy [5].
To align all features of permuted images, we unshuffle them (invert-
ing the random shuffle operation) to put the features back in their
original position. We denote the resulting features of regularization
as q𝑟𝑒𝑔 . The relational contrastive loss with regularization of the
permuted images can be written as:

L𝑟𝑒𝑔 (q, p, n) = L𝑟𝑒 (q, p, n) + L𝑟𝑒 (q𝑟𝑒𝑔, p, n), (4)

where L𝑟𝑒 is from Equation 3. L𝑟𝑒𝑔 constrains the invariance of
the relation under random permutations. The regularization comes
from the fact that this constraint on both original and permuted
images can force the model not to over-fit the existing contexts.

For the step of horizontal division, since no character position
information is available for SSL, we choose equal division as our de-
fault setting, which may generate partial characters. And we further
study multiple image division strategies (illustrated in Figure 4). 1)
Default direct cutting for equal division. 2) Cutting and dropping

(a) Direct equal division

(c) Division using vertical projection

(b) Division with dropping boundary features

Figure 4: Multiple image division strategies.

boundary features. Since the boundary features may correspond to
the characters that are cut, we drop these features when calculating
the contrastive loss. 3) Using vertical projection to cut. The vertical
projection method can cut from the character gap to avoid cutting
the character itself.

3.3 Hierarchical Relation
Since text images are encoded as sequence features, contrastive
learning is applied to the individual elements of the sequence. Con-
sidering text words have different granularities in the horizontal
direction, we propose a novel hierarchical structure, which maps
the features to three levels of frame, subword and word. Thus we
conduct hierarchical relational contrastive learning to learn about
relations at each level.

To this end, we use three mapping functions to map the feature
sequence into three levels, where representations of different ob-
jects are encoded. Specifically, the most fine-grained level is called
the frame, which usually contains stroke information of only a
portion of the letter. We use the identity function as the frame
mapping function. The middle level is called the subword, and it
usually contains one or more letters, like roots and affixes. We use
an avgpooling layer as the subword mapping function, which map
features to𝑇 subwords with𝑇 = 4. The highest level is called word,
i.e., contains a whole word. And an average function is used as
the word mapping function. At each level, we maintain a separate
queue of negative features, respectively. We calculate the relational
contrastive losses at each level and sum them up:

Lℎ𝑖𝑒𝑟 =
∑︁
ℎ∈𝐻

L𝑟𝑒𝑔 (qℎ, pℎ, nℎ), (5)

where 𝐻 = {𝑓 𝑟𝑎𝑚𝑒, 𝑠𝑢𝑏𝑤𝑜𝑟𝑑,𝑤𝑜𝑟𝑑}. With the proposed hierarchi-
cal relational contrastive learning, the model can learn the frame-
frame, subword-subword and word-word relations simultaneously.
At each level, we also perform the regularization as in the Equa-
tion 4.

3.4 Cross-Hierarchy Relational Consistency
In the previous section, we obtained the features of multiple levels
and performed relational contrastive learning within each level.
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However, there are semantic relations between features across dif-
ferent levels, which are unexplored. Therefore, we propose con-
sistency constraints to learn the relation between neighboring
levels. Our default implementation performs frame-subword and
subword-word consistency constraints, and we provide the results
of other settings in the experiments. As shown in Figure 2, for
frame-subword relations, since the frame and subword features
from the same spatial locations (in the same images) show higher
similarity in the feature space, we treat them as positives and treat
features in other locations as negatives. And the subword-word
positives and negatives are determined in the same way. For the
frame-subword and subword-word relation, we impose the consis-
tency between the similarity distributions by KL loss as the measure
of disagreement:

L𝑓 2𝑠 = L𝑘𝑙 (q𝑓 , p𝑠 , n𝑠 ),
L𝑠2𝑤 = L𝑘𝑙 (q𝑠 , p𝑤 , n𝑤),

(6)

where superscripts of {𝑓 , 𝑠 , 𝑤} denote {𝑓 𝑟𝑎𝑚𝑒 , 𝑠𝑢𝑏𝑤𝑜𝑟𝑑 , 𝑤𝑜𝑟𝑑},
respectively. This loss constrains the relation between each feature
and its neighboring upper-level feature. Here we take the posi-
tives and negatives from the upper level because we consider that
upper-level features contain more semantic information than lower-
level. Finally, the total loss of our relational contrastive learning is
formulated as:

L𝑡𝑜𝑡𝑎𝑙 =
∑︁
ℎ∈𝐻

L𝑟𝑒𝑔 (qℎ, pℎ, nℎ)︸                     ︷︷                     ︸
Regularized hierarchical relation

+ L𝑓 2𝑠 + L𝑠2𝑤︸          ︷︷          ︸
Cross-hierarchy consistency

(7)

3.5 Justification
As shown in Figure 5, we formulate the SSL framework as a causal
graph, which contains three nodes: 𝑋 : scene text images, 𝑌 : robust
representations, and 𝐶: context information.
𝑋 → 𝑌 : This path indicates that the SSL model can learn robust

representation for downstream tasks. For example, The success of
recent SeqCLR [1] proves that unsupervised pre-training benefits
text representation.
𝐶 → 𝑋 : This path indicates the generation of scene text images —

combining specific text under some scenes. Some synthetic dataset,
like SynthText [16], is generated in this way.
𝐶 → 𝑌 : This path indicates that context information prior in

the training dataset can help the learning of robust representations.
For example, these context-based STR methods usually utilize that
for the prediction of occluded text [13, 36, 51].

In the causal graph,𝐶 confounds𝑋 and 𝑌 via the back-door path
𝑋 → 𝐶 → 𝑌 , 𝑖 .𝑒 ., learning the representations for STR recognition

only based on the dataset prior. The useful context information can
be harmful when the data is out-of-distribution, 𝑖 .𝑒 ., with a different
context prior. The existence of a back-door path causes a spurious
correlation between 𝑋 and 𝑌 , which prevents the learning of repre-
sentations. An ideal SSL method should capture the true causality
between 𝑋 an 𝑌 , but the conventional correlation of 𝑃 (𝑌 |𝑋 ) fails
to do so, as such a spurious correlation is inevitable. Therefore, we
instead seek to use the causal intervention 𝑃 (𝑌 |𝑑𝑜 (𝑋 )), where𝑑𝑜 (·)
is the random controlled trails. As enumerating all textual relations
is impossible, we propose the three modules act as the physical
intervention, cutting off the confounding effect. In particular, re-
lational regularization module creates new contexts, hierarchical
module breaks the context, and cross-hierarchy module learns the
correspondence of local-to-global context. They achieve the 𝑑𝑜 (·)
operation exactly.

4 EXPERIMENTS
Datasets. We conduct our experiments on public datasets of scene
text recognition. We train on the synthetic dataset SynthText [16].
SynthText [16] is a synthetically generated dataset. It has 5.5M
training data once the word boxes are cropped and filtered for
non-alphanumeric characters. For evaluation, we use seven real-
scene text datasets. IIIT5K(IIIT5K-Words) [32], IC03(ICDAR
2003) [28], IC13(ICDAR2013) [22] and SVT(Street ViewText) [43]
are regular text images, which are nearly horizontal. They con-
tain 3000, 867, 1015 and 647 word images for evaluation, respec-
tively. IC15(ICDAR 2015) [21], SVTP(Street View Text Perspec-
tive) [35] and CUTE80 [37] are irregular text images. They are
mostly perspective text images, and some are blurry or curved. They
contain 2077, 645 and 288 word images for evaluation, respectively.
Metrics. To evaluate performance, we adopt the metrics of word-
level accuracy (Acc). Word-level accuracy is the number of correctly
predicted words divided by the total number of words.
Network configurations. For the network illustrated in Figure 2,
data augmentation module transforms a given image X𝑖 in a batch
of images into two augmented images X𝑎

𝑖
,X𝑏
𝑖
∈ 𝑅𝐶×𝐻×𝑊 , where

we set 𝐻 as 32,𝑊 as 100 and 𝐶 as 3. We take blocks of transforma-
tion (TPS [39]) and feature extraction (ResNet) as the encoder and
a two-layer Bidirectional-LSTM (BiLSTM) with 256 hidden units
as the projector. For augmented images of both branches, these
components extract sequential representations, R𝑎

𝑖
,R𝑏
𝑖

∈ 𝑅𝐹×𝑇 ,
where 𝐹 is the feature dimension, and 𝑇 is the number of columns
(frames). In our network, we set 𝐹 = 256 and 𝑇 = 26 by default.
The predictor is a mapping function followed by a fully connected
(FC) layer. For the frame level, the mapping function is an identity
function. For the subword level, it is an adaptive avgpooling layer
that maps frames to𝑇 subwords with𝑇 = 4. For the word level, it is
an average function. Finally, the feature dimension for contrastive
learning is set to 128.
Self-Supervised Pre-Training.The synthetic dataset SynthText [16]
without labels is used for pre-training. We employ an SGD opti-
mizer [4] with a constant learning rate scheduler and train the
models for 5 epochs. The training hyperparameters are: the batch
size as 32, base learning rate as 1.5e-3, weight decay as 1e-4, mo-
mentum for SGD optimizer as 0.9. The pre-training experiments
are conducted with 4 GPUs.



Table 1: Representation quality. Accuracy(%) is used to evaluate the quality of representation from encoder, and we train a
decoder with labeled data on top of frozen encoder which was pretrained on unlabeled images. Our method with different
modules added is compared with the previous methods, where "reg" denotes the relational regularization module, "hier" denotes
the hierarchical relation module and "con" denotes the cross-hierarchy relational consistency module.

Decoder Method Scene-Text Dataset
IIIT5K IC03 IC13 SVT IC15 SVTP CUTE80 Avg

CTC

SeqCLR [1] 35.70 43.60 43.50 - - - - -
PerSec-CNN [27] 37.90 45.70 46.40 - - - - -
SeqMoCo w/o KL Loss 41.63 48.21 46.50 25.35 22.05 19.53 22.22 32.21
SeqMoCo 42.97 51.44 48.37 25.35 23.01 20.62 23.26 33.57
Ours based on SeqMoCo
w/ reg 48.43 58.94 54.98 35.09 26.43 26.82 29.17 39.98
w/ reg & hier 51.90 61.36 59.01 38.79 30.62 30.08 30.21 43.14
w/ reg & hier & con 54.83 64.82 60.89 41.58 32.60 34.26 32.64 45.95

Atten

SeqCLR [1] 49.20 63.90 59.30 - - - - -
PerSec-CNN [27] 50.70 65.70 61.10 - - - - -
SeqMoCo w/o KL Loss 50.97 58.36 55.86 35.55 29.42 28.53 30.56 41.32
SeqMoCo 51.83 59.75 59.90 37.40 31.73 28.99 32.29 43.13
Ours based on SeqMoCo
w/ reg 56.30 67.70 63.25 41.27 35.05 36.9 37.15 48.23
w/ reg & hier 59.03 71.51 67.29 46.37 38.32 36.90 36.81 50.89
w/ reg & hier & con 61.07 72.90 68.77 50.54 40.30 40.16 39.24 53.28

FeatureRepresentationEvaluation. For CTC-based andAttention-
based decoders, we inherit the configurations from SeqCLR [1] and
PerSec [27]. Following the decoder evaluation [1, 27], during the
training for feature representation evaluation, the base encoder is
frozen, and we only train a decoder to evaluate the feature rep-
resentation quality. We employ an Adam optimizer [23] and the
one-cycle learning rate scheduler [40] with a maximum learning
rate of 5e-4. The training hyperparameters are: the batch size as
256, the number of iterations as 200K, gradient clipping magnitude
as 5.
Fine-Tuning Evaluation. During the training of fine-tuning eval-
uation, the base encoder is not frozen, and we fine-tune the whole
network. Following [2], we used ST [16] and MJ [20] as the fine-
tuning training datasets. An AdaDelta optimizer [53] and constant
learning rate scheduler are employed. The training hyperparame-
ters are: the batch size as 192, the number of iterations as 50K, the
base learning rate as 1.0, the decay rate of AdaDelta optimizer as
0.95, gradient clipping magnitude as 5.

4.1 Representation Quality
For the study of representation quality, the base encoder is unsuper-
vised pre-trained and then frozen. Following SeqCLR [1], We only
train a decoderwith labeled data on top of it.We compare our results
with other CNN-based SSL methods, and the results are shown in
Table 1. Because SeqCLR requires a large batchsize, considering the
limitations of hardware, we replace the baseline with MoCo. Based
on MoCo [17], we add the mapping function of SeqCLR [1] and
implement the sequential relational contrastive learning method,
denoted as the baseline SeqMoCo. Based on SeqMoCo, we add re-
lational regularization module, hierarchical relation module and
cross-hierarchy relational consistency module in turn.

The results of representation quality are shown in Table 1. Com-
pared with SeqMoCo without KL loss, SeqMoCo with naive rela-
tional contrastive learning achieves limited performance gain. This
performance gain is limited by finite dataset relations and suffers
from over-fitting due to the lexical dependencies. Compared with
SeqMoCo, our method equipped with all three modules further
gains an improvement of +12.38% on average for the CTC-based
decoder and +10.15% for the Attention-based decoder. Also, the
effectiveness of three key modules is verified in this table. It should
be noted that SeqMoCo is not a stronger baseline (especially in
attention-based decoder). Our performance superiority is from the
three proposed modules and not from the KL loss or baseline.

4.2 Fine-tuning
We further unfreeze the parameters of the encoder and fine-tune
it with the decoder. Table 2 shows the performance comparison
between our RCLSTR and other methods. “Supervised baseline"
does not perform self-supervised pre-training, in which parameters
are randomly initialized. Compared with SeqMoCo, our method
gains an improvement of average performance. Compared with
SeqCLR [1] and PerSec [27], our RCLSTR can outperform them in
most datasets. These results demonstrate that the image encoder
learned by RCLSTR benefits downstream recognition fine-tuning.

4.3 Semi-Supervised Learning
We further evaluate our method by considering semi-supervised
settings. We use the same encoders as before, which were pre-
trained on the unlabeled data, and let the whole network be fine-
tuned using 1% or 10% of the labeled dataset. We use the same
randomly selected data for all the experiments.



Table 2: Fine-tuning results. Accuracy(%) of fine-tuning a pretrained model with labeled data.

Decoder Method IIIT5K IC03 IC13 SVT IC15 SVTP CUTE80 Avg

Atten

Supervised baseline 84.40 91.81 89.16 83.62 68.05 73.33 71.08 80.21
SeqCLR [1] 82.90 92.20 87.90 - - - - -
PerSec-CNN [27] 84.20 - 88.90 82.40 68.20 73.60 68.40 -
SeqMoCo 84.40 92.73 89.85 84.54 69.30 74.88 64.81 80.08
RCLSTR(Ours) 86.03 92.73 91.13 83.15 69.15 74.88 67.94 80.72

Table 3: Semi-supervised results. Accuracy(%) of fine-tuning a pre-training model with 10% and 1% of the labeled data.

Fraction Method IIIT5K IC03 IC13 SVT IC15 SVTP CUTE80 Avg

10%
Supervised baseline 70.90 83.85 79.02 66.46 49.74 50.70 47.04 63.96
SeqMoCo 75.20 87.77 81.87 71.41 54.48 57.98 48.78 68.21
RCLSTR(Ours) 76.80 87.31 82.86 72.64 55.31 60.16 54.01 69.87

1%
Supervised baseline 64.57 80.05 74.09 60.59 42.92 45.12 37.28 57.80
SeqMoCo 65.57 81.55 74.98 62.91 48.86 53.95 37.98 60.83
RCLSTR(Ours) 73.73 86.51 81.77 72.80 51.35 58.61 45.99 67.25

Table 4: The decoder evaluation performance with ViT-based encoder-decoder architecture. Our RCLSTRmethod with different
modules added is compared with the SeqMoCo, where "reg" denotes the relational regularization module, "hier" denotes the
hierarchical relation module and "con" denotes the cross-hierarchy relational consistency module.

Encoder-Decoder Method Modules Scene-Text Datasets
IIIT5K IC03 IC13 SVT IC15 SVTP CT80 Avg

SATRN𝑠𝑚𝑎𝑙𝑙
(ViT-Based)

SeqMoCo - 62.57 75.55 70.44 63.83 44.1 46.05 35.76 56.90

RCLSTR
w/ reg 74.43 83.51 77.83 70.48 53.83 54.73 46.53 65.91
w/ reg & hier 78.23 86.16 80.89 75.43 58.59 61.24 54.51 70.72
w/ reg & hier & con 78.10 87.31 82.46 74.34 59.65 60.16 55.21 71.03

Table 5: The decoder evaluation performance on Chinese and
handwritten datasets.

Method Chinese Dataset Handwritten Dataset
IAM CVL

SeqMoCo 47.56 56.16 77.80
RCLSTR 55.70 62.88 85.92

Table 3 compares our method with SeqMoCo and supervised
baseline training. As can be seen, RCLSTR achieves better perfor-
mance on average under different amount of labeled data. Our
method succeeds in significantly improving the results of Seq-
MoCo. Compared with SeqMoCo, our method gains an improve-
ment of +1.66% on average for 10% labeled data and +6.42% for 1%
labeled data. These results verify that the representations learned
by RCLSTR benefit the learning from insufficient data.

4.4 Results on ViT-based Encoder-Decoder
We evaluate our RCLSTRmethod on the ViT-based encoder-decoder
architecture, and the results are summarized in Table 4. We choose
the small version of SATRN [26] to verify the effectiveness of our
method on the ViT encoder. We perform SeqMoCo and RCLSTR pre-
training, and freeze encoder to perform decoder evaluation. And

we add three modules in turn. The performance gain verifies that
our three modules can also be effective for the ViT-based encoder.

4.5 Results on More Languages and Types of
Text Image Datasets

The condition of using our method only assumes that the text
is horizontal, so it is also useful for other languages (𝑒.𝑔., Chi-
nese) and other fonts (𝑒.𝑔., handwritten). For the Chinese document
dataset [52], we perform SeqMoCo and RCLSTR pre-training, and
freeze encoder to perform decoder evaluation, the accuracies are
summarized in Table 5. RCLSTR achieved superior performance
on Chinese datasets. Since Chinese Text Images have left-to-right
structures and horizontal multi-grained hierarchies, RCLSTR can
also facilitate self-supervised learning of their features.

We further evaluate our RCLSTR method on the handwritten
datasets, comparing its performance with SeqMoCo. We consider
the English handwritten datasets IAM [31] and CVL [24], and the re-
sults are summarized in Table 5. Compared with SeqMoCo, RCLSTR
achieves better performance on these two datasets and gains an
improvement of +6.72% for IAM and +8.12% for CVL. Although
handwritten fonts have a certain irregularity, our RCLSTR can also
utilize their horizontal and multi-hierarchical structure to facilitate
feature learning.



Table 6: Ablations. (a) Analysis of the setting for hierarchies. Without adding other modules, we try the settings of different
combinations for hierarchies. (b) Effect of image division strategies. ∗: Direct cutting is the default setting of RCLSTR. (c) Effect
of consistency constraints. (d) Ablation on hierarchical consistency loss functions.

(a)
Hierarchies IIIT5K IC03 IC13 SVT IC15 SVTP CUTE80 Avg
w/ subword & frame 50.07 62.17 58.82 36.01 30.52 27.29 28.82 41.96
w/ subword & word 56.30 66.90 64.63 43.59 35.19 35.50 35.07 48.17
w/ subword & word & frame 58.80 68.51 66.21 47.45 37.65 37.36 39.24 50.75

(b)
Image Division
Direct cutting∗ 61.07 72.90 68.77 50.54 40.30 40.16 39.24 53.28
Dropping boundary features 61.33 74.51 69.56 49.00 38.85 38.14 38.54 52.85
Vertical projection 60.97 72.66 68.08 53.17 40.25 40.31 39.24 53.53

(c)
Cross-Hierarchy Consistency
w/ subword-word 59.47 70.24 66.60 47.30 36.11 38.14 32.29 50.02
w/ frame-subword 59.60 71.28 67.00 50.08 38.81 41.24 38.19 52.31
w/ subword-word & frame-subword 61.07 72.90 68.77 50.54 40.30 40.16 39.24 53.28

(d)
Cross-Hierarchy Consistency Loss Function
InfoNCE 60.60 73.82 70.15 48.38 39.38 40.16 37.15 52.81
KL 61.07 72.90 68.77 50.54 40.30 40.16 39.24 53.28
RE 59.93 71.05 67.39 50.08 38.42 39.69 36.46 51.86

Figure 6: t-SNE results.
4.6 Visualization
In Figure 6, we use t-SNE [19] to visualize the final features of
IIIT5K [32] images corresponding to two methods, 𝑖 .𝑒 ., SeqMoCo
(baseline) and the proposed RCLSTR, inwhich features for attention-
based decoder are visualized by attaching character labels to frame
features. As can be seen, our method mines intra-class relation to
cluster characters of the same class. Besides, our method also mines
the inter-class relations, where the clusters with similar-looking
characters (𝑒.𝑔., I&J and D&O) are close.

5 ABLATION STUDY
First, we analyze the setting for hierarchies. Without adding other
modules, we try the settings of different combinations for hierar-
chies, and the results are shown in Table 6 (a). We can observe that
the setting of subword and word gains higher performance than
subword and frame. The best performance is achieved by learning
at all three levels. In the following ablation, we used all three levels
as the default setting to explore variants of other modules.

Effect of image division strategies.We study how different
image division strategies affect the effectiveness of relational regu-
larization. The results under different image division strategies (as
shown in Figure 4) are summarized in Table 6 (b). Under the condi-
tion of no available character positions for SSL, the process of direct
division and concatenation creates richer context, but meaningless

images (such as partial characters from non-ideal image division)
are generated. There is a trade-off between context diversity and
non-ideal image division. Since the goal of relational regulariza-
tion is to avoid over-fitting the original context, the effectiveness
mainly comes from more diversity of contexts, and it is insensitive
to the non-ideal image division boundaries. We find that dropping
the boundary features has a similar performance. And the vertical
projection method to avoid cutting character also has no significant
performance gap.

Effect of consistency constraints. In Table 6 (c), we impose
subword-word and frame-subword consistency constraints sep-
arately, and we find that frame-subword consistency brings the
most performance gain, which indicates that the more granular
consistency is more useful for learning text representations.

Ablation on hierarchical consistency loss functions. By
default, we use KL-divergence loss to constrain the consistency
between hierarchies. As shown in Table 6 (d), we test other con-
sistency loss functions, such as InfoNCE loss in Equation 1 and
relational loss (RE) in Equation 3. For cross-hierarchy relations,
local and global features do not have absolute consistency and only
have relative similarities. Thus KL loss is better than InfoNCE and
RE (𝑖 .𝑒 . InfoNCE + KL) loss.

6 CONCLUSIONS
This work proposes a novel framework, Relational Contrastive
Learning for Scene Text Recognition (RCLSTR). To take advantage
of contextual priors in STR, we argue that contextual information
can be interpreted as the relations of textual primitives and utilized
in an unsupervised way. In this framework, the relations in text
images are fully explored by three modules. The relational regu-
larization module is proposed to enrich the intra- and inter-image
context relations. The hierarchical relational module for relational
contrastive learning can capture multi-granularity representations.
Additionally, the cross-hierarchy relational consistency module is
designed for the interactions across different hierarchical levels in
scene text images. Experiments on representation quality verify
the superiority of our RCLSTR method.
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A VISUALIZATION RESULTS OF
REGULARIZED SAMPLES

In Figure 7, we show some samples of randomly permuted images
in the relational regularization module. The permutation generates
new word images with new contexts. The meaningful generated
images are an extension of the contexts. However, non-ideal im-
age divisions (such as partial characters or unaligned boundaries)
are generated. As we analyzed in the ablation section, there is a
trade-off between context diversity and non-ideal image division.
Since relational regularization aims to avoid over-fitting the origi-
nal context, the effectiveness mainly comes from more diversity of
contexts, and our ablation finds that ideal division is not necessary
for the relational regularization module.

B MORE RESULTS ON CROSS-HIERARCHY
CONSISTENCY

In Table 7, we provide the performance of adding frame-word consis-
tency constraints. We find that there is no significant performance
improvement with adding frame-word consistency constraint. Con-
sidering the semantic similarity between the frame and word levels
is relatively distant, the consistency between the two might be not
so important.

C MEMORY BANK SIZE
In Table 8, we compare the average accuracy(%) of decoder eval-
uation under different settings of memory bank size (number of
negatives). As can be seen, the performance is positively correlated
to memory bank size, which is similar to MoCo. The default mem-
ory size setting of RCLSTR is 65536, and all other experiments are
performed with this setting.

D COMPUTATIONAL COST & MODEL SIZE
Computational Cost. In Table 9, we compare the per-iteration
forwarding time(s) for pre-training SeqMoCo and RCLSTR on the
same training machine. The results show that RCLSTR needs only
a tiny amount of extra computations. It should be noted that this
time may be different on other kinds of hardware, and our purpose
is to illustrate the relative computational cost.
Model Size. We build the encoder and decoder following SeqCLR,
so the model sizes of SeqCLR and ours are fair. The Persec decoder
is the same as ours. Because some parameter nums are unreleased,
Persec-CNN has an unknown size for the encoder. It should be noted
that ourmodel also exceeds Persec-ViT(as shown in Table 10), which
uses a stronger encoder than Persec-CNN. So our performance is
better than PerSec. To sum up, RCLSTR is relatively fair in terms of
model size, and our performance improvement is not from a larger
model size.

E MORE IMPLEMENTATION DETAILS
E.1 Text Recognition Scheme
We use the “encoder-decoder" text recognition network. In the en-
coder, we use a transformation and a feature extraction network.
The decoder can be a CTC-based decoder or attention-based de-
coder.

The transformation stage transforms a cropped image into a
normalized image. Because the input image may contain text in a
non-axis aligned layout, as often occurs in scene text images, the
transformation is necessary. We follow [1] and utilize the Thin Plate
Spine (TPS) transformation [39], which is a variant of the spatial
transformer network [39]. This transformation first uses a CNN of
4 layers to detect a pre-defined number of fiducial points at the top
and bottom of the text region. Then, a smooth spline interpolation
is applied between the obtained points to map the predicted textual
region to a constant pre-defined size.

In the feature extraction stage, we use a ResNet [18] of 29 layers,
which is the same as [1]. For Bidirectional-LSTM (BiLSTM), we
follow [1] to use 2 layers of BiLSTM, and the hidden size is 256.
We also follow [1] to build Connectionist Temporal Classification
(CTC) based and attention-based decoder to decode the predictions
from the sequential features.

E.2 Data Augmentation
For the data augmentation, we follow SeqCLR [1], and our aug-
mentation consists of a random subset of the linear contrast, blur,
sharpen, crop, perspective transform and piecewise affine. The
augmentation procedure is implemented using the imgaug aug-
mentation package, which is used to augment each image twice
for self-supervised learning. The pseudo-code for augmentation
written with imgaug package is as shown in Algorithm 1.

E.3 Self-Supervised Pre-Training
The goal of self-supervised pre-training is to pre-train the weights
of the feature encoder. We use TPS [39] and ResNet [18] of 29 layers
as the feature encoder. And we use BiLSTM as a projector, and the
hidden size is 256. The projector is followed by mapping functions
and FC layers that act as predictors. In the pre-training stage, we
use a pre-trained TPS module and freeze its weight. The projector
and predictors are auxiliary networks that are discarded entirely
after the pre-training stage. After pre-training, we only use the
pre-trained weights of the feature encoder.

E.4 Feature Representation Evaluation
During the training for feature representation evaluation, the base
encoder is frozen, and we only train a decoder. For CTC-based and
Attention-based decoders, we inherit the configurations from Seq-
CLR [1]. The paper has illustrated the training and testing settings.

E.5 Fine-Tuning Evaluation
For the training of fine-tuning evaluation, the base encoder is not
frozen, and we fine-tune the whole network. We inherit the con-
figurations of CTC-based and Attention-based decoders from Se-
qCLR [1]. The training and testing settings are illustrated in the
paper.

E.6 Semi-Supervised Evaluation
During the training of semi-supervised evaluation, the base encoder
is not frozen, and we fine-tune the whole network. Following [2],
we used ST [16] andMJ [20] as the fine-tuning training data sets and
used 1% or 10% of labeled data of them. An AdaDelta optimizer [53]
and constant learning rate scheduler are employed. The training
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Figure 7: Visualization results of the regularized samples. In relational regularization module, we randomly permute the image
patches, which generates images with new contexts.

Table 7: More results of cross-hierarchy consistency. “Cross-Hierarchy Consistency" represents different combinations of
consistency constraints between hierarchies. Here we supplement the result with adding frame-word consistency constraint.
All results are on representation qualities (decoder evaluation accuracy).

Cross-Hierarchy Consistency IIIT5K IC03 IC13 SVT IC15 SVTP CUTE80 Avg
w/ subword-word & frame-subword 61.07 72.90 68.77 50.54 40.30 40.16 39.24 53.28

w/ subword-word & frame-subword & frame-word 61.40 74.39 68.57 50.85 39.09 40.62 39.24 53.45

Table 8: Comparison of different memory bank size.

Size 4096 16384 65536
Avg Acc 49.65 52.13 53.28

Table 9: Per-iteration forwarding time(s).

Method SeqMoCo RCLSTR
Time(s) 0.148 0.178

Table 10: Additional comparison with Persec-ViT.

Decoder Method IIIT5K IC03 IC13

Atten Persec-ViT [27] 52.30 66.60 62.30
RCLSTR 61.07 72.90 68.77

hyperparameters are: the batch size as 192, the number of iterations
as 5K, the base learning rate as 1.0, the decay rate of AdaDelta
optimizer as 0.95, gradient clipping magnitude as 5.

E.7 Algorithm Pseudocode
Algorithm 2 provides the pseudo-code of RCLSTR for the pre-
training task. As shown in the pseudo-code, we use random per-
mutation for relational regularization. The regularized relational
contrastive losses at the frame, subword and word level are calcu-
lated separately. Besides, the cross-hierarchy consistency losses for
frame-to-subword and subword-to-word are proposed. The final
loss is the sum of the regularized relational loss at each level and
the relational consistency losses across levels.

E.8 Evaluation Variance
We find that the evaluation results may have some tiny variance in
the experiment. The evaluation variance may be due to incomplete
evaluation protocols. We look forward to future community work
to complete the evaluation protocol of this field.

Algorithm 1 Pseudocode of data augmentation.

from imgaug import augmenters as iaa
iaa.Sequential([iaa.SomeOf((1, 5),
[
iaa.LinearContrast((0.5, 1.0)),
iaa.GaussianBlur((0.5, 1.5)),
iaa.Crop(percent=((0, 0.4),

(0, 0),
(0, 0.4),
(0, 0.0)),
keep_size=True),

iaa.Crop(percent=((0, 0.0),
(0, 0.02),
(0, 0),
(0, 0.02)),
keep_size=True),

iaa.Sharpen(alpha=(0.0, 0.5),
lightness=(0.0, 0.5)),

iaa.PiecewiseAffine(scale=(0.02, 0.03),
mode='edge'),

iaa.PerspectiveTransform(
scale=(0.01, 0.02)),

],
random_order=True)])



Algorithm 2 Pseudocode of RCLSTR in a PyTorch-like style.

# f_q, f_k: online and momentum networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum; t: temperature

f_k.params = f_q.params # initialize
for x in loader:

x_q = aug(x) # a randomly augmented version
x_k = aug(x) # another randomly augmented version

# relational regularization of random permutation
x_q_reg = aug_pm(x_q)

frame_q, subword_q, word_q = f_q.forward(x_q)
frame_k, subword_k, word_k = f_k.forward(x_k)

frame_q_reg, subword_q_reg, word_q_reg = f_q.forward(x_q_reg) # queries of regularized samples

# calculate relational contrastive loss for each level
L_frame = relational_loss(frame_q, frame_k, frame_queue)
L_frame_reg = relational_loss(frame_q_reg, frame_k, frame_queue)

L_subword = relational_loss(subword_q, subword_k, subword_queue)
L_subword_reg = relational_loss(subword_q_reg, subword_k, subword_queue)

L_word = relational_loss(word_q, word_k, word_queue)
L_word_reg = relational_loss(word_q_reg, word_k, word_queue)

# calculate cross-hierarchy consistency loss
L_f2s = relational_loss(frame_q, subword_k, subword_queue)
L_s2w = relational_loss(subword_q, word_k, word_queue)

# total loss
loss = L_frame + L_frame_reg + L_subword + L_subword_reg + L_word + L_word_reg + L_f2s + L_s2w

# SGD update: query network
loss.backward()
update(f_q.params)

# momentum update: key network
f_k.params = m*f_k.params+(1-m)*f_q.params

# update dictionary, enqueue and dequeue the current minibatch
enqueue_dequeue(frame_queue, frame_k)
enqueue_dequeue(subword_queue, subword_k)
enqueue_dequeue(word_queue, word_k)

def relational_loss(q, k, queue):
# positive logits: Nx1
l_pos = bmm(q.view(N,1,C), k.view(N,C,1))
# negative logits: NxK
l_neg = mm(q.view(N,C), queue.view(C,K))

# logits: Nx(1+K)
logits = cat([l_pos, l_neg], dim=1)

# InfoNCE contrastive loss
labels = zeros(N) # positives are the 0-th
InfoNCE_loss = CrossEntropyLoss(logits/t, labels)

# KL contrastive loss
similarity_q = mm(q.view(N,C), queue.view(C,K))
similarity_k = mm(k.view(N,C), queue.view(C,K))
KL_loss = 0.5 * kl(similarity_q, similarity_k) + 0.5 * kl(similarity_k, similarity_q)
return InfoNCE_loss + KL_loss
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