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ABSTRACT
Languagemodels have been supervisedwith both language-only ob-
jective and visual grounding in existing studies of visual-grounded
language learning. However, due to differences in the distribution
and scale of visual-grounded datasets and language corpora, the
language model tends to mix up the context of the tokens that
occurred in the grounded data with those that do not. As a result,
during representation learning, there is a mismatch between the
visual information and the contextual meaning of the sentence. To
overcome this limitation, we propose GroundedBERT - a grounded
language learning method that enhances the BERT representation
with visually grounded information. GroundedBERT comprises
two components: (i) the original BERT which captures the contex-
tual representation of words learned from the language corpora,
and (ii) a visual grounding module which captures visual informa-
tion learned from visual-grounded datasets. Moreover, we employ
Optimal Transport (OT), specifically its partial variant, to solve
the fractional alignment problem between the two modalities. Our
proposed method significantly outperforms the baseline language
models on various language tasks of the GLUE and SQuAD datasets.
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• Computing methodologies → Natural language processing;
Computer vision; • Theory of computation → Theory and
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Table 1: Statistics of some common datasets used in visual
grounded language learning task.

Book Corpus Wikipedia MS COCO

# of words 985M 2471M 6M
# of sentences 74M 113M 616K
# of unique words 1M 8M 44K

’23), October 29-November 3, 2023, Ottawa, ON, Canada. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3581783.3612248

1 INTRODUCTION
Grounded language learning is concerned with learning the mean-
ing of language as it applies to the real world. Humans, especially
children, learn language from not only pure textual information but
also different modalities such as vision and audio, which contain
rich information that cannot be captured by text alone [35, 44, 50].
However, many traditional language models are learned only from
textual corpora [3, 11]. They have the limitation in learning com-
plex semantics that requires the combination of signals in data
through cross-referencing and synthesis.

Recently, there are many studies trying to improve the language
representation with visual information [2, 9, 16, 21, 49]. In those
attempts, they update the weights of the language encoder using
the visual objective together with the pure language-based objec-
tive during pretraining. However, there is usually a huge gap in the
distribution and quantity of word tokens between visual datasets
and language corpora. For example, in Table 1, the Book Corpus
and Wikipedia, two conventional language corpora, contain bil-
lions of words with millions of unique tokens, while MS COCO, a
common visual-grounded dataset, contains only 6 million words
and 44 thousand unique tokens. Therefore, during visual-grounded
learning, only the tokens from the visual datasets are updated while
the majority of the tokens are not equipped with visual informa-
tion. However, during pretraining, those tokens with and without
information from the images will be mixed up in the same context
of the sentence, confusing the contextual learning process.

Moreover, previous attempts compressed the entire image into
one vector as a global representation and then matched it to the
paired caption. However, as shown by the samples picked from
the Visual Genome [19] dataset in Figure 1, many of the captions
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The ground is wet
White van is moving
Windows with black iron balcony railings
Green container on sidewalk

orange to the left of salt shaker
blue pocket knife to left of fruit bowl
red apple on white counter top
Plate with butter, bread and fork
on it

a water bottle with white cap
two men at a table
glass building
two books stacked on a table

metal chair with blue fabric on casters
silver/gray computer mouse
there are two picture frames on the table
computer monitor with lit screen

a water bottle with white cap
two men at a table
glass building
two books stacked on a table

The ground is wet
White van is moving
Windows with black iron balcony railings
Green container on sidewalk

orange to the left of salt shaker
blue pocket knife to left of fruit bowl
red apple on white counter top
Plate with butter, bread and fork
on it

Figure 1: Example image-caption pairs in Visual Genome dataset [19]

only describe local regions in the corresponding image. Thus, us-
ing a global representation vector can distract the encoder from
capturing local information, making it difficult for the model to
align between modalities. As a solution to this issue, we use the
Vision Transformer [13] model as the visual encoder to store local
information in patch embeddings.

Additionally, aligning information from different modalities is a
crucial phase in vision-language representation learning because
it is how two sources of information are combined. There are ex-
isting researches that use Optimal Transport to solve this align-
ment problem. Uniter [7] and ViLT [17] used the OT-based dis-
tance as a pretraining objective, while Graph Optimal Transport
[5] considered two OT distance: Wasserstein distance (WD) and
Gromov-Wasserstein distance (GWD) for cross-domain alignment
in Visual Question Answering. Nevertheless, the classical optimal
transportation problem seeks a transportation map that satisfies
marginal constraints, requiring masses from all sources to be moved
to all destinations. In some cases, we want only a fraction of masses
to be carried, making this requirement restrictive. For instance, as
stated above, the caption only describes a part of the image. To get
a more flexible alignment, we propose to adapt the Partial Optimal
Transport variant to align between the modalities.

Our contributions can be summarized as:
• We propose GroundedBERT - a grounded language represen-
tation that extends the BERT representationwith visual infor-
mation. The visual-grounded representation is first learned
from the text-image pairs and then concatenated with the
original BERT representation to form a unified visual-textual
representation.

• We use patch embeddings from Vision Transformer to main-
tain local information of the image instead of a single global
representation. We also adapt Partial Optimal Transport to
align between the two modalities.

• We conduct extensive experiments on various language down-
stream tasks on the GLUE and SQuAD datasets. Empirical
result shows that we significantly outperforms the baselines
on these tasks.

2 RELATEDWORK
Over the past decades, many approaches have been proposed to
learn language representation. Skip-gram [30], GLOVE [38] were

proposed to learnword representations. On the other hand, FastSent
[14], QuickThought [27], SkipThought [18], Sentence-BERT [42], or
[10, 22] tried to learn the sentence representations. Recently, many
language models such as ELMo [39], BERT [11], RoBERTa [26],
XLNet [54], GPT [3], ELECTRA [8], ALBERT [20] were proposed to
learn the contextual representation. However, these studies learn
the language representation on only textual corpora.

In recent years, many vision-and-language pretrained models
have been proposed to build joint cross-modal representations
and focus on vision-and-language tasks such as visual question
answering and natural language for visual reasoning [7, 23, 47].
While [24, 55] used only one cross-modal Transformer for learn-
ing, [29, 48] proposed to use two single-modal Transformers and
one cross-modal Transformer. Pretraining tasks such as masked
language model and masked visual-feature classification were used
in those studies to learn the vision-and-language representation.

Advanced machine learning algorithms such as the Contrastive
Learning framework have been applied to the natural language
processing and computer vision [31, 33, 34, 36, 37, 45]. Optimal
Transport has also been extensively used in many natural language
processing tasks and also the integration of vision and language
fields, for example, Cross-Lingual Abstractive Summarization [32],
machine translation [6], Vision and language pretraining [7, 17],
Visual Question Answering [5], etc. Nevertheless, the application of
the variants of OT has been less attractive in vision-and-language
research.

There are many works on grounded language learning [1, 15, 43]
having been introduced in the past few years. On the other hand,
there are few attempts to improve language representation with
visual information. [21] introduced multimodal skip-gram models
(MMSKIP-GRAM) taking visual information into account. [9] pro-
posed IMAGINET which consists of GRU networks and tried to
predict the visual representation and the next word in the sentence.
[16] was similar to IMAGINET but they used a bi-directional LSTM
for sentence encoder. Moreover, it aimed to predict both the visual
feature and the other captions given one caption. [2] proposed an
intermediate space called the grounded space and learns the visual
and textual representation with cluster information and perceptual
information. [49] introduced the concept of vokenization and pre-
trained the language model with an additional voken-classification
task.
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BERT

Textual Embedding Ground
Embedding

Visual-Textual
Embedding

CLS

<CLS>   Token1   Token2   ........  TokennSentence

Language encoder Visual grounding

concatenation

Visual grounding
module

Figure 2: Implementation of our GroundedBERT. The model consists of two components, i.e. Language encoder and Visual
grounding part. The new representation of language model combines of Textual embedding and Visual embedding.

3 METHODOLOGY
In this section, we introduce the details of our proposed Grounded-
BERT. As shown in Figure 2, our model consists of two components:
a language encoder and a visual grounding module. The complete
framework is illustrated in Figure 3 where two objectives are intro-
duced.

3.1 Language encoder
We use BERT [11] as the language encoder. Given an input sentence
𝑠 = (𝑤1, . . . ,𝑤𝑛), we use the pretrained BERTmodel to contextually
embed the discrete tokens𝑤𝑖 ’s into hidden-output vector 𝒉𝑖 ’s:

𝒉1,𝒉2, . . . ,𝒉𝑙 = BERT (𝑤1,𝑤2, . . . ,𝑤𝑙 ) (1)

where 𝒉𝑖 = (ℎ1
𝑖
, ℎ2

𝑖
, . . . , ℎ𝐿

𝑖
), ℎ𝑙

𝑖
is the hidden state of token 𝑖 at layer

𝑙 of the Transformer.

3.2 Visual grounding
Visual grounding module. The visual grounding module is a

multi-layer perceptron to transform the contextual representation
of each token in the sentence into the (visual) ground embedding.

We take the hidden states of 𝑘 final Transformer layers ℎ𝐿−𝑘+1
𝑖

,

ℎ𝐿−𝑘+2
𝑖

, . . . , ℎ𝐿
𝑖
and concatenate them as the input for the visual

grounding module.

ℎ̃𝑖 = [ℎ𝐿−𝑘+1𝑖 , ℎ𝐿−𝑘+2𝑖 , . . . , ℎ𝐿𝑖 ] (2)

𝑔𝑖 = MLP𝑉𝐺 (ℎ̃𝑖 ) (3)

where 𝑔𝑖 is (visual) ground embedding of token 𝑖 , [ℎ𝐿−𝑘+1
𝑖

, ℎ𝐿−𝑘+2
𝑖

,

. . . , ℎ𝐿
𝑖
] is the concatenation of hidden states of token 𝑖 from layer

𝐿 − 𝑘 + 1 to 𝐿, VG stands for Visual Grounding.

Visual-Textual Embedding. The textual embedding is the final
hidden state of the language encoder. The ground embedding are
concatenated to this textual embedding to form a unified visual-
textual embedding of the token in the sentence.

𝑡𝑖 = [ℎ𝐿𝑖 , 𝑔𝑖 ] (4)

where 𝑡𝑖 is the visual-textual embedding vector of the 𝑖-th token,
which we take as the final representation of the token using our
GroundedBERT model, [ℎ𝐿

𝑖
, 𝑔𝑖 ] is the concatenation of the final

hidden state ℎ𝐿
𝑖
and the ground embedding 𝑔𝑖 .

3.3 Visual encoder
Patch embedding. Instead of using traditional convolution-based

architectures for visual feature extraction [2, 16, 49], we use Vision
Transformer (ViT) [13]. Let 𝑖𝑚𝑔 be the input image having size
of (𝑐,𝑤, ℎ) which stands for the number of channels, width, and
height of the image. Image 𝑖𝑚𝑔 goes through the ViT to get a global
feature vector 𝑣𝐶𝐿𝑆 and𝑚 patch embeddings 𝑣1, . . . , 𝑣𝑚 .

𝑣𝐶𝐿𝑆 , 𝑣1, . . . , 𝑣𝑚 = ViT (𝑖𝑚𝑔) (5)

Image projection. We use a multi-layer perceptron to project the
feature vector 𝑣𝑖 of each patch to the grounded space and represent
visual context learned from visual features.

𝑣𝐶𝐿𝑆 , 𝑣1, ..., 𝑣𝑚 = MLP𝑝𝑟 𝑗 (𝑣𝐶𝐿𝑆 , 𝑣1, ...𝑣𝑚) (6)

where 𝑣𝐶𝐿𝑆 is the global embedding of the input image, 𝑣𝑖 ’s are the
patch embeddings and prj stands for (image) projection.
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Optimal transport
matching for alignment

Visual encoder

GroundedBERTthe baseball player swings
the bat at the ball

CLS

CLS

Image-sentence matching

CLS

CLS

M
LP Matched or not?

Patch embedding
(ViT) Image Projection

Figure 3: Implementation of our training framework. The framework consists of two parrallel pipeline for visual and text,
finally, the whole model is train with two objectives: Image-sentence matching and Optimal transport matching for alignment.

Algorithm 1 Computing Optimal Transport.
1: Input: C ∈ R𝑚×𝑛 , 𝒂 ∈ R𝑚 , 𝒃 ∈ R𝑛 , 𝛽 , 𝑖𝑡𝑒𝑟
2: 𝝈 = 1𝑛/𝑛, T = 1𝑚1⊤𝑛
3: A = exp

(
− C

𝛽

)
4: for 𝑡 = 1, 2, 3, . . . , 𝑖𝑡𝑒𝑟 do
5: // all division operations are element-wise
6: Q = A ⊙ T // ⊙ is the Hadamard product
7: 𝜹 = 𝒂

Q𝝈 , 𝝈 = 𝒃
Q⊤𝜹

8: T = diag(𝜹 )Qdiag(𝝈 )
9: end for
10: D = ⟨C,T⟩ // ⟨·, ·⟩ is the Frobenius dot-product
11: Return T, D

3.4 Training
In this section, we introduce two different optimization objectives:
Image-sentence matching for global matching and Optimal trans-
port matching for alignment between local features.

Image-sentence Matching. The Image-sentence Matching task is
inherited from the Image-text Matching task frommany vision-and-
language pretraining literatures mentioned in Section 2. Learning
how to perform well on this task will encourage the model to better
find the relationship between the textual information and the visual
signal in a global sense.

From each modality, we take a vector as its global representation.
For the vision side, we use the global feature vector 𝑣𝐶𝐿𝑆 from
ViT. For the language side, we use the visual-textual embedding of
the CLS token. We concat these two vectors before feeding into a
fully connected layer with sigmoid activation to make the binary
prediction of whether the sentence describes the image.

𝑦 = 𝜎 (FC ( [𝑣𝐶𝐿𝑆 , 𝑡𝐶𝐿𝑆 ])) (7)

where 𝑦 is predicted probability, 𝜎 (𝑥) = [1 + exp(−𝑥)]−1 is the
sigmoid function, [., .] is the concatenation operation.

Algorithm 2 Computing Partial Optimal Transport.
1: Input: C ∈ R𝑚×𝑛 , 𝒂 ∈ R𝑚 , 𝒃 ∈ R𝑛 , 𝛽 , 𝑠 , 𝑖𝑡𝑒𝑟
2: T = exp

(
− C

𝛽

)
3: T = 𝑠

1⊤𝑛 T1𝑚
T

4: for 𝑡 = 1, 2, 3, . . . , 𝑖𝑡𝑒𝑟 do
5: // all division operations are element-wise
6: 𝒌𝑎 = min

(
𝒂

T1𝑛 , 1𝑚
)

7: T𝑎 = diag(𝒌𝑎 )T
8: 𝒌𝑏 = min

(
𝒃

T⊤𝑎 1𝑚
, 1𝑛

)
9: T𝑏 = diag(𝒌𝑏 )T𝑎
10: T = 𝑠

1⊤𝑛 T𝑏 1𝑚
T𝑏

11: end for
12: D = ⟨C,T⟩ // ⟨·, ·⟩ is the Frobenius dot-product
13: Return T, D

The negative pair is created by replacing the image with another
randomly selected image from the training set. We apply the binary
cross-entropy loss for optimization.

L𝑐𝑙𝑠 = −𝑦 log𝑦 − (1 − 𝑦) log(1 − 𝑦) (8)

where 𝑦 is the binary indicator, 𝑦 = 1 if the image matches the
sentence and 0 otherwise.

Optimal transport for vision-language alignment. To solve the
alignment between language and vision, we use Optimal Transport
(OT), specifically the Partial Optimal Transport (POT) variant.

For each image, we have𝑚 patch embeddings 𝒗 = (𝑣1, . . . , 𝑣𝑚).
For each sentence, we have 𝑛 hidden representations of the words
𝒕 = (𝑡1, . . . , 𝑡𝑛}. We consider these two collections as the supports
of two empirical distributions with uniform weights. We then use
OT to estimate the distance between these two distributions.

Specifically, we compute the cost matrix C where 𝑐𝑖 𝑗 = 1 −
cos ∠(𝑣𝑖 , 𝑡 𝑗 ), or the cosine distance between the corresponding
patch and word embedding. We also let 𝒂 = 1𝑚/𝑚 and 𝒃 = 1𝑛/𝑛 be
the two uniform weight vectors.
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Table 2: Downstream task results of BERT, Vokenization [49] and our GroundedBERT, we conduct the experiments on BERT-
base architecture. MRPC results are F1 score, STS-B results are Pearson correlation, SQuAD v1.1 and v2.0 results are exact
matching and F1 score. The results, which outperform the other one are marked in bold, are all scale to range 0-100. The Δ𝑏𝑎𝑠𝑒
and Δ𝑉𝑜𝑘 columns show the difference between our model and the baseline, and the Vokenization method respectively.

Task Our BERT-base Δ𝑏𝑎𝑠𝑒 ↑ Vokenization1 Δ𝑉𝑜𝑘 ↑
CoLA 60.95 54.68 2.41 _ _
MNLI 84.15 83.48 0.84 82.6 1.55
MNLI-MM 84.54 84.05 0.83 _ _
MRPC 89.25 88.82 0.74 _ _
QNLI 91.43 91.37 0.5 88.6 2.83
RTE 72.56 67.87 3.6 _ _
SST-2 93.12 92.43 0.57 92.2 0.92
STS-B 89.88 89.00 0.84 _ _

SQuADv1.1 78.49/86.62 78.10/86.31 0.39/0.32 78.8/86.7 -0.31/-0.08
SQuADv2.0 70.69/73.92 67.92/71.08 2.77/2.84 68.1/71.2 2.59/2.72

Table 3: Task descriptions and statistics.

Corpus Train Test Metrics

GLUE

CoLA 8.5k 1k Matthews corr
MNLI 393k 20k matched acc./mismatched acc.
MRPC 3.7k 1.7k acc./F1
QNLI 105k 5.4k acc.
RTE 2.5k 3k acc.
SST-2 67k 1.8k acc.
STS-B 7k 1.4k Pearson corr.

SQUAD

SQUAD V1.1 87K 10K exact match/F1
SQUAD V2.0 130K 11K exact match/F1

The distance between the two modalities can be defined using
the OT-based distance as

D(𝒗, 𝒕) = min
T

⟨T,C⟩𝐹

s.t. T1𝑛 = 𝒂,T⊤1𝑚 = 𝒃,T ⪰ 0𝑚×𝑛
(9)

This formulation places constraints that all the mass from one
distribution must be transported to the other distribution. We find,
however, that this constraint is restrictive for the problem at hand,
where the sentence describes only partially the corresponding im-
age. Therefore, it is intuitively more apt to use the POT variant,
described as follows.

D(𝒗, 𝒕) = min
T

⟨T,C⟩𝐹

s.t. T1 ⪯ 𝒂,T⊤1𝑛 ⪯ 𝒃,T ⪰ 0𝑚×𝑛

1⊤𝑚T1 = 𝑠

(10)

where 𝑠 is the total amount of mass to be transported. In our imple-
mentation, 𝑠 is set as the total uniform weight vector of text.

We use sinkhorn-based algorithms to calculate the transportation
plan T and the OT-based distance. Algorithm 1 and Algorithm 2 are
for OT and POT, respectively. The average distance D for every
matching pair of sentence and image will be minimized, while non-
matching pair distance will be maximized. Formally, the alignment
loss will be:

L𝑎𝑙𝑖𝑔𝑛 =
∑︁

𝒕,𝒗+,𝒗−∈𝑆

[
D(𝒗+, 𝒕) − D(𝒗−, 𝒕)

]
(11)

where 𝑆 is the given dataset, 𝒗+ and 𝒗− are the matching and non-
matching image respectively corresponding to the sentence 𝑡 . The
procedure to pick the negative image is similar to in the Image-
Sentence Matching task.

4 EXPERIMENTAL SETUP
4.1 Datasets

Training. We use MS COCO [25] and Visual Genome [19] image
captioning datasets as the training data for image projection and
Visual grounding module.

Evaluation. After training process, we finetune and evaluate our
model on GLUE [51], SQuAD 1.1 [41], and SQuAD 2.0 datasets
[40]. In GLUE dataset, we evaluate our model on various tasks
over 7 corpora: CoLA [52], MNLI [53], MRPC [12], QNLI [41], RTE,
SST-2 [46], STS-B [4]. The statistics of datasets are given in table 3.

4.2 Evaluation tasks and metrics
All tasks are single sentence or sentence pair classification except
STS-B, which is a regression task. MNLI has three classes, all other
classification tasks are binary classification. The evaluation tasks
are also various: question answering (QNLI, SQUAD), acceptability
(CoLA), sentiment (SST-2), paraphrase (MRPC), inference (MNLI,
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Table 4: Downstream task results of different vision and language pretrained model.

Task LXMERT VisualBERT VL-BERT ViLBERT Oscar GroundedBERT

CoLA 15.76 45.14 57.01 56.05 41.21 57.09
MNLI 35.44 80.68 81.18 81.29 76.64 84.32
MNLI-MM 35.22 80.96 81.38 81.02 76.67 84.88
MRPC 80.64 87.36 87.76 86.95 80.58 89.56
QNLI 50.54 87.39 89.20 86.95 50.54 91.87
RTE 52.71 66.43 62.09 70.40 55.96 71.47
SST-2 82.11 88.88 88.88 90.14 87.61 93.00
STS-B 42.23 90.03 89.48 89.98 71.45 89.84

SQuADv1.1 9.39/17.65 68.51/77.71 72.62/81.30 72.95/81.35 21.77/32.20 78.49/86.62
SQuADv2.0 46.52/47.04 59.17/62.53 62.38/65.63 63.36/66.56 45.31/46.77 70.69/73.92

Table 5: Downstream task results and comparison of our GroundedBERT without training the Visual grounding module. The
first two rows report the fine-tuned results of our model without training with the visual grounded datasets, while the last 4
rows show the results of our approaches on both OT and POT.

Dimension CoLA MNLI MNLI-MM MRPC QNLI RTE SST-2 STS-B SQuAD V1.1 SQuAD V2.0

64𝑤𝑜 54.37 83.27 84.47 88.11 90.78 69.18 91.71 88.97 77.87/86.2 67.78/70.97
128𝑤𝑜 53.59 83.78 84.04 88.63 91.45 69.53 91.12 89.3 77.98/86.03 68.18/71.45

64𝑂𝑇 58.30 84.35 84.64 88.71 91.58 70.40 92.43 89.32 78.14/86.42 69.00/72.24
128𝑂𝑇 59.1 84.49 84.76 88.81 91.61 69.31 92.78 89.75 78.21/86.46 68.6/71.94

64𝑃𝑂𝑇 60.95 84.15 84.54 89.25 91.43 72.56 93.12 89.88 78.49/86.62 70.69/73.92
128𝑃𝑂𝑇 57.77 84.06 84.3 88.93 91.31 70.04 92.32 89.86 78.27/86.45 69.53/72.88

RTE, QNLI). The metric of each task is shown in table 3. For MRPC,
we report F1 score. For STS-B, we report Pearson correlation. For
both SQuAD, we report exact matching and F1 score.

4.3 Implementation
We use BERT-base-uncased as the language model and vit base
patch16 224 for the visual encoder. We load the BERT weight pre-
trained on Bookcorpus and Wikipedia from Pytorch framework
Huggingface, and load the ResNeXt weight pretrained on ImageNet.
The Language encoder and Patch embedding extraction are frozen,
we just train the Image projection and Visual grounding module
based on the contextual representation and image feature map. Both
modules are multi-layer perceptron with 1 hidden layers and apply
relu activation. We set the MLP final output dimension in set 64, 128
for evaluating how visual information impact on the textual-visual
representation in Sec 6.1. Our model is trained with a learning rate
𝑙𝑟 = 1𝑒−4 in 12 epochs using AdamW [28] as optimizer, we set
batch size of 512 on 1 V100 GPU and train for 3-4 days.

5 EXPERIMENTAL RESULTS
5.1 Compared to the baseline models
The fine-tune results on 9 different natural-language tasks are re-
ported in Table 2. We compare our GroundedBERT with the BERT-
base as the language encoder to the BERT-base and Vokenization

baseline respectively. Our GroundedBERT outperforms the base-
lines on all down-stream tasks. Specifically, we achieve an improve-
ment from 0.5 to 3.6 score on BERT-base. Compared to Vokeniza-
tion, we also achieve higher on most tasks, except SQuADv1.1. This
shows that our grounded language model representation can cap-
ture more useful information for language understanding without
changing the original language model.

5.2 Compared to other vision-and-language
pretrained models

To prove the effectiveness of our proposed grounded language
learning approach, we compare it with the following state-of-the-
art vision-and-language pretrained models.

• LXMERT [48] consists of two single-modal and one cross-modal
Transformer to connect vision and language semantics.

• VisualBERT [23] consists of a stack of Transformer layers that
implicitly align elements of an input text and regions in an asso-
ciated input image with self-attention.

• VL-BERT [47] uses Transformer model as the backbone, and
extends it to input both visual and linguistic embedded features.

• ViLBERT [29] extends the BERT architecture to a multi-modal
two-stream model and process both visual and textual inputs.

• Oscar [24] uses object tags detected in images as additional
points to ease the learning of alignments between text and image.
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Table 6: Downstream task results of BERT and our GroundedBERT with different learning rates on GLUE.

Model LR CoLA MNLI MNLI-MM MRPC QNLI RTE SST-2 STS-B

BERT-base

2e-5 53.13 83.48 83.68 86.78 91.37 64.62 92.43 88.74
3e-5 54.68 82.98 84.05 87.25 90.83 66.79 92.43 88.44
4e-5 53.80 83.25 83.76 88.82 90.76 67.87 92.09 89.00
5e-5 52.85 82.52 82.72 88.72 90.06 67.15 92.09 88.60

Our OT + Classifier

2e-5 55.73 84.35 84.64 87.15 90.54 68.23 91.74 89.32
3e-5 58.30 83.88 84.13 87.46 91.58 66.79 92.09 88.63
4e-5 55.22 83.24 83.79 88.71 90.33 65.70 92.43 88.59
5e-5 54.48 81.63 82.32 88.56 90.33 70.40 90.37 88.97

Our POT + Classifier

2e-5 58.44 84.15 84.52 88.13 91.43 66.79 93.12 89.88
3e-5 60.95 83.43 84.54 89.25 90.96 70.04 92.20 88.75
4e-5 58.07 82.36 83.14 87.69 90.76 72.56 92.09 89.11
5e-5 52.50 82.59 83.08 88.51 90.32 68.59 91.51 88.71

Table 7: Downstream task results different approaches when training the Visual grounding module.

Optimal transport? Classification CoLA MNLI MNLI-MM MRPC QNLI RTE SST-2 STS-B SQuAD V1.1 SQuAD V2.0

No Yes 58.05 83.93 84.12 88.64 91.20 69.31 92.78 89.37 78.34/86.42 70.14/73.71
Classical No 60.85 84.17 84.85 88.68 90.87 72.20 92.43 89.45 77.46/85.88 67.67/71.4
Partial No 58.20 84.38 84.88 89.25 90.99 69.31 92.66 89.27 77.99/86.35 68.29/71.65
Classical Yes 58.30 84.35 84.64 88.71 91.58 70.40 92.43 89.32 78.14/86.42 69.00/72.24
Partial Yes 60.95 84.15 84.54 89.25 91.43 72.56 93.12 89.88 78.49/86.62 70.69/73.92

We also fine-tune all models on 9 different natural-language
tasks of GLUE and SQuAD datasets. To have a fair comparison, all
models are initialized with the pretrained BERT weights, except
LXMERT that is pretrained from scratch. As shown in Table 4,
the finetuning results on our model consistently outperform other
pretrained models in all tasks. The results show that finetuning the
BERT model will make it forget the original knowledge learned
from a huge language corpus.

6 ANALYSIS
6.1 The impact of visual grounding
To understand the impact of visual grounding on text representa-
tion, we train GroundedBERT without using visual information
and the weights of the Visual grounding module are randomly ini-
tialized. The results in Table 5 show that the visual information
has the significant contribution in the language grounding and is
beneficial to the textual representation. We also study the impact of
the contribution visual grounding with different visual embedding
dimensions. Since the dimension of the hidden representation of
language encoder, which is BERT, is fixed depend on its configura-
tion, we can setup the dimension of additional visual information
flexibly.

6.2 Different learning rates on GLUE
Following the setting in BERT [11] on GLUE tasks, we also conduct
additional experiments with more runs on different learning rates
similar to the BERT paper. The learning rates are also similarly set

to be {2, 3, 4, 5}𝑒 − 5 to have a fair comparison. The results in Table
6 show that our model consistently outperforms the baseline in all
datasets for all learning rates.

6.3 Different training strategy
We conduct the experiments on GroundedBERT trained with dif-
ferent settings: Optimal transport and Classifier. Table 7 reports
evaluations of our model on GLUE and SQUAD on 5 different ap-
proaches, i.e., only Classifier, only Classical OT (OT), only Partial
OT, Classifier + OT and Classifier + POT. The results show that the
combination of Classifier and Partial OT achieves the highest score
in most tasks, while Partial OT perform better than Classical OT in
both combination with Classifier or not.

7 CONCLUSION
In this paper, we propose GroundedBERT as a grounded language
learning model that incorporates visual information into BERT rep-
resentation. We introduce the visual grounding module to capture
the visual information which is later joined with the text represen-
tation to create a unified visual-textual representation. Our model
significantly outperforms the baseline language models on various
language tasks of the GLUE and SQuAD datasets.
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