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ABSTRACT
Predicting individual aesthetic preferences holds significant prac-
tical applications and academic implications for human society.
However, existing studies mainly focus on learning and predict-
ing the commonality of facial attractiveness, with little attention
given to Personalized Facial Beauty Prediction (PFBP). PFBP aims
to develop a machine that can adapt to individual aesthetic pref-
erences with only a few images rated by each user. In this paper,
we formulate this task from a meta-learning perspective that each
user corresponds to a meta-task. To address such PFBP task, we
draw inspiration from the human aesthetic mechanism that visual
aesthetics in society follows a Gaussian distribution, which moti-
vates us to disentangle user preferences into a commonality and an
individuality part. To this end, we propose a novel MetaFBP frame-
work, in which we devise a universal feature extractor to capture
the aesthetic commonality and then optimize to adapt the aesthetic
individuality by shifting the decision boundary of the predictor via
a meta-learning mechanism. Unlike conventional meta-learning
methods that may struggle with slow adaptation or overfitting to
tiny support sets, we propose a novel approach that optimizes a
high-order predictor for fast adaptation. In order to validate the
performance of the proposed method, we build several PFBP bench-
marks by using existing facial beauty prediction datasets rated
by numerous users. Extensive experiments on these benchmarks
demonstrate the effectiveness of the proposed MetaFBP method.

CCS CONCEPTS
• Information systems→Personalization; •Computingmethod-
ologies→ Transfer learning.
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1 INTRODUCTION
Facial Beauty Prediction (FBP) has allured many research inter-
ests in recent years. Most studies aim to develop models that can
accurately judge facial beauty in line with the average aesthetic
preferences of a large population of users, using average ratings
as the supervision signals for model learning [6, 27, 28]. However,
these studies merely focus on the commonality and overlooks the
highly subjective nature of human aesthetic perception, as illus-
trated in Figure 1, where each facial image is rated by different users
with various attractiveness scores. Therefore, the subjective nature
of facial aesthetics should be taken into account to develop more
accurate predictions of facial attractiveness for different users.

To fill the current gap in this area, we delve into Personalized
Facial Beauty Prediction (PFBP) in this paper. The objective of this
task is to make consistent aesthetic judgments with a specific user by
previously requiring the user to rate a few facial images. A highly-
performing PFBP model has significant practical applications in
various online systems, such as social recommendation systems
or make-up recommendation systems [7]. As shown in Figure 1,
the recommendation system requires each user to label a few facial
images to adapt the PFBP model so that it can quickly capture the
aesthetic preference and then send the top-ranked recommended
faces from the image gallery to the target user. From this perspective,
PFBP is expected to possess a fast adaptation ability for each user
preference with limited labeled data.

Considering the user-adaptive and data-limited properties of the
PFBP task, it intuitively motivates us to reformulate PFBP from
a few-shot learning perspective [14]. Specifically, each individual
user corresponds to a meta-task consisting of a support set and a
query set. The training and evaluation of the PFBP model follow
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Figure 1: The difference between FBP and PFBP. The conven-
tional FBP only gives an average beauty score of the public
for a facial image, but PFBP provides different beauty scores
for each facial image according to user preference. Note that
each face has been locally pixelated for privacy protection.

the meta-training and meta-testing stages in few-shot learning.
Nevertheless, there are still two main differences between PFBP
and conventional few-shot learning tasks:

1) In conventional few-shot learning tasks, the categories of
each meta-task are different. The training goal is to quickly
adapt the model from base to novel categories with limited
training data. Unlike them, the categories of each meta-task
in PFBP are fixed. The range of attractiveness score is shared
among different meta-tasks. The training objective is not to
adapt to novel categories but to novel users with specific
aesthetic preferences.

2) In conventional few-shot learning tasks, the labels of im-
ages are fixed across meta-tasks, e.g., the label of a cat image
always belongs to “cat” and cannot be changed to other cate-
gories. However, in PFBP, the attractiveness score of a facial
image will change across different meta-tasks because users
have different aesthetic preferences and thus give different
ratings to the same image.

The main challenge in PFBP is the subjective nature of user
ratings, i.e., the changeability of image labels across meta-tasks,
which never occurs in previous image recognition tasks. It urges
a rather strong adaptability of the PFBP model that can forget the
image labels seen in previous meta-tasks and adapt to current meta-
task quickly with limited labeled data. Despite the variability of
ratings for facial images, we have observed that the attractiveness
score of an image rated by a population of users tends to follow a
Gaussian distribution, as shown in Figure 2. That is, the population
aesthetic tends to be consistent while the personalized preference
is fluctuated around the population aesthetic. This phenomenon
can be attributed to the objective part of human aesthetic percep-
tion, namely aesthetic commonality, which plays a crucial role in
working alongside the subjective part, aka aesthetic personality.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

rating score rating score rating score

fr
eq

u
en

cy

Figure 2: The rating distributions of three randomly-selected
images rated by a population of volunteers. The aesthetic
preference roughly follows a Gaussian distribution.

Figure 3: The comparison of different learning paradigms. (a)
Common learning paradigm. (b) Conventionalmeta-learning
paradigm. (c) Our proposed paradigm that involves learning
to learn high-order predictor for fast adaptation.

Motivated by the observations, we propose to disentangle the
personalized preference into a commonality part and a personal-
ity part from the network architecture perspective in this paper.
The PFBP model is constructed with a universal feature extractor
that represents aesthetic commonality and a personalized predic-
tor that represents aesthetic personality. Specifically, the feature
extractor is supervised by the average rated score which is similar
to the training paradigm of a common FBP model, while the pre-
dictor is trained using individual rated score under a meta-learning
paradigm. The predictor is expected a fast adaptation ability, but
using conventional meta-learning paradigms are usually trapped
in slow adaptation or over-fitting the tiny support set. To enhance
its adaptation ability, we introduce learning-to-learn paradigm into
a high-order predictor. Compared with the conventional predic-
tor, aka first-order predictor, which is simply implemented by a
fully-connected layer, the high-order predictor possesses a more
powerful adaptation ability, by using a shallow parameter-generator
to twist the weights of the predictor based on the input. Based on
such architecture design, we further optimize the generator via a
gradient-based meta-learning approach to form a meta-generator.
Figure 3 illustrates the advantage of the proposed method, where
the meta-generator can twist the weights of the high-order predic-
tor quadratically for faster adaptation.
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To stress the effectiveness of the proposed framework, termed
MetaFBP, we establish several PFBP benchmarks based on the ex-
isting FBP datasets varied from small, medium to large scales, in-
cluding PFBP-SCUT500, PFBP-SCUT5500, and PFBP-US10K. We
conduct extensive experiments on these newly-established PFBP
benchmarks, and the experimental results demonstrate that our
method significantly outperforms the conventional meta-learning
approaches. To summarize, the main contributions of this paper
are concluded as follows:

1) Considering the nature of human aesthetic perception, we
propose a disentangled training paradigm to study PFBP,
which trains a universal feature extractor to capture the aes-
thetic commonality and a personalized predictor to adapt the
aesthetic preferences of different users.

2) Based on the above training paradigm,we establish aMetaFBP
framework, which adopts a novel learning-to-learn mech-
anism to optimize the personalized predictor. Specifically,
we introduce a high-order predictor and optimize a meta-
generator to twist the weights of the predictor quadratically
for fast adaptation.

3) We build several PFBP benchmarks based on the existing
FBP datasets. Extensive experiments on these benchmarks
demonstrate the effectiveness and superiority of the pro-
posed method to conventional meta-learning approaches.
Our method can act as a strong baseline to study PFBP in the
future works. Both benchmark datasets and source code are
available at: https://github.com/MetaVisionLab/MetaFBP.

2 RELATEDWORKS
FromFacial Beauty Prediction to Personalized Facial Beauty

Prediction. The goal of FBP is to train a model as smart as hu-
mans to estimate facial attractiveness. Conventional approaches
[1, 3, 16, 46] tend to use geometric features or global appearance
features (e.g., Color Histograms, Local Binary Pattern, Histogram
of Oriented Gradients, Gabor Filters, etc.) to learn FBP. However,
such handcraft features heavily depend on heuristic rules. Owing
to the great success of deep learning [2, 19, 34], FBP can be easily
optimized by Convolution Neural Network (CNNs) [13, 25–27, 47]
in an end-to-end manner. However, most methods for FBP are de-
signed to learn population aesthetics. PFBP is much less explored.
In order to prepare data for learning personalized facial attractive-
ness preferences, Whitehill et al. [46] invited 8 volunteers to rate
1000 images. They trained regression models of facial beauty for
each volunteer, and the experimental results indicated that person-
alized facial attractiveness preferences can be learnt by machine
learning. Wang et al. [42] deemed that public aesthetic perception
consisted of population aesthetics and personalized aesthetics. They
decomposed the attractiveness score matrix into a low-rank matrix
of population aesthetics and a matrix of personalized aesthetics,
and used them to train regression models for learning population
and personalized aesthetic jointly. Another study [35] focused on
recommendation of personalized facial beauty for a large social
website. Deep features of facial images extracted by a CNN are
fed to collaborative filtering model. These works had validated
that the subjective PFBP task can be solved by various machine

learning methods. However, none of them study PFBP under a few-
shot learning setting which is much more applicable in real-world
scenarios.

Few-Shot Learning. With the help of large-scale training data
(e.g., ImageNet [11] and MS COCO [29]) and powerful computation
resources, deep models have achieved great success [5, 8, 9, 18, 33].
However, deep models may fail to rapidly generalize to new tasks
when given a few examples. To tackle this challenge, meta-learning
[40] is proposed as a new learning paradigm. The purpose of meta-
learning is to learn to solve the unseen new task using meta knowl-
edge from various tasks instead of singe task. Few-shot learning
(FSL) [45], as an application of meta-learning, can learn from a small
number of examples evenwithout them (zero-shot learning [31, 43]).
Researches of FSL have been greatly developed and can be catego-
rized into many perspectives. Metric-based FSL [20, 37, 39, 41, 50]
learns a representation space where similarities among samples
are computed with a specific distance metric. Memory-based FSL
[4, 30, 36] stores the learned knowledge as key-value pairs by us-
ing a memory component where new samples are considered as
a query to match the most similar key. Optimization-based FSL
is to use prior knowledge to search parameters which generalize
better to novel tasks [17, 32, 38, 48]. Finn et al. [14] proposed a
popular algorithm, MAML, to train the given neural network with
a few gradient descent steps. To achieve this, MAML introduces
two optimization loops for meta-learning, including an inner loop
for task learning and an outer loop for training a meta-learner. The
inner and outer loops are collaboratively optimized to find a meta-
initialization that can be quickly adapted to different novel tasks.
In this paper, we claim that PFBP is a more challenging task which
requires a faster adaptation ability. To this end, for the first time,
we upgrade the learning-to-learn mechanism with a high-order
predictor and validate the significant superiority on PFBP.

Personalized Image Aesthetics Assessment. Personalized Im-
age Aesthetics Assessment (PIAA) [12, 22, 49, 52, 53] aims to learn
to assess the aesthetic quality (or score) of images by taking into
account the users’ aesthetic preferences. PIAA is a recent popular
topic which is derived from the Generic Image Aesthetic Assess-
ment (GIAA) [10, 51]. The PIAA are more related to our work as
it learns personalized aesthetics for the image quality. Most PIAA
works attempt to learn the individual aesthetic assessment by ex-
ploiting and transferring the learned knowledge from trained GIAA
model [12, 22], or using extra supervision information [21, 53].
In this kind of task, the personalized aesthetics models are opti-
mized to quickly adapt to a new user’s aesthetic preference, and
these PIAA models may fail to capture personalized aesthetics [52].
To this end, recent PIAA works [23, 44, 49, 52] based on meta-
learning paradigms are proposed to tackle this problem. Although
the promising PIAA performance is achieved, most methods still
have complex training frameworks [21, 44, 52] that are not suitable
for deployment in practice. Furthermore, existing methods mainly
focus on FSL tasks with larger shots (10-shot and 100-shot), which
means more labeled images are necessary for model fine-tuning. In
this paper, we explore learning the personalized aesthetics for facial
attractiveness with less supervision information in the standard FSL
setting, leading to an urgent requirement on the fast adaptability
using extremely-limited labeled examples.

https://github.com/MetaVisionLab/MetaFBP
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Figure 4: The illustration of the proposed MetaFBP framework. 1) Stage 1: Train a universal feature extractor. 2) Stage 2: Train a
personalized high-order predictor, which is designed with a parameter generator 𝜃𝑔. We further optimize 𝜃𝑔 via meta-learning
to form a meta-generator so as to adapt to different new users given limited labeled images.

3 TASK FORMULATION
As mentioned above, a PFBP system can be arranged in the fol-
lowing manner: the system requires each user to label a few facial
images that demonstrate their aesthetic preferences. The model is
then fine-tuned on such limited labeled data for task adaptation. To
meet this application manner, PFBP is modeled as a meta-learning
paradigm in this paper. Specifically, each user corresponds to a
meta-task. And all the meta-tasks are randomly divided into meta-
train tasks and meta-test tasks. In each meta-task, the images are
divided into a support set and a query set. In the meta-train tasks,
the query set is a pseudo query set for meta-learning. In the meta-
test tasks, the query set is used for performance evaluation without
annotations. To provide sufficient aesthetic information in the sup-
port set for training, we urge each user to select the images from the
gallery to traverse 𝐶 different attractiveness scores with 𝐾 samples
per score, termed as “C-way K-shot”.

Notations. Figure 1 illustrates an example that formulates PFBP
asmeta-tasks.We represent themeta-train set asD𝑡𝑟𝑎𝑖𝑛 = {D𝑚}𝑀𝑚=1,
where 𝑀 denotes the number of users and D𝑚 denotes the data
rated by the 𝑚-th user. Then, a meta-task T𝑚 is sampled from
D𝑚 = {(X𝑚,Y𝑚)} that contains the images X𝑚 and the corre-
sponding beauty scores Y𝑚 rated by the 𝑚-th user. Each meta-
task consists of a support set S𝑚 = {(X𝑠𝑚,Y𝑠

𝑚)} and a query set
Q𝑚 = {(X𝑞𝑚,Y

𝑞
𝑚)}, where X𝑠𝑚,X

𝑞
𝑚 ∈ X𝑚 and Y𝑠

𝑚,Y
𝑞
𝑚 ∈ Y𝑚 . The

support set S𝑚 and query set Q𝑚 are constructed by randomly
selecting 𝑁𝑠 and 𝑁𝑞 samples from the subset D𝑚 for each attrac-
tiveness score without overlapping. Similarly, the meta-test set is
built in the same way, where the support set is used for model
fine-tuning, but leaving the unlabeled query set to evaluate the
adaptation performance of the model fine-tuned by the support set.

Training objective. Since our method is strongly correlated
with the optimization-based meta-learning methods [14], we only
present the training pipeline of the optimization-based methods for
the PFBP task. For each meta-task/episode, we first update a model
𝐹 (·) on the support set S𝑚 by calculating the regression loss, aka
the mean squared error (MSE) loss L𝑚𝑠𝑒 (𝐹 (X𝑠𝑚),Y𝑠

𝑚), and then
use the updated model to predict the beauty scores of the query
images X𝑞𝑚 . The predicted scores can be formulated as follows:

Ŷ𝑞
𝑚 = 𝐹 (X𝑞𝑚 |∇L𝑚𝑠𝑒 (𝐹 (X𝑠𝑚),Y𝑠

𝑚)) . (1)

Subsequently, the training objective of each meta-task is to min-
imize the regression loss between the predicted scores and the
corresponding ground-truth rating labels:

min
𝐹
L𝑚𝑠𝑒 (Ŷ𝑞

𝑚,Y
𝑞
𝑚) . (2)

4 METHOD
The human aesthetic preference can be disentangled into a com-
monality part and a personality part. The former represents the
consistent judgement of the majority while the latter represents
the individual variations from the majority. To meet this prior
knowledge, we decompose the network architecture into a univer-
sal feature extractor to capture the aesthetic commonality and a
predictor to capture the aesthetic personality by shifting the deci-
sion boundary for task adaptation. To enhance task adaptation, we
introduce a high-order predictor which updates the predictor by
using a shallow parameter-generator network. We further optimize
the generator into a meta-generator via meta-learning. These two
components (commonality vs. personality) are optimized indepen-
dently with different optimization objectives. The whole training
process is illustrated in Figure 4.



MetaFBP: Learning to Learn High-Order Predictor for Personalized Facial Beauty Prediction MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

4.1 Stage 1: Universal Feature Extractor
In the first stage, we aim to learn a universal feature extractor to
capture aesthetic commonality by training a common FBP model,
which is composed of a feature extractor 𝐸𝜃𝑒 and a predictor 𝐹𝜃 𝑓 .
This model is trained identical to the common FBP training manner.
Since the labels used in this stage are required to represent aesthetic
commonality, we choose mode rating to ensemble the scores from
all users, that is, the most-popular score in the rating distribution
is exploited as the true label of each image. Take an image 𝑥 as an
example, its rating distribution is represented as {𝑦1, ..., 𝑦𝑚, ..., 𝑦𝑀 }
where 𝑦𝑚 is the attractiveness score rated by the𝑚-th user. The
label representing the aesthetic commonality is defined as:

𝑦 = argmax
𝑐

𝑀∑︁
𝑚=1

𝛿 (𝑦𝑚 = 𝑐), (3)

where 𝑐 ranges from 1 to 𝐶 . mode rating is considered more repre-
sentative than mean rating to capture aesthetic commonality, since
it does not take into account the opinions of minorities. Using 𝑦 as
the supervision signal, the training goal can be formulated as:

min
𝜃𝑒 ,𝜃 𝑓

∑︁
(𝑥,𝑦) ∈D𝑡𝑟𝑎𝑖𝑛

L(𝐹𝜃 𝑓 (𝐸𝜃𝑒 (𝑥)), 𝑦), (4)

where L is a prediction loss. Upon completion of the training stage
for the common FBP model, the predictor 𝐹𝜃 𝑓 is discarded, and only
the universal feature extractor 𝐸𝜃𝑒 is retained. It is worth noting
that in the subsequent stage, the weights of the universal feature
extractor are fixed, with the goal of maintaining the knowledge of
aesthetic commonality across different meta-tasks.

4.2 Stage 2: Personalized High-Order Predictor
Based on the commonality-aware feature extractor in the first stage,
we need a personalized predictor to meet various user preferences
by shifting the decision boundary adaptively. One straightforward
approach is to use the conventional meta-learning methods like
MAML [14] to optimize the predictor. However, PFBP is more chal-
lenging than previous image recognition tasks, which requires
a faster adaptation ability, while the conventional meta-learning
methods usually result in slow adaptation or overfitting the tiny
support sets. As an alternative, we propose a high-order predictor
that is dynamically twisted conditioned on the inputs, by using
a shallow parameter-generator. We optimize the generator via a
gradient-based meta-learning method to achieve a meta-generator
which can adapt the meta-tasks more quickly. See Figure 3 to com-
pare with conventional meta-learning mechanism. The implemen-
tation details are shown in Figure 4 and Algorithm 1.

High-Order Predictor. In this paper, the predictor is imple-
mented as a fully-connected (FC) layer with weights 𝜃 𝑓 . To enhance
adaptation ability, a high-order predictor is encouraged here. Specif-
ically, the weights 𝜃 𝑓 in the high-order predictor can be twisted
adaptively in test-time, which is formulated as:

𝜃 𝑓 = 𝜃 𝑓 + 𝜆𝐺𝜃𝑔 (X), (5)

where𝐺 is a shallow parameter generator conditioned on the input
features X provided by the feature extractor. 𝜃𝑔 is the weight of the
generator. 𝜆 is a hyper-parameter that represents the adaptation
strength. In practice, the parameter generator is implemented as

Algorithm 1: Learning-to-learn high-order predictor

1 Require:Training data D𝑡𝑟𝑎𝑖𝑛 = {D𝑚}𝑀𝑚=1, 𝑘-step in the
inner loop, training iteration 𝐼

2 Randomly initialize weights 𝜃 𝑓 , 𝜃𝑔 ;
3 for 𝑖 ← 1 to 𝐼 do
4 Sample a meta-task T𝑚 from 𝐷𝑚 ,𝑚 ∈ [1, 𝑀];
5 Acquire the support set S𝑚 ∼ T𝑚 ;
6 𝜃 ′𝑔 ← 𝜃𝑔 ;
7 repeat
8 Update 𝜃 ′𝑔 on S𝑚 using Equation 6 ;
9 until 𝑘 times;

10 Acquire the query set Q𝑚 ∼ T𝑚 ;
11 Update 𝜃 𝑓 , 𝜃𝑔 on Q𝑚 using Equation 7 ;
12 end

a multi-layer-perceptron with the structure of FC-ReLU-FC. Com-
pared with the first-order predictor, the high-order predictor has a
much higher freedom for task adaptation.

Meta-Generator. Based on the design of high-order predictor,
we aim to further optimize the parameter-generator into a meta-
generator via meta-learning. Roughly speaking, in the inner loop,
we conduct 𝑘-step adaptation to optimize 𝜃𝑔 on the support set S𝑚
to achieve a ghosted 𝜃𝑔 , termed 𝜃 ′𝑔 . In the outer loop, we conduct
meta-update to 𝜃𝑔 on the query set Q𝑚 by using 𝜃 ′𝑔 . In detail, the
prediction of the high-order predictor on the support set can be
represented as 𝐹𝜃 𝑓 ◦𝜃𝑔 (X

𝑠
𝑚). The weights 𝜃𝑔 are updated based on

the gradients of the model on the support set S𝑚 :

𝜃 ′𝑔 ← 𝜃𝑔 − 𝛼 ∇𝜃𝑔L(𝐹𝜃 𝑓 ◦𝜃𝑔 (X
𝑠
𝑚),Y𝑠

𝑚)︸                          ︷︷                          ︸
𝑘−𝑠𝑡𝑒𝑝

, (6)

where 𝛼 is a hyper-parameter representing the step size of inner
update. The process in Equation 6 is repeated 𝑘 times to obtain a
more task-oriented gradient that makes the adaptation more thor-
oughly. We then calculate the quadratic gradients of the updated
predictor on the query set to update 𝜃𝑔 by taking 𝜃 ′𝑔 as a bridge:

[𝜃 𝑓 , 𝜃𝑔] ← [𝜃 𝑓 , 𝜃𝑔] − 𝛽∇𝜃 𝑓 ,𝜃𝑔L(𝐹𝜃 𝑓 ◦𝜃 ′𝑔 (X
𝑞
𝑚),Y

𝑞
𝑚), (7)

where 𝛽 is a hyper-parameter denoting the step size of outer loop.
Note that we update the generator based on its initial weights
to obtain a generalizable initial weights. Different from 𝜃𝑔 , 𝜃 𝑓 is
optimized in a standard training manner.

5 EXPERIMENTS
5.1 Experimental Benchmarks
We construct three PFBP benchmarks varying from small to large
scales, based on the public FBP datasets that provide beauty scores
annotated bymultiple raters. (1) PFBP-SCUT5500 is collected from
SCUT-FBP5500 [24], which consists of 5,500 face images, each la-
beled by 60 users. The images vary widely in terms of characteristics
such as gender and ethnicity, making it difficult to predict esthetic
preferences. (2) PFBP-SCUT500 is collected from SCUT-FBP500
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Table 1: The details of dataset split.

Item
PFBP-SCUT5500

Total Train Set Validation Set Test Set

Number of images 500 300 50 150
Number of users 60 30 10 20
Total annotations 12,500 9,000 500 3,000

Item
PFBP-SCUT500

Total Train Set Validation Set Test Set

Number of images 5,500 3,000 500 2,000
Number of users 60 30 10 20
Total annotations 135,000 90,000 5,000 40,000

Item
PFBP-US10K

Total Train Set Validation Set Test Set

Number of images 2,222 1,111 667 444
Number of users 12 6 2 4
Total annotations 9,771 6,663 1,333 1,775

[47], which contains 500 facial images from the Asian female pop-
ulation rated by 75 volunteers. (3) PFBP-US10K is sampled from
10K US Adult Faces dataset [3], consisting 2,222 facial images from
Caucasian population rated by 12 users. All the above datasets are
annotated at a beauty scale of {1, 2, 3, 4, 5}, where the higher beauty
score represents the more attractive face.

Dataset Split. We split each dataset into train, validation and
test sets in a 6:3:1 ratio based on the users who provided the an-
notations. Additionally, we ensure that the images in each split
are distinct. Note that some users provided empty ratings for the
extremely high or low beauty score, making it difficult to sample
meta-tasks from these users. As a result, we exclude such users
from the split. The details of dataset split are listed in Table 1.

Evaluation Protocols. The model that performed the best on
the validation set is chosen for evaluation. We use Pearson correla-
tion (PC), mean absolute error (MAE), and root mean squared error
(RMSE) to measure the regression performance of our method. A
higher PC, smaller MAE and RMSE indicate the better performance
achieved by the model on PFBP task.

5.2 Experimental Details
Setup. We follow the meta-training and meta-testing settings

from few-shot learning tasks to conduct experiments. Specifically,
we perform 5-wayK-shot regressionmeta-tasks on PFBP-SCUT5500
and PFBP-US10K. However, due to a large number of empty anno-
tations for certain categories in PFBP-SCUT500, we rearrange the
score labels by reducing the beauty category number from 5 to 3
via score mapping: {1, 2} → 1, {3} → 2, {4, 5} → 3. Afterwards, we
conduct 3-way K-shot regression meta-tasks on the PFBP-SCUT500.

Cyclically Re-sampling Strategy. When performing eachmeta-
task, we need to select 𝑁𝑠 + 𝑁𝑞 images per category to create the
support set and the query set. However, user ratings are usually
imbalanced, with a few samples receiving scores of 1 and 5, while
thousands receive a score of 2. This can lead to an extreme situ-
ation where the number of images in the minority categories is
insufficient to create a meta-task. To solve this problem, we devise
a Cyclically Re-sampling Strategy for the minority categories. As-
suming 𝑁𝑐 denotes the sample number of the 𝑐-th category rated
by the𝑚-th user, the sampling strategy is defined as follows:

Case 1: If 𝑁𝑐 = 1, we duplicate the single sample 𝑁𝑠 times to
form the 𝑐-th category in the support set, and the 𝑐-th category in
the query set will be left empty.

Case 2: If 1 < 𝑁𝑐 ≤ 𝑁𝑠 , we first randomly select 𝑁𝑐 − 1 sam-
ples from the 𝑐-th category to form the support set by duplicated
sampling 𝐾/(𝑁𝑐 − 1) times, and the remaining one is duplicated
sampling 𝑁𝑞 times to form the query set.

Case 3: If 𝑁𝑠 < 𝑁𝑐 ≤ 𝑁𝑠 + 𝑁𝑞 , we first randomly select 𝑁𝑠

samples from the 𝑐-th category to form the support set, and the
remaining samples are duplicated sampling 𝑁𝑞/(𝑁𝑐 − 𝑁𝑠 ) times to
form the query set.

Case 4: If 𝑁𝑐 > 𝑁𝑠 + 𝑁𝑞 , we first randomly select 𝑁𝑠 samples
from the 𝑐-th category to form the support set, and then randomly
select 𝑁𝑞 samples from the remaining ones to form the query set.

Implementation Details. Our experiments are implemented
on Pytorch platform and runs on a NVIDIA RTX3090 GPU. For
all experiments, we use ResNet-18 [15] as the network backbone,
which is initialized by the ImageNet pre-trained model [11]. Be-
fore training, we simply apply several augmentation techniques to
preprocess images, including random crop and random horizontal
flipping. During the first training stage, we train the universal fea-
ture extractor by using cross-entropy loss and SGD optimizer with
batchsize of 64, maximum epochs of 100, and a learning rate of 0.001
stepped down by half per 20 epochs. In the second stage, we freeze
the weights of the universal feature extractor, and develop a high-
order predictor by implementing a meta-generator that is a MLP
with structure of FC-ReLU-FC. The hyper-parameter of adaptation
strength 𝜆 is set to 0.01. The inner-update step size 𝛼 , outer-update
step size 𝛽 and the number of 𝑘-step are set to 0.01, 0.001 and 10,
respectively. And we sample 40,000 and 400 meta-tasks from the
training set and the testing set for meta-training and meta-testing,
respectively. Note that the shot number of the support set is kept
consistent in both the meta-training and meta-testing phases, if
without additional explanation. And the shot number of the query
set is set to 15 by default.

Strong Baselines. As the first time applying meta-learning to
formulate PFBP, there are currently no experimental results on
these new benchmarks. To demonstrate the effectiveness of our
proposed method, we also implement several strong baselines on
these PFBP benchmarks, including: 1) Base-commonFBP: In line
with conventional training methods [24], we developed a common
FBP model with the same architecture as our model. The common
FBP model can represent the aesthetic commanlity, which is as-
sumed to be correlated with user preferences to some extent. We
then evaluate its effectiveness on the PFBP task using the same
meta-testing manner as our approach. 2) Base-MAML: MAML [14]
is a popular meta-learning approach to address few-shot learning
tasks. To highlight the advantage of our method, we also imple-
ment MAML on the PFBP task. For a fair comparison, MAML is
implemented using the same task formulation, architecture, and
hyper-parameter settings (e.g., 𝛼, 𝛽,𝛾 ) as our method.

Other Related Methods. In order to provide a comprehensive
evaluation of the proposed method, we also compare it with other
state-of-the-art methods on our PFBP task. Specifically, we re-
implement FSL methods, i.e., ProtoNet [37] and MTL [38], and
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Table 2: 5-way K-shot regression results on PFBP-SCUT5500 benchmark. The same number of shots is kept during both
meta-training and meta-testing phases. The best and second-best results are marked by bold and underline, respectively. Same
representation in the following tables.

Type Method
1 Shot 5 Shot 10 Shot

PC MAE RMSE PC MAE RMSE PC MAE RMSE

Baseline
Base-CommonFBP 0.6827 0.8668 1.1135 0.7812 0.7088 0.9044 0.7992 0.6826 0.8481
Base-MAML [14] 0.7549 0.8480 1.1268 0.7837 0.7766 1.0245 0.7862 0.7906 1.0249

FSL
ProtoNet [37] 0.7816 0.7053 0.8620 0.7969 0.6838 0.8450 0.7980 0.6932 0.8875
MTL [38] 0.7228 0.8593 1.0972 0.7350 0.9040 1.1832 0.7277 0.8924 1.1375

PIAA BLG-PIAA [52] 0.7927 0.6850 0.8426 0.7683 0.7853 1.1154 0.7705 0.7995 1.0434

Ours
MetaFBP-R 0.8037 0.6780 0.8365 0.8050 0.6727 0.8318 0.8098 0.6631 0.8208
MetaFBP-T 0.8067 0.6701 0.8274 0.8061 0.6716 0.8282 0.8125 0.6572 0.8147

Table 3: 3-way K-shot regression results on PFBP-SCUT500 benchmark.

Type Method
1 Shot 5 Shot 10 Shot

PC MAE RMSE PC MAE RMSE PC MAE RMSE

Baseline
Base-CommonFBP 0.5324 0.5335 0.6658 0.7206 0.4379 0.5491 0.7525 0.4444 0.5342
Base-MAML [14] 0.7074 0.4244 0.5659 0.7688 0.3915 0.5040 0.7708 0.3840 0.4996

FSL
ProtoNet [37] 0.6269 0.5279 0.5920 0.7693 0.3907 0.5081 0.7694 0.3865 0.5175
MTL [38] 0.6706 0.5196 0.7156 0.6739 0.5192 0.7152 0.6645 0.5157 0.7121

PIAA BLG-PIAA [52] 0.7139 0.3995 0.5439 0.7369 0.4029 0.5372 0.7577 0.3995 0.5238

Ours
MetaFBP-R 0.7478 0.3840 0.5335 0.7769 0.3720 0.5026 0.7729 0.3772 0.4960
MetaFBP-T 0.7393 0.3947 0.5378 0.7738 0.3775 0.5025 0.7787 0.3746 0.4911

Table 4: 5-way K-shot regression results on PFBP-US10K benchmark.

Type Method
1 Shot 5 Shot 10 Shot

PC MAE RMSE PC MAE RMSE PC MAE RMSE

Baseline
Base-CommonFBP 0.2640 1.2355 1.5295 0.3871 1.1094 1.3507 0.4742 1.0473 1.2491
Base-MAML [14] 0.4028 1.2719 1.6584 0.4286 1.2425 1.5975 0.4570 1.2324 1.5621

FSL
ProtoNet [37] 0.3094 1.2147 1.5943 0.4877 1.0260 1.2683 0.4906 1.0244 1.2389
MTL [38] 0.4678 1.0311 1.3136 0.4642 1.0322 1.3137 0.4610 1.0594 1.3774

PIAA BLG-PIAA [52] 0.4691 1.0281 1.3066 0.4615 1.0476 1.3599 0.4731 1.0502 1.3339

Ours
MetaFBP-R 0.5067 0.9970 1.2356 0.4968 1.0121 1.2344 0.5004 1.0115 1.2290
MetaFBP-T 0.5109 0.9968 1.2182 0.5007 1.0086 1.2425 0.4991 1.0128 1.2322

a recent PIAA method, i.e., BLG-PIAA [52] on PFBP task. Since
ProtoNet is originally designed for few-shot classification tasks, we
modify it for PFBP task by calculating the expectation score of the
output distribution as the final prediction result.

5.3 Experimental Results
To further investigate the impact of different parameter updating
manners on the high-order predictor, we implement two different
methods, known as parameter-tuning and parameter-rebirth. Pa-
rameter tuning aims to modulate the parameters of the predictor by
generating dynamic residuals to add to the original parameters. The
operation of parameter tuning is illustrated in Equation 5. Unlike
parameter tuning, parameter rebirth discards the original parame-
ters and generates the new parameters by the parameter generator
𝐺𝜃𝑔 conditioned on the input features X. The operation of parame-
ter rebirth can be formulated as: 𝜃 𝑓 = 𝐺𝜃𝑔 (X). For simplicity, our
method implemented with parameter tuning and parameter rebirth
are termed as MetaFBP-T andMetaFBP-R, respectively.

Comparison with Strong Baselines. Our method is compared
with the strong baselines (i.e., Base-commonFBP and Base-MAML)
to stress its effectiveness on PFBP. The comparison results on PFBP-
SCUT5500, PFBP-SCUT500 and PFBP-US10K benchmarks in terms

of PC, MAE and RMSE are reported in Table 2, Table 3 and Table
4, respectively. From these tables, we can observe that our method
almost surpasses all the strong baselines with a much higher PC and
smaller MSE, RMSE over all the benchmarks, in terms of different
K-shot settings. For the most challenging 1-shot setting, our method
(MetaFBP-R andMetaFBP-T) both achieve a great PC improvements
of more than 4% and 3% on the PFBP-SCUT5500 and PFBP-SCUT500
benchmarks, respectively, compared to the baselines. Moreover, our
method demonstrates a more significant performance improvement
over Base-MAML on the user-less PFBP-US10K benchmark, with
an improvement in PC more than 10%. This result highlights the
ability of our method to adapt to new tasks even when training data
is limited. Furthermore, as the number of training shots increases,
the performance of our method improves correspondingly, with
the most significant improvement observed in the 1-shot setting.
In practically, the improvement in 1-shot setting is particularly
significant in real-world scenarios as it allows for a more convenient
user experience with fewer required ratings.

Comparison with Other Related Methods. From Table 2-4,
we can observe that our method achieves the state-of-the-art re-
sults even compared with competitive methods, including PIAA
and FSL methods, among all benchmarks, which demonstrates the
effectiveness of our metaFBP method on PFBP task.
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Table 5: Ablation study of different K-shot settings during
training and testing phases on PFBP-SCUT5500 dataset.

Method Training Phase
Testing Phase

1 shot 5 shot 10 shot

Base-MAML
1 shot

0.7549 0.7690 0.7809
MetaFBP-T 0.8067 0.8050 0.8104

Base-MAML
5 shot

0.7495 0.7837 0.7898
MetaFBP-T 0.8033 0.8061 0.8118

Base-MAML
10 shot

0.7309 0.7758 0.7862
MetaFBP-T 0.7914 0.8057 0.8125

Table 6: Ablation study of the adaptation strength 𝜆.
𝜆 1 shot 5 shot Avg

1 0.5915 0.2026 0.3971
0.1 0.8059 0.7231 0.7645
0.01 0.8067 0.8061 0.8064
0.001 0.6846 0.7575 0.7211
0.0001 0.4932 0.6932 0.5932
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(d) Train/Test with 15-shot.
Figure 5: Pearson Correlation (PC) with respect to 𝑘-step in
the inner loop of different models under different K-shot
settings on PFBP-SCUT5500 benchmark.

5.4 Ablation Study
Different K-shot settings during training and testing phases.

To further investigate the effectiveness of our method, we conduct
extensive experiments on PFBP-SCUT5500, which train a model
with specific shot number and test the model with different shot
settings. We only report the results of PC, which are listed in Table
5. We can find that for a model trained with specific shots, it can be
improved with the increasing K-shot of support set. Our method
(trained with 1-shot and tested with 1-shot) still outperforms the
Base-MAML (trained with 1-shot and tested with 10-shot). It again
demonstrates that our method has faster adaptation ability than
MAML, even using less labeled data during fine-tuning.

Exploring Adaptation Strength 𝜆. It shows in Equation 5 that
the adaptation strength 𝜆 controls the adaptation magnitude. We
investigate the effectiveness of different 𝜆 on PFBP-SCUT5500 in
Table 6, from which we can observe that neither larger or smaller
𝜆 can improve performance. Too large 𝜆 may destroy the weights
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Figure 6: The prediction results of a specific user provided
by different models trained with PFBP-SCUT500 dataset .
of the predictor so that causes drastic performance degradation.
The smaller 𝜆 can reduce the risk of over-fitting. However, too
small 𝜆 will make the high-order predictor finally trash into a plain
predictor. Therefore, we set 𝜆 to a normal value of 0.01.

Visualization. An intuitive way to visualize the fast adaption
of our method is shown in Figure 5. It can be seen that our method
keeps the best performance with less variation on 1-shot (Figure
5a) and 5-shot (Figure 5b). For the 10-shot (Figure 5c) and 15-shot
(Figure 5d) settings, our method earlier reaches the top max PC
compared with MAML, which shows the proposed method can
solve the slow adaptation and overfitting problems in conventional
meta-learning methods. We also plot the prediction result for the
most challenging 1-shot task on PFBP-SCUT500 benchmark. Figure
6 reveals that the Base-MAMLmodel lacks ability to capture individ-
ual aesthetic preferences because it frequently assigns low scores to
facial images, regardless of their actual differences. Conversely, our
method can produce varying scores for different images, resulting
in a higher correlation with the true labels.

6 CONCLUSION
In this paper, we delve into Personalized Facial Beauty Predic-
tion (PFBP). We model PFBP into a Few-Shot Learning (FSL) task
and discuss its different challenge from conventional FSL task. We
claim that PFBP requires a faster adaptation ability considering its
user-adaptive characteristic, while the conventional meta-learning
methods to solve FSL are usually trapped into slow adaptation
or overfitting the tiny support set. To solve this problem, we de-
velop a learning-to-learn mechanism into a high-order predictor for
fast adaptation. Extensive quantitative and qualitative experiments
demonstrate the effectiveness of the proposed method.
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