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Figure 1: Existing CLIP-based text-driven 3D stylization techniques (e.g., Text2Mesh [24] and TANGO [3]) often fail to enable
a precise stylization of fine-grained details. Our 3DStyle-Diffusion instead exploits controllable appearance and geometric
guidance from 2D Diffusion models, leading to a more fine-grained text-driven stylization of 3D meshes.

ABSTRACT
3D content creation via text-driven stylization has played a funda-
mental challenge to multimedia and graphics community. Recent
advances of cross-modal foundation models (e.g., CLIP) have made
this problem feasible. Those approaches commonly leverage CLIP
to align the holistic semantics of stylized mesh with the given text
prompt. Nevertheless, it is not trivial to enable more controllable
stylization of fine-grained details in 3Dmeshes solely based on such
semantic-level cross-modal supervision. In this work, we propose a
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new 3DStyle-Diffusion model that triggers fine-grained stylization
of 3D meshes with additional controllable appearance and geo-
metric guidance from 2D Diffusion models. Technically, 3DStyle-
Diffusion first parameterizes the texture of 3Dmesh into reflectance
properties and scene lighting using implicit MLP networks. Mean-
while, an accurate depth map of each sampled view is achieved
conditioned on 3D mesh. Then, 3DStyle-Diffusion leverages a pre-
trained controllable 2D Diffusion model to guide the learning of
rendered images, encouraging the synthesized image of each view
semantically aligned with text prompt and geometrically consistent
with depthmap. This way elegantly integrates both image rendering
via implicit MLP networks and diffusion process of image synthe-
sis in an end-to-end fashion, enabling a high-quality fine-grained
stylization of 3D meshes. We also build a new dataset derived from
Objaverse and the evaluation protocol for this task. Through both
qualitative and quantitative experiments, we validate the capability
of our 3DStyle-Diffusion. Source code and data are available at
https://github.com/yanghb22-fdu/3DStyle-Diffusion-Official.
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1 INTRODUCTION
3D content creation via stylization is one of the fundamental di-
rections in multimedia and graphics community, which targets for
stylizing primary 3D meshes according to the given text prompts
[3, 24] or visual prompts (images [15, 34] or shapes [10, 22]). This
direction triggers automatic style-specific editability of 3D assets,
thereby playing a critical role in numerous applications. In between,
text-driven 3D stylization might be the most challenging. The com-
plex and fuzzy gap between visual content and text prompt makes
it extremely hard to precisely stylize the visual appearance and
geometry of 3D meshes solely conditioned on text prompt.

Taking the inspiration from recent advance of cross-modal foun-
dation models that facilitate a series of vision-language tasks [18, 32,
45, 46], recent pioneering practices start to leverage pre-trained Con-
trastive Language-Image Pre-training (CLIP) model [36] to bridge
the cross-modal gap in text-driven 3D stylization. In particular,
Text2Mesh [24] learns to predict stylized color and geometric infor-
mation of each mesh vertex based on input text prompt by using
CLIP-based holistic semantic similarity as supervision. TANGO
[3] further upgrades the modeling of texture on 3D meshes by
exploiting more factors (e.g., lighting conditions and reflectance
properties). But it still leverages CLIP-based holistic semantic loss
between rendered images and input text prompt. Although promis-
ing results are achieved for text-driven 3D stylization of meshes in
arbitrary topology, these techniques with CLIP-based supervision
mostly fail to enable a precise controllable stylization of fine-grained
details in 3D meshes. As shown in Figure 1 (the last example with
text prompt “a golden ring with a large diamond”), TANGO ba-
sically produces a fully golden ring, but mistakenly stylizes the
fine-grained components (e.g., the diamond).

In this work, we propose tomitigate this issue from the viewpoint
of exploiting 2D Diffusion models that provide more controllable
appearance and geometric supervisory signals to guide the learning,
pursuing more fine-grained text-driven stylization of 3D meshes.
The CLIP-based supervision holistically aligns visual appearances
of rendered images and text prompts. In contrast, our pre-trained
controllable 2D Diffusion model (ControlNet [49]) further enhances
the learning of rendered images with more conditions in a diffu-
sion process, including both text prompt and precise geometric
information (depth maps) derived from primary 3D mesh. This way
simultaneously manifests the emphasis of both holistic semantic
and local geometric consistency with regard to text prompt and

primary 3Dmesh, thereby yielding high-quality 3D stylization espe-
cially over fine-grained details. For example, in Figure 1, our work
nicely performs fine-grained 3D stylization of each component.

By consolidating the idea of integrating 3D stylization with con-
trollable 2D Diffusion models, we design a novel diffusion model,
namely 3DStyle-Diffusion, for text-driven 3D stylization. Our launch-
ing point is to unify the rendering of stylized 3D meshes and 2D
diffusion process of controllable image synthesis into an end-to-end
scheme. Technically, 3DStyle-Diffusion first capitalizes on implicit
MLP networks to parameterize the texture of 3D mesh into scene
lighting and reflectance properties, leading to rendered images
through ray casting [40]. During the ray casting process, we also
achieve a precise depth map of each sampled view derived from
primary 3D mesh. After that, the rendered image is fed into a pre-
trained 2D diffusion model (Control Stable Diffusion) to trigger
controllable image generation conditioned on both text prompt and
depth map, leading to fine-grained text-driven 3D stylization.

In summary, we have made the following contributions: (I)
3DStyle-Diffusion enables fine-grained text-driven 3D stylization by
guiding image rendering with controllable 2D diffusion model in an
end-to-end manner. (II) To evaluate the challenging text-driven 3D
stylization over fine-grained details, we build a new dataset (namely
Objaverse-3DStyle) derived from Objaverse [6] that contains vari-
ous 3D composite assets (with at least 2 different components). A
new evaluation protocol is also designed to quantitatively evaluate
all methods. (III) Both qualitative and quantitative experiments are
performed over our newly collected dataset, which demonstrate
the effectiveness of 3DStyle-Diffusion.

2 RELATEDWORK
Text-to-image (T2I) Synthesis. Earlier research in T2I synthesis
was dominated by GANs [7, 8, 26, 38], which employed a two-
player minimax game mechanism to train the generator to produce
synthetic images indistinguishable from real images. Recently, Dif-
fusion models [11, 12, 31, 39, 43] have emerged as the new trend
of generative models for generating high-quality images. With the
help of large-scale image-text paired datasets, diffusionmodels have
been widely exploited to form state-of-the-art T2I models (such as
DALL-E2 [37] and Imagen [42]). These models can generate im-
ages that are closely aligned with the input text prompt. Motivated
by these successes, many works attempt to utilize pre-trained T2I
diffusion models for various tasks such as text-driven image edit-
ing [2, 13, 16, 28, 29, 41]. However, using 2D diffusion model to
achieve fine-grained text-driven 3D stylization is seldom explored
and remains an open problem in the multimedia and vision field.

Text-driven 3D Generation and Manipulation. Recently,
significant advancements have been made in multimedia content
creation [4, 5, 11, 14, 33, 35, 37, 42, 51]. With notable advancements
in text-image cross-modal models, there has been a growing interest
in text-driven 3D visual synthesis. These works can be generally cat-
egorized into two groups. The first group is text-to-3D generation.
Pioneering works DreamField [14] and CLIP-Mesh [27] leverage
cross-modal knowledge from a pre-trained image-text model (i.e.,
CLIP [36]) to optimize the underlying 3D representations (NeRFs
and Meshes). By doing so, they eliminate the need for training data,
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Figure 2: An overview of 3DStyle-Diffusion. 3DStyle-Diffusion nicely triggers fine-grained stylization of 3D meshes based on
text prompt (e.g., “Red flowers in green grass”). Specifically, 3DStyle-Diffusion utilizes MLP networks to parameterize the
texture of the mesh into reflectance properties and scene lighting. Given a camera position 𝒄 , rays cast from the camera to the
mesh surface intersection points 𝑘𝑝 . Next, 𝑘𝑝 and its norm 𝑛𝑝 plus the ray direction 𝒗 are fed into the implicit representation
networks. A fully differentiable renderer is used to obtain the rendering image 𝒙. Meanwhile, we achieve the depth map of
3D mesh in the given view during the ray casting process. Then, the rendering image 𝒙 is diffused and reconstructed using a
pre-trained control stable diffusion model conditional on the depth map, the time step, and the input text prompt to predict the
injected noise, which is then used to backpropagate gradients to update the parameters of the implicit MLP network. This way
unifies both image rendering and diffusion processes into an end-to-end framework, leading to fine-grained 3D stylization.
thus enhancing the efficiency and convenience of 3D content cre-
ation. Sparked by the success of diffusion models in T2I generation,
recent works [20, 23, 30, 35, 44] utilize pre-trained T2I diffusion
models for text-to-3D generation, yielding impressive results.

Another group is mesh-based text-driven 3D stylization, which
has also drawn increasing research attention due to its wide applica-
bility. Recent works have made impressive progress in automating
the process of 3D stylization only using text prompts. A pioneering
practice in text-driven 3D stylization is Text2Mesh [24]. Given an in-
put mesh and a text prompt, Text2Mesh predicts stylized color and
displacement for each mesh vertex by leveraging an off-the-shelf,
pre-trained CLIP model. Then the stylized mesh is directly achieved
through this colored vertex displacement procedure. TANGO [3]
further incorporates reflectance properties and scene lighting to
improve the realism of text-driven 3D mesh stylization.

Our work falls into the latter group of text-driven 3D stylization.
Though existing works (Text2Mesh and TANGO) are able to gen-
erate promising text-driven stylized meshes through CLIP-based
supervision, they still fail to enable a precise controllable stylization
of fine-grained details in 3D meshes. In contrast, our work novelly
facilitates 3D stylization with controllable 2D Diffusion models,
pursuing more fine-grained text-driven stylization of 3D meshes.

3 METHOD
In this section, we elaborate our proposed 3DStyle-Diffusion, which
enables fine-grained text-driven 3D stylization by guiding image
rendering with a controllable 2D diffusion model in an end-to-end
manner. We first briefly review the basic text-driven 3D stylization
method (TANGO) and typical diffusion models. After that, we in-
troduce the technical details of our proposed 3DStyle-Diffusion.
Figure 2 demonstrates an overview of our approach.

3.1 Preliminaries
Text-driven 3D Stylization. Given an input mesh 𝑴 (consists of
𝑒 vertices 𝑽 ∈ R𝑒×3 and 𝑢 faces 𝑭 ∈ {1, ..., 𝑛}𝑢×3), one represen-
tative solution (TANGO [3]) is to parameterize its style as three
learnable MLP networks, which present spatially varying BRDF
(SVBRDF), normal and lighting properties respectively [48]. Then
stylized images can be generated with the learned implicit neural
network parameters through a differentiable renderer. Specifically,
to compute the color of each single pixel 𝑝 in the rendered image, a
camera ray 𝑹𝑝 = 𝒄 + 𝑡𝝂𝑝 is emitted originating at the camera center
𝒄 through the pixel 𝑝 along direction 𝝂𝑝 . The ray casting method
[40] is then used to find the first intersection point 𝒌𝑝 & intersection
face 𝒇𝑝 of the ray 𝑹𝑝 and the mesh𝑴 . Based on the intersections of
camera ray and mesh, TANGO first uses a Normal network 𝚷(·) to
estimate the normal vector �̂�𝑝 of 𝒌𝑝 according to the face normal 𝒏𝑝
of𝒇𝑝 at point 𝒌𝑝 , i.e., �̂�𝑝 = 𝚷(𝒏𝑝 , 𝒌𝑝 ). Next, TANGO utilizes a Light-
ning network 𝑳(·) to predict the incident light density 𝑳𝑖 (𝝎𝑖 ) from
incident light direction 𝝎𝑖 . Lastly, a SVBRDF network 𝒇𝑟 (·) is lever-
aged to estimate the surface reflectance coefficients 𝒇𝑟 (𝒌𝑝 ,𝝂𝑝 ,𝝎𝑖 )
of the material at location 𝒌𝑝 from the viewing direction 𝝂𝑝 and
the incident light direction 𝝎𝑖 . Accordingly, the final pixel color is
represented as the observed light intensity 𝑳𝑝 (𝝂𝑝 , 𝒌𝑝 , 𝒏𝑝 ), which
is an integral over the hemisphere Ω =

{
𝝎𝑖 : 𝝎𝑖 · �̂�𝑝 ≥ 0

}
:

𝑳𝑝 (𝝂𝑝 , 𝒌𝑝 , 𝒏𝑝 ) =
∫
Ω
𝑳𝑖 (𝝎𝑖 )𝒇𝑟 (𝒌𝑝 ,𝝂𝑝 ,𝝎𝑖 ) (𝝎𝑖 · �̂�𝑝 )d𝝎𝑖 . (1)

To render an image 𝒙 ∈ [0, 1]𝐻×𝑊 ×3, a collection of rays are sam-
pled corresponding to all the pixels in that image, and the resulting
color values 𝑳𝑝 are arranged into a 2D image. Note that the image
rendering process is fully differentiable, which allows gradients to
be backpropagated into the neural implicit representation network.
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TANGO leverages a pre-trained CLIP model to optimize the Nor-
mal, Lightning, and SVBRDF networks jointly. CLIP is a powerful
cross-modal model that comprises a text encoder 𝐸𝑇 , and an image
encoder 𝐸𝐼 . Briefly, TANGO uses the following CLIP loss function
as the overall objective:

L𝐶𝐿𝐼𝑃 = −𝐸𝐼 (𝒙)𝑇 𝐸𝑇 (𝑦), (2)

where 𝑦 is the text prompt and 𝒙 is the rendered image. Intuitively,
CLIP loss holistically aligns the text prompt and rendered image in
a shared latent embedding space at each training step.

Diffusion Models. Diffusion models (DMs) are generative mod-
els that learn the data distribution from a Gaussian distribution
through a gradual denoising process [11]. At each time step 𝑡 , a
forward diffusion process 𝑞(x𝑡 |x𝑡−1) is defined, which follows a
Markov chain to gradually add a small amount of Gaussian noise to
the sample x0 sampled from a real data distribution x0 ∼ 𝑞(x) (e.g.,
“real images”). This produces a sequence of noisy samples after 𝑇
steps, x1, . . . , x𝑇 . The step sizes are controlled by a pre-determined
variance schedule 0 < 𝛽1 < 𝛽2 < · · · < 𝛽𝑇 < 1:

𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;
√︁

1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I) . (3)

After 𝑇 noise adding steps, x𝑇 is equivalent to an isotropic Gauss-
ian distribution. The reverse diffusion process aims to progressively
“denoise” x𝑇 to recover the true sample. To model the conditional
probability for the reverse diffusion process, a neural network with
parameters𝜙 is used to approximate the distribution: 𝑝𝜙 (x𝑡−1 |x𝑡 ) =
N(x𝑡−1; 𝝁𝜙 (x𝑡 , 𝑡), 𝚺𝜙 (x𝑡 , 𝑡)). As shown in [11], noise approxima-
tion model 𝝐𝜙 (x𝑡 , 𝑡) can be instead used to predict the noise con-
tained in a noisy image x𝑡 at time step 𝑡 :

x𝑡−1 = N(x𝑡−1;
1

√
𝛼𝑡

(
x𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝝐𝜙 (x𝑡 , 𝑡)
)
, 𝚺𝜙 (x𝑡 , 𝑡)), (4)

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 is the product of all 𝛼 values
up to time 𝑡 . For a conditional generation, such as in text-to-image
diffusion models [39], a text prompt 𝑦 is embedded and used as a
condition in the diffusion model via attention mechanism widely
adopted in Vision Transformers [19, 47]. The corresponding noise
predictor is denoted as 𝝐𝜙 (x𝑡 ;𝑦, 𝑡) and the loss function is defined
as follows:

Ldiff (𝜙, 𝑥) = E𝑡,𝜖
[
𝑤 (𝑡)∥𝝐𝜙 (x𝑡 , 𝑦, 𝑡) − 𝜖 ∥2

2

]
, (5)

where𝑤 (𝑡) is a weighting function depends on 𝑡 and 𝜖 ∼ N(0, I).

3.2 3DStyle-Diffusion
Motivation. A recent pioneering practice (DreamFusion [35]) de-
signs Score Distillation Sampling (SDS), which enables the use of
a pre-trained text-to-image diffusion model to optimize a NeRF
model [1, 25] solely based on a text prompt. Specifically, at each
training step, an image 𝑥 is first rendered by NeRF from a random
camera viewpoint. DreamFusion then perturbs the rendered image
𝑥 with noise 𝜖 ∼ N(0, I) into a noisy image 𝑥𝑡 =

√
𝛼𝑡𝑥 +

√
1 − 𝛼𝜖

according to the random sampled 𝑡 . The noisy image is used to
calculate the gradient to update NeRF parameters 𝜃 :

∇𝜃L𝑆𝐷𝑆 (𝜙, 𝑥) = E𝑡,𝜖 [𝑤 (𝑡) (𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦) − 𝜖) 𝜕𝑥
𝜕𝜃

], (6)

where 𝑦 is the text prompt of the 3D scene to be generated. Intu-
itively, the SDS loss in Eq. 6 pushes noisy versions of the rendered

front view side view back view side view

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 3: Motivation. (a) Rendered images of 3D mesh during
training, (b) the results of Stable Diffusion under the same
text prompt, (c) view-dependent prompting results of Stable
Diffusion by augmenting text prompt with view names, (d)
results of depth conditioned Stable Diffusion by introducing
additional depth condition derived from 3D mesh. The input
text prompt is “a white statue of a rabbit”. Depth-conditioned
results faithfullymatch the rendered images’ pose and shape.

images to lower energy states of the text-to-image diffusion model.
By randomly sampling views and backpropagating through the
NeRF, it encourages the renderings to resemble images generated
by the prior text-to-image diffusion model for a given text prompt.

By utilizing pre-trained text-to-image diffusion models, Dream-
Fusion has demonstrated impressive text-to-3D generation results.
Nevertheless, the CLIP model widely used in existing text-driven
3D stylization methods only holistically aligns images and texts in a
semantic space, while text-to-image diffusion models can generate
realistic images with fine-grained details based on text prompts.
Motivated by this, a natural question arises: is there an elegant way
to trigger fine-grained text-driven 3D stylization with 2D diffusion
models? One simple and straight-forward way is to extend the score
distillation sampling into 3D stylization of meshes by directly re-
placing the CLIP loss (Eq. 2) with SDS loss (Eq. 6). We name this run
as TANGO+Fusion. However, we observe that such naive incorpora-
tion of SDS into TANGO results in unsatisfactory results (see Figure
6). One key limitation might be the lack of 3D awareness for pre-
trianed 2D diffusion models, which inevitably results in geometry
inconsistent supervision for the rendered images across different
views. As shown in Figure 3 (a), the rendered images of a 3D mesh
are derived from arbitrary camera viewpoints during the training
process and thus have various geometry shapes. When solely condi-
tioned on the same text prompt, the 2D diffusion model (e.g., Stable
Diffusion) always generates diverse images that don’t match the
viewpoint of the rendered images (Figure 3 (b)). To alleviate this
issue, existing score distillation sampling-based works [23, 35, 44]
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all use a view-dependent prompting strategy. Specifically, they add
“back view”, “side view” or “front view” (according to the camera
position) into the input text prompt to roughly describe the camera
viewpoint. However, on the one hand, the input mesh in text-driven
3D stylization has an arbitrary pose. It is impossible to automat-
ically identify which viewpoint is precisely corresponding to its
“front view” unless we introduce additional cost to manually label it.
On the other hand, this ad-hoc approach has severe limitations. As
depicted in Figure 3 (c), the same text prompt (e.g., “side view of a
white statue of a rabbit”) can correspond to a wide range of different
pose values. Due to the ambiguity in the interpretation of prompt
from the same view, 3D stylization might result in distorted and
unrealistic visuals that fail to match the original intent of the text
prompt. Moreover, it is not trivial to generate images that faithfully
match the specified view via the pre-trained diffusion models.

Depth-aware Score Distillation Sampling. To mitigate the
aforementioned issues, we propose a simple yet effective depth-
aware score distillation sampling strategy for text-driven 3D styl-
ization. Our launch point is to incorporate 3D awareness into score
distillation sampling by leveraging the precise depth cues derived
from primary 3D meshes.

Technically, in each training iteration, we render an image us-
ing the differentiable renderer from a randomly sampled camera
position 𝒄 . Simultaneously, we can effortlessly obtain the corre-
sponding depth map from the same camera position. As described
in Sec 3.1, for each pixel 𝑝 in the rendered image, a camera ray
𝑹𝑝 = 𝒄 + 𝑡𝝂𝑝 is emitted that starts from 𝒄 and points towards 𝑝 .
Then we find the first intersection point 𝒌𝑝 between the ray 𝑹𝑝
and the mesh 𝑴 through ray casting [40]. The depth value of pixel
𝑝 can be calculated as follows:

𝑑𝑝 = ∥𝒌𝑝 − 𝒄 ∥2 · 𝑐𝑜𝑠𝛾, (7)

where 𝛾 is the angle between the ray 𝑹𝑝 and another ray from
camera 𝒄 to the center pixel of the image. Thus we simultaneously
render an image 𝒙 and its corresponding depth map 𝒅 according to
Eq. 1 and Eq. 7 respectively. We then remould the standard score
distillation sampling by exploiting an image conditioned diffusion
model (ControlNet [49]) to trigger fine-grained text-driven 3D styl-
ization. ControlNet is an end-to-end neural network architecture
that controls large-scale pre-trained image diffusion models (Sta-
ble Diffusion) to learn task-specific input conditions. Specifically,
herein we use ControlNet-depth1 as our diffusion prior model,
which is trained on large-scale depth-image-text pairs and can
enable depth-guided text-to-image generation. Since ControlNet-
depth has two conditions (depth map 𝒅 and text prompt 𝑦), the
noise is estimated as follows:

𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦, 𝒅) =𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦, 𝒅)
+ 𝑠 ∗ (𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦, 𝒅) − 𝜖𝜙 (𝑥𝑡 ; 𝑡)), (8)

where 𝑠 is a user-defined constant that controls the degree of guid-
ance and 𝜖𝜙 (𝑥𝑡 ; 𝑡) represents the noise prediction without condi-
tioning [12]. Similar to Eq. 6, the depth-aware score distillation
sampling loss is defined as follows:

∇𝜃L𝐷−𝑆𝐷𝑆 (𝜙, 𝑥) = E𝑡,𝜖 [𝑤 (𝑡) (𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦, 𝒅) − 𝜖) 𝜕𝑥
𝜕𝜃

], (9)

1https://huggingface.co/lllyasviel/sd-controlnet-depth

where 𝜙 is the parameters of the pre-trained ControlNet-depth and
𝜃 is the parameters of learnable MLP networks.

Intuitively, previous score distillation sampling (Eq. 6) roughly
pushes rendered views of the stylized 3D mesh into a higher proba-
bility density region determined by the single text prompt, while
neglecting the objects’ geometrical poses and shapes. In contrast,
with the help of depth guidance, our depth-aware score sampling
distillation (Eq. 9) further narrows down the text-conditioned prob-
ability density into a more compact and precise region that also
closely aligns the depth cues (see Figure 3 (d)). As such, our depth-
aware score distillation sampling loss can provide more precise
supervision during 3D stylization. In this way, we elegantly inte-
grate the rendering of stylized 3D meshes and 2D diffusion process
of controllable image synthesis into an end-to-end scheme, enabling
a high-quality fine-grained stylization of 3D meshes.

Optimization.Recall that the overall optimization of our 3DStyle-
Diffusion is guided by a pre-trained 2D diffusion model [49]. During
each iteration, we sample one camera point and render an image 𝑥
& its corresponding depth map 𝒅 by Eq. 1 and Eq. 7 respectively.
We then use the depth-aware score distillation sampling loss in Eq.
9 as our overall objective.

4 DATASETS AND METRICS
Existing text-driven 3D stylization works [3, 24] commonly exam-
ine their methods over a limited number of meshes with simple text
prompts. Meanwhile, they have only shown qualitative results of
some cases and subjective user studies to evaluate the performances
of the stylized 3D meshes. To alleviate these issues, we construct a
new dataset that contains various challenging 3D composite assets
(consisting of at least 2 different components) with more complex
text prompts. A new evaluation protocol is also designed to quanti-
tatively evaluate text-driven 3D stylization methods.

Datasets.We build a new dataset of 107 meshes derived from
Objaverse [6] (namely Objaverse-3DStyle), including various ob-
jects such as plants, animals, vehicles, etc. Although each mesh
in Objaverse has a primary natural language description, we find
these text descriptions are noisy and fail to accurately describe the
mesh. To this end, we manually annotate each mesh with a pre-
cise text prompt. Specifically, given a 3D asset, we first uniformly
render 36 images from varied views. We then utilize a powerful
vision-language model (BLIP [17]) to automatically generate sev-
eral captions according to the rendered images. Next, we manually
check all the captions and rewrite the inaccurate captions. Finally,
each mesh in our Objaverse-3DStyle has one ground truth text
prompt plus 36 ground truth rendered images. This dataset offers a
fertile ground to evaluate text-driven 3D stylization methods.

Evaluation Metrics. Following prior works [14, 35], our eval-
uation metrics first involve the CLIP R-Precision, an metric that
evaluates the consistency of rendered images with respect to the
input text prompt. In general, CLIP R-Precision measures the pre-
cision by using CLIP to retrieve the correct caption from a set of
distractors given a rendering of the stylized mesh. More specifically,
we followDreamField and employ a set of 153 prompts as distractors
derived from the object-centric COCO [21] validation subset. We
adopt CLIP ViT-B/32, CLIP ViT-B/16 and CLIP ViT-L/14 encoders to

https://huggingface.co/lllyasviel/sd-controlnet-depth
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a white porcelain plate and a bottle of red wine

a gold ring with three diamonds

a white gold ring with a blue stone

a single red rose with green leaves

a white porcelain plate and a bottle of red wine

a gold ring with three diamonds

a white gold ring with a blue stone

a single red rose with green leaves

red flowers in green grass

a pair of wooden sunglasses

two red cherries with a green leaf

a red tomato with a green stem

red flowers in green grass

a pair of wooden sunglasses

two red cherries with a green leaf

a red tomato with a green stem

Text2Mesh TANGO 3DStyle-DiffusionText2Mesh TANGO 3DStyle-Diffusion Text2Mesh TANGO 3DStyle-DiffusionText2Mesh TANGO 3DStyle-DiffusionInput Mesh Input Mesh

Figure 4: Qualitative comparisons on text-driven 3D stylization. We compare our method with Text2Mesh [24] and TANGO [3].
Our 3DStyle-Diffusion produces high fidelity and more realistic fine-grained stylization results.

calculate R-Precsion. We also use an image-text CLIP score to mea-
sure the semantic similarity between rendered images and the input
text prompt. Since we have “ground truth” stylized images in our
built dataset, we further introduce two evaluation metrics: LPIPS
[50] and image-image CLIP score to assess the perceptual similar-
ity and semantic similarity between rendered images and “ground
truth” stylized images, respectively. Note that the encoder adopted
in image-text and image-image CLIP scores is CLIP ViT-L/14.

5 EXPERIMENTS
Implementation Details.We implement the proposed 3DStyle-
Diffusion mainly based on TANGO [3] codebase. Similarly, the
Normal estimation network 𝚷(·) consists of 3 layers of width 256.
The SVBRDF network predicts diffuse, specular and roughness
per surface point. We adopt the AdamW optimizer and the initial
learning rate is set as 5 × 10−4. The learning rate undergoes a
decay of 0.7 after every 500 iterations. All experiments of 3DStyle-
Diffusion are conducted on a single NVIDIA RTX 3090 GPU. We
train the model for 3, 000 iterations and the whole training process
takes approximately 0.5ℎ for each mesh.

Baselines. We compare against two state-of-the-art text-driven
3D stylization models (Text2Mesh [24] and TANGO [3]). Text2Mesh
is the pioneering practice, which leverages a CLIP model to predict
stylized color and displacement for mesh vertexes. TANGO further
incorporates reflectance properties and scene lighting to improve

the realism of stylized meshes. We also compare against Geometry-
Guided Latent-NeRF [23], which is mesh-guided text-to-3D gen-
eration. In addition, we include five typical zero-shot text-to-3D
generation models as baselines. 1) CLIP-Mesh [27], a method for
generating 3D model from text prompt using a pre-trained CLIP
[36] model. 2) DreamField [14], which combines neural radiance
fields with CLIP to synthesis diverse 3D objects form text prompt.
3) DreamFusion* [9], a thrid-party implementation of DreamFusion
[35]. 4) Latent-NeRF [23], which learns a NeRF model using a score
distillation sampling loss in the latent space of Stable Diffusion. 5)
SJC [44], is another SDS baesd text-to-3D framework.

5.1 Qualitative Results
The qualitative comparisons on text-driven 3D stylization are pre-
sented in Figure 4. As shown in this figure, Text2Mesh is prone to
produce stylized mesh with unreasonable deformation. For instance,
given the text prompt “a red tomato with green stem”, Text2Mesh
generates severely distorted 3D shapes that do not conform to the
original structure of the input mesh. TANGO doesn’t suffer from the
issue of geometry deformation, but fails to stylize the fine-grained
components. Taking the third row (right half) in Figure 4 as an
example, when using the text prompt “two red cherries with a green
leaf”, TANGO incorrectly generates completely green cherries. In
contrast, we can clearly observe that the stylized 3D meshes of
our 3DStyle-Diffusion faithfully respect both the fine-grained se-
mantic context present in the input text prompt and the geometric
structure specified in the input mesh.
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Latent NeRFCLIP-Mesh DreamField Input mesh3DStyle-Diffusion3DStyle-DiffusionSJCSJC

（a）（a）

（b）（b）

（c）（c）

（d）（d）

Figure 5: Qualitative comparisons against zero-shot text-to-3D generation methods. We compare our method with CLIP-Mesh
[27], DreamField [14], Latent-NeRF [23] and Score Jacobian Chaining (SJC) [44]. The prompts are (a) “a single yellow rose with
green leaves”; (b) “a single white rose with green leaves”; (c) “a silver necklace with a green stone hanging from it”; (d) “a white
statue of a rabbit”. For each visualization of our 3DStyle-Diffusion, the corresponding input mesh is also visualized (the last
column). Our 3DStyle-Diffusion shows better 3D results in terms of both geometry and texture in comparison to baselines.

Table 1: Quantitative comparisons on our constructed Objaverse-3DStyle benchmark. Our 3DStyle-Diffusion outperforms
baseline models over most metrics. See section 4 for more details about the evaluation metrics adopted here.

Method CLIP R-Precision ↑ CLIP Score ↑ LPIPS ↓
ViT-B/32 ViT-B/16 ViT-L/14 Image-Text Image-Image Alexnet VGG

SJC [44] 0.785 0.757 0.776 0.251 0.711 0.300 0.201
Latent-NeRF [23] 0.748 0.738 0.785 0.243 0.686 0.315 0.231
Dreamfusion* [9] 0.776 0.757 0.794 0.254 0.732 0.309 0.221
Text2Mesh [24] 0.841 0.729 0.720 0.248 0.740 0.338 0.240
TANGO [3] 0.804 0.794 0.813 0.245 0.768 0.295 0.204
Geometry-Guided Latent-NeRF [23] 0.822 0.804 0.832 0.248 0.819 0.270 0.188
TANGO+Fusion 0.813 0.804 0.822 0.250 0.817 0.272 0.191
3DStyle-Diffusion (ours) 0.832 0.822 0.850 0.260 0.835 0.263 0.182

In addition, we depict the qualitative comparisons on zero-shot
text-to-3D generation in Figure 5. As illustrated in this figure, ex-
isting zero-shot text-to-3D methods show inferior capability of 3D
generation, making it difficult to generate precise and realistic 3D
objects. Taking the first row (Figure 5 (a)) as an example, when using
the text prompt “a single yellow rose with green leaves”, CLIP-Mesh

and DreamField generate roses that are distorted and do not accu-
rately match real-world roses’ structures. Although Latent-NeRF
and SJC can generate somewhat reasonable 3D shapes and visuals,
they encounter challenges in the generation of fine-grained details,
which consequently lead to unrealistic visual appearances. In con-
trast, our 3DStyle-Diffusion effectively generates higher-quality
3D results in terms of both geometry and texture by incorporating
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three red roses with green leaves in a white vase

a white gold ring with a beryl on it

a white rose with a green leaf in a white vase

a red candle in a silver candlestick

TANGO 3DStyle-DiffusionInput mesh TANGO+Fusion TANGO 3DStyle-DiffusionInput mesh TANGO+Fusion

Figure 6: Qualitative ablation study of our 3DStyle-Diffusion. TANGO [3] is our base model. TANGO+Fusion simply replaces
the original CLIP loss in TANGO with score distillation sampling loss in DreamFusion [35]. Our 3DStyle-Diffusion clearly
achieves better 3D stylization results than both ablated runs.

explicit 3D shape priors (i.e., the input mesh) and controllable 2D
diffusion prior (i.e., depth-aware score distillation sampling).

5.2 Quantitative Results
The quantitative performance comparisons of different models
for text-driven 3D stylization are summarized in Table 1. Overall,
our 3DStyle-Diffusion consistently achieves better performances
against state-of-the-art zero-shot text-to3D generation and text-
driven 3D Stylization techniques over most metrics. The results
generally highlight the key advantage of incorporating controllable
2D diffusion models into text-driven 3D stylization. It is worthy to
note that both Text2Mesh and TANGO are directly optimized with
CLIP ViT-B/32 during training, thereby leading to competitive CLIP
R-Precision scores on ViT-B/32. However, our 3DStyle-Diffusion
still manages to outperform all baselines over CLIP R-Precision
scores under most backbones (ViT-B/16 & ViT-L/14) and image-
text CLIP score. This demonstrates that our 3DStyle-Diffusion can
generate high-quality content semantically aligned with the input
text prompt. For image-image CLIP score and LPIPS, our 3DStyle-
Diffusion again exhibits the best performances in comparison to
all baselines, which demonstrates that our method can generate
stylized meshes that faithfully match the target style.

5.3 Ablation Study
In this section, we investigate the effectiveness of our proposed
depth-aware score distillation sampling in Eq. 9. We depict the
qualitative results of each ablated run in Figure 6. TANGO is the base
model that leverages CLIP loss to perform text-driven 3D stylization.
TANGO+Fusion is one degraded version of our 3DStyle-Diffusion
by directly replacing the original CLIP loss in TANGO with score
distillation sampling loss in DreamFusion [35]. As shown in this
figure, TANGO+Fusion achieves better results than TANGO, which
validates the effectiveness of score distillation sampling via typical
diffusion models. Nevertheless, TANGO+Fusion still suffers from
some unrealistic details of fine-grained components. In contrast, the
results of 3DStyle-Diffusion precisely match the input text prompt
and are faithfully photo-realistic. This clearly validates the merit of

Table 2: User Study. Users show a clear preference for our
3DStyle-Diffusion against Text2Mesh and TANGO.

Comparison User Preference Score
3DStyle-Diffusion vs. Text2Mesh 85.0%
3DStyle-Diffusion vs. TANGO 78.5%

our designed depth-aware score distillation sampling. In addition,
we also show the corresponding quantitative results of ablated runs
in Table 1, which again validate the effectiveness of our proposal.

5.4 User Study
Weadditionally perform user study to evaluate our 3DStyle-Diffusion
against two baseline models (i.e., Text2Mesh and TANGO) by com-
paring each pair. We invite 6 participants with different educational
backgrounds and show them two videos (rotating 3D assets) side by
side in each test case. The text prompt and corresponding input bare
3D mesh are also displayed to the participants. Each pair of videos
is rendered from stylized meshes by two different methods using
the same input bare mesh and text prompt. We then ask participants
to choose the better one by jointly considering the following two
aspects: (1) the alignment to the text prompt and (2) the fidelity of
the visual appearance. According to all participants’ feedback, we
measure the user preference score of 3DStyle-Diffusion as the per-
centage of its generated results that are preferred. Table 2 shows the
results of the user study. In general, our 3DStyle-Diffusion signifi-
cantly outperforms both baselines with higher user preference rates.
This validates the effectiveness of our proposed 3DStyle-Diffusion
again in the aspect of human preference.

6 CONCLUSIONS
In this paper, we have proposed 3DStyle-Diffusion, a novel method
that enables more controllable stylization of 3D meshes with addi-
tional guidance from 2D Diffusion models. Specifically, our 3DStyle-
Diffusion parameterizes the texture of 3D mesh into reflectance
properties and scene lighting, and leverages a pre-trained control-
lable 2D diffusion model to guide the learning of rendered images,
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enabling a high-quality fine-grained stylization of 3D meshes. We
also build a new challenging dataset derived fromObjaverse and the
evaluation protocol for this task. We validated our proposal through
both qualitative and quantitative experiments and demonstrated
its capability for 3D content creation via text-driven stylization.
Furthermore, the ability in triggering fine-grained text-driven 3D
stylization via 2D diffusion models is potentially a new paradigm
of 3D content creation.
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