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ABSTRACT

Large pre-trained multimodal models have demonstrated signif-
icant success in a range of downstream tasks, including image
captioning, image-text retrieval, visual question answering (VQA),
etc. However, many of these methods rely on image-text pairs
collected from the web as pre-training data and unfortunately
overlook the need for fine-grained feature alignment between vi-
sion and language modalities, which requires detailed understand-
ing of images and language expressions. While integrating VQA
and dense captioning (DC) into pre-training can address this is-
sue, acquiring image-question-answer as well as image-location-
caption triplets is challenging and time-consuming. Additionally,
publicly available datasets for VQA and dense captioning are typ-
ically limited in scale due to manual data collection and labeling
efforts. In this paper, we propose a novel method called Joint QA
and DC GEneration (JADE), which utilizes a pre-trained multi-
modal model and easily-crawled image-text pairs to automati-
cally generate and filter large-scale VQA and dense captioning
datasets. We apply this method to the Conceptual Caption (CC3M)
dataset to generate a new dataset called CC3M-QA-DC. Experi-
ments show that when used for pre-training in a multi-task man-
ner, CC3M-QA-DC can improve the performance with various
backbones on various downstream tasks. Furthermore, our gen-
erated CC3M-QA-DC can be combined with larger image-text
datasets (e.g., CC15M) and achieve competitive results compared
with models using much more data. Code and dataset are available
at https://github.com/johncaged/OPT_Questioner.
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1 INTRODUCTION

Vision-Language
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Image Caption ITC, ITM, IC, IMLM
a couch and a chair sitting in a living room Conventional VLP

QA pairs VQA Ours
Q: where was the picture taken ? — A: in a living room

Q: what material is the table made of ? — A: glass

Q: where is the pillow ? — A: on the couch =)

Vision-Language
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Dense Captions Dense Captioning
(24, 473, 601, 598) — the books are on a table
(14, 248, 156, 479) — a black chair with a wooden back
(289, 260, 379, 344) — white wall behind chair

Figure 1: Conventional vision-language pre-training (VLP)
paradigm (top) using the original CC3M dataset (gray) and
our proposed VLP paradigm (bottom) additionally using our
generated QA (green) and DC (blue) data.
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Vision-language pre-training has made remarkable progress in
recent years, with new large pre-trained models emerging con-
stantly. As a common practice, the vast majority of these models
utilize image-text datasets crawled from the web for pre-training
purposes. The objective is to enhance the model’s understanding
of the vision and language modalities. Based on these datasets,
a wide range of pre-training tasks have been proposed, includ-
ing Image-Text Matching (ITM) [10, 15, 27, 33], Image-Text Con-
trastive Learning (ITC) [38, 39, 60, 61], Image Captioning [11, 49],
Image-Conditioned Masked Language Modeling (IMLM) [27, 50, 59],
among others. These methods have significantly improved large
pre-trained models in multimodal understanding and generation.

However, we argue that the above methods focus on coarse-
grained learning and lack fine-grained alignment between images
and text, which involves precise understanding of vision, language
and the detailed correlation between them (e.g., answering ques-
tions or generating captions about local regions in images), and can
further enhance the capabilities of pre-trained models. We assume
Visual Question Answering (VQA) and Dense Captioning (DC) are
two ideal training tasks that can help address this issue.

On the one hand, VQA requires exact understanding of both
global and local details of images and aligns images with question
queries in a fine-grained manner to generate correct answers based
on the semantics of both image and text. On the other hand, DC,
which means generating captions given bounding boxes, involves
learning the location and detailed semantics of images, thus en-
riching text representation of the vision modality. Therefore, these
two tasks are essentially complementary to the existing image-text
pre-training paradigm, and their integration should significantly
improve the performance of pre-trained models in multimodal un-
derstanding and generation. Moreover, due to the development of
generalist models [24] and chatbots [37], zero-shot VQA and DC
are receiving increasingly more attention, highlighting the needs
to include these tasks in the pre-training process.

Some methods [49] have incorporated human-annotated VQA or
DC datasets in their pre-training. However, unlike image-text pairs
that can be obtained from the internet at a relatively low cost, image-
question-answer and image-location-caption triplets for VQA and
DC are much more challenging to collect. These datasets are often
labeled manually, which can produce high-quality and carefully-
examined data. Nevertheless, manual labeling is a time-consuming
and laborious process. Due to this issue, publicly available VQA and
DC datasets are mostly limited in scale, making them sub-optimal
choices for large-scale pre-training.

To address this challenge, we propose a novel method called Joint
QA and DC Generation (JADE), which leverages a large pre-trained
multimodal model and public image-text datasets to automatically
generate and filter VQA and DC data. By doing so, we can obtain
a sufficient amount of high-quality data for pre-training. Figure 1
illustrates the conventional vision-language pre-training (VLP) par-
adigm using the original CC3M [44] dataset and our proposed VLP
paradigm which adopts additional QA (green) and DC (blue) data
generated by our JADE method. All these data can be jointly utilized
for multi-task pre-training, leading to improved performance.

Our JADE method can be summarized in three steps. Firstly, the
pre-trained model is fine-tuned on manually annotated VQA and
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DC datasets to learn dense captioning and conditional question-
answer pair generation (referred to as the generator model). Dense
captions are generated based on images and bounding box coordi-
nates, while the conditional question-answer pairs are produced
in a sequence-to-sequence manner, given images, question types,
bounding box coordinates, and corresponding dense captions. The
use of the above prompts makes the generation process both con-
tent and question type controllable. Secondly, to further improve
data quality and reduce generation bias, we also fine-tune the same
pre-trained model on VQA datasets to create a common VQA model
(referred to as the filter model). During inference, the filter model
predicts answers based on images and generated questions. Finally,
the predicted answers from the filter model and the generated an-
swers from the generator model are compared, and unmatched QA
pairs are discarded. This step further improves the quality of the
generated VQA data.

We apply our JADE method to build a new VQA and DC dataset
derived from the CC3M dataset, which we name CC3M-QA-DC.
We use the CC3M-QA-DC dataset in vision-language pre-training
with various vision and language backbones in a multi-task manner.
Experiments demonstrate that our CC3M-QA-DC dataset efficiently
helps multimodal models learn image-text alignment and cross-
modality fusion, leading to improved performance on a wide range
of downstream tasks, such as image captioning, image-text retrieval
and VQA. Our method has shown great promise in Al Generated
Data (AIGD), which contributes to new data acquisition methods
and lowers data collection costs. Furthermore, we find that our
large-scale CC3M-QA-DC dataset, employed in pre-training, can
enhance zero-shot performance on the aforementioned downstream
tasks. This finding highlights the potential for training generalist
models and developing strong multimodal chatbots.

Overall, our contribution can be summarized as follows:

(1) We propose a novel method called Joint QA and DC Gener-
ation (JADE) to generate and filter QA and DC data in an
end-to-end manner, by leveraging a large pre-trained multi-
modal model and public image-text datasets. This method
enables the efficient collection of high-quality data for pre-
training, even at a large scale.

(2) We apply JADE to produce QA and DC data derived from
the CC3M dataset, resulting in a large-scale VQA and DC
dataset called CC3M-QA-DC, which covers a wide range of
question types and is beneficial for training vision-language
models.

(3) Experiments demonstrate that when used in pre-training,
our CC3M-QA-DC dataset can improve multimodal models’
zero-shot as well as fine-tuning performance on downstream
tasks. These findings highlight the potential of AI Generated
Data (AIGD) and training generalist multimodal models.

2 RELATED WORK

2.1 Vision-Language Pre-Training

In recent years, there has been a growing interest in developing
cross-modal pre-training models that demonstrate strong capabil-
ities and generalizability across various domains. Among these,

the vision-language pre-training remains the predominant focus,
giving rise to many representative works [2, 25-27, 39, 49, 50, 59].
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In these existing approaches, the primary pre-training tasks in-
clude Image-Text Contrastive Learning (ITC), Image-Text Match-
ing (ITM), Image Captioning (IC), and Image-Conditioned Masked
Language Modeling (IMLM). Specifically, ITC [27, 39, 56] employs
contrastive learning to learn a shared image-text embedding space,
which gathers image features to the corresponding text features
and learns the alignment between vision and language modalities.
ITM [5, 26, 27] uses a classification head to determine if an image
and text match, thereby extracting cross-modal information. As for
generation tasks, a common practice is learning to generate text
sequence in an auto-regressive manner. These existing tasks have
been proven complementary in many studies and exhibit strong
understanding and generalization capabilities for a wide range of
downstream tasks.

However, for certain downstream tasks that require more fine-
grained discriminative and generative abilities, such as Visual Ques-
tion Answering (VQA) and Dense Captioning (DC), existing pre-
training tasks based on image-text pairs tend to focus more on
global modeling of the two modalities and lose local information.
Fine-tuning on fine-grained datasets subsequently becomes chal-
lenging due to the inconsistencies between the two stages. We
believe that introducing tasks that aid fine-grained semantic under-
standing during the pre-training phase can address this issue. There
already exist works that incorporate VQA into vision-language pre-
training, such as OFA [49], LXMERT [46] and VL-BART [11]. How-
ever, these methods utilize limited human-annotated VQA datasets,
which are sub-optimal for larger-scale vision-language pre-training.
Moreover, most existing cross-modal pre-training models lack zero-
shot chat capabilities, primarily due to the absence of relevant
pre-training tasks during the training process. Our method can
effectively resolve this problem, providing basic conversational
abilities that contribute to the future development of chatbots.

2.2 Pre-Training Data Generation

For a considerable duration, researchers have designed a range
of generative downstream tasks, such as Image Captioning (IC)
[47], Image Dense Captioning (DC) [19], Visual Question Genera-
tion (VQG) [35], etc. The Image Captioning task aims to generate
captions for images, and due to the availability of large datasets
[7, 9, 17, 44], it has been widely applied in visual-language pre-
training tasks. A similar task, Dense Captioning, requires gen-
erating more detailed natural language descriptions based on
local image regions. In the past few years, a variety of works
[19, 28, 43, 52, 55, 57] have combined Dense Captioning with object
detection tasks, with the primary dataset being Visual Genome (VG)
[19]. Visual Question Generation (VQG) aims to generate visually-
related questions based on an image or video. Initially a standalone
task, it has gradually evolved into a means of data augmentation
and evaluation to help improve Visual Question Answering (VQA)
tasks [1, 20, 22, 29, 42, 53].

Recently, the advancement of large pre-trained models has ren-
dered the above mentioned generative downstream tasks as a feasi-
ble approach for generating data that can be utilized for pre-training
purposes. One of the representitive methods, BLIP [26], proposed
to use large pre-trained models to generate cleaner image captions
than the weakly image-correlated alt-text collected from the web. In
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the VQG task, VQ?A [6] selects keywords from the captions of ex-
isting image-text pairs as answers, then generates questions based
on the answers and the original captions, automatically creating
image-question-answer triplets. However, their approach utilizes
weakly-correlated image-text data, which is purely linguistic and
thus incapable of addressing detailed image-related questions.

Therefore, we propose our JADE method to automatically gener-
ate more abundant VQA and dense captioning data in an end-to-end
manner, by leveraging a large pre-trained multimodal model and
web-crawled image-text pairs. Except for VQA data, our method
is capable of producing dense captioning data, which has been
proved to be advantageous for multimodal understanding and gen-
eration. Moreover, unlike VQ?A, we employ our generated dataset
for multi-task pre-training and investigate diverse experiment set-
tings, providing valuable insights into the incorporation of addi-
tional pre-training tasks and the development of generalist models
as well as chatbots.

3 METHOD

Large pre-trained multimodal models have shown impressive capa-
bilities in cross-modality understanding and generation. Building
on this foundation, we propose to leverage these capabilities to ad-
dress the challenge of collecting high-quality VQA and DC datasets
at scale. Specifically, we utilize the VALOR [8] model as the fun-
damental model for our JADE method. The overall pipeline of our
method is illustrated in Figure 2.

3.1 QA and DC Generator Model

The QA and DC Generator Model is fine-tuned in a multi-task way,
incorporating two tasks named dense captioning and QA sequential
generation.

3.1.1 Dense Captioning. In the dense captioning task, the model
takes images and bounding box coordinates as input and learns to
generate dense captions based on the given coordinates.

Given a single set of bounding box coordinates (x1, y1, x2, y2),
which represents the horizontal and vertical coordinates in the
upper left and lower right corner of a target bounding box in an
input image, we first apply target embedding to the output feature
map from the first vision layer. Let e; be the target embedding
vector and e; be the non-target embedding vector, the process can
be denoted as:

{et, if x1<i<x2andyl < j<y2
Eij= . (1
ez, otherwise
Foision = fvision + COHU(E) (2)

CxixW CxHdxW
where E € R3XHXW,fm'5ion €R PP, Fyision € RT"P7 P

are the embedding map, output feature map from the first vision
layer and finally embedded feature map respectively, C denotes the
hidden dim and p denotes the patch size.

To further represent the target area features, we use positional
tokens as the prompt input to the language backbone, which are
in the form of [BOS] [LOC] [EOS], where [BOS] and [EOS] de-
note beginning of sentence and end of sentence tokens, and [LOC]
denotes bounding box coordinate tokens. The model learns to gen-
erate dense captions with respect to the bounding boxes using
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Figure 2: Overall pipeline of our Joint QA and DC Generation (JADE) method. We train a generator model and a filter model.
During training stage (top), the generator model is fine-tuned in a multi-task manner, while the filter model is trained as a
common VQA model. During inference stage (bottom), given corresponding prompts, the generator model first produces dense
captions according to the bounding boxes and then generates QA pairs one at a time, while the filter model predicts answers
given the generated questions. Matched QA pairs and dense captions are kept.

causal masked language modeling, which can be written as:

®)

where w denotes the target text sequence, v denotes the vision
features from the vision backbone, m denotes the current index of
the output target token and D denotes the dataset.

Therefore, the loss function of the dense captioning task can be
described as:

Lm0, w) = —E(4y,0)~plogPe (Wm|W<m, v)

4

The dense captioning task can help our model learn the correla-
tion between local regions and output contents. Additionally, the
generated dense captions can also be utilized to generate QA pairs
and can be adopted in pre-training tasks.

Lpc = Lym(0, wpe)

3.1.2 QA Sequential Generation. In the QA sequential generation
task, the model learns to generate condition-guided QA pairs in a
sequence-to-sequence manner.

Given a single set of bounding box coordinates (x1,y1, x2,y2),
same as the dense captioning task, we apply target embedding and
positional token prompt in the forward pass. Furthermore, to make
the generation process more controllable in both question type and

content, we add question types (What, How, Where, Binary, etc.) and
dense captions as part of the prompt into the language backbone.
In general, the prompt input in the QA sequential generation task
can be described in the form of [BOS] [question type] [ Task SEP]
[LOC] [Task SEP] [dense caption] [EOS], where [Task SEP] is
the special token to separate task prompts.

The target QA output sequence is in the form of [BOS] [ques-
tion] [QA SEP] [answer] [EOS], where [QA SEP] denotes the
special token to separate question and answer sequences. During
training, we randomly mask the question sequences with proba-
bility p and apply full mask to the answer sequences to get more
accurate answers during inference. The QA sequential generation
task is learned using a two-task approach. In the first task, the target
sequence is the randomly masked question to promote question
generation, while in the second task, the target sequence is the
full question and the fully masked answer, to keep consistent with
the inference stage, during which all question tokens are available
when generating answers. The two loss functions of the two tasks
can be denoted as:

'LQ = LMLM (9’ WQmasked) (5)
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La = Lyim(0, Concat(wg, wa,, . 1oa)) (6)
The loss function of the QA and DC generator model is the sum
of the above three loss functions:

LGen =Lpc+ Lo+ Ly (7)

During inference stage, our method utilizes top-K sampling to
generate dense captions and a two-stage sampling strategy for QA
generation. Specifically, in the two-stage sampling, the model first
uses top-K sampling to obtain abundant questions, and then adopts
greedy sampling to get relatively accurate answers. This strategy
can be easily applied in a batch, by detecting [QA SEP] tokens
among samples.

3.2 QA Filter Model

In order to discard inaccurate, vague, or meaningless QA pairs
generated by the QA and DC generator model, we employ a QA
filter model that is fine-tuned using the same dataset and initial
pre-trained weight as the generator model. The QA filter model
is trained as a common VQA model, taking images and questions
as input and the corresponding answers as output targets. During
inference stage, the QA filter model predicts answers given the
images and generated questions. We then discard QA pairs whose
generated answers from the generator model and predicted answers
from the filter model do not match exactly. This means that these
QA pairs may be of low quality and could have a detrimental effect
on training. During inference, we use beam-search sampling with
a beam size of b for answer prediction.

3.3 CC3M-QA-DC Dataset

We utilize our JADE method to generate QA and DC data derived
from the CC3M [44] dataset, and create a new dataset named CC3M-
QA-DC. We extracted object bounding box coordinates in advance
using a bottom-up object detection model [18]. The CC3M-QA-DC
dataset includes an average of about 30 QA pairs and 12 dense
captions per image, covering a wide range of question types (What,
How, Where, Binary, etc) and a rich corpus of captions. This dataset
can be used in combination with the original image-text datasets or
the re-generated image-caption datasets (for better performance).
Additional examples and detailed information about the dataset
can be found in Appendix A. Our CC3M-QA-DC dataset is publicly
available at https://github.com/johncaged/OPT_Questioner.

4 EXPERIMENTS

4.1 Implementation Details

4.1.1 The Generator Model and The Filter Model. The fundamental
model we use for JADE is VALOR[, [8]. The VALOR model em-
ploys ViT-L/14 initialized from CLIP [39] as the vision encoder, and
BERT};s¢ [21] as the text encoder as well as the multimodal decoder.
Firstly, it undergoes pre-training on VALOR-1M [8], WebVid-2.5M
[4], CC16M (which includes MSCOCO [31], Visual Genome [23],
SBU [36], CC3M [44] and CC12M [7]) and HD VILA 10M (randomly
sampled from the full HD VILA 100M [54] dataset), and then it is
fine-tuned on VG dataset [23] and a subset of the GQA dataset [16]
(for binary question generation).

The model is implemented using PyTorch and trained on 8 Tesla
A100 GPUs. During pre-training, the batch size is 1024 and the
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learning rate is 1e-4. While during fine-tuning, the batch size and
the learning rate are set to 256 and 2e-5, respectively.

4.1.2  Pre-Training Experiments. In the pre-training and down-
stream experiments, we use the same VALOR framework and re-
place different backbones. Unless otherwise specified, BERT} 4, is
used as language backbones. Detailed configuration is introduced
in Appendix B.

4.2 Pre-Training Experiments

We conduct experiments using various pre-training tasks, includ-
ing Image-Text Contrastive Learning (ITC), Image-Text Matching
(ITM), Image Captioning (IC), Image-Conditioned Masked Lan-
guage Modeling (IMLM), Visual Question Answering (VQA), and
Image Dense Captioning (DC). The IC, IMLM, VQA, and DC tasks
utilize unified Masked Language Modeling, with 60% of the target
tokens randomly masked in IC, IMLM, and DC, and 100% of the
target tokens (i.e., the answer tokens) masked in VQA. The IMLM
task uses bi-directional masking, while the IC and DC tasks use
causal masking. If not expressly stated, these pre-training tasks
share the same image input in one batch and calculate the sum of
their loss values as the final loss.

To evaluate our method and dataset, we use three downstream
tasks, including Visual Question Answering, Image-Text Retrieval,
and Image Captioning. More experiments that are not listed in
Section 4 can be found in Appendix C.

4.2.1  Visual Question Answering (VQA). VQA is a commonly used
downstream task to evaluate the fine-grained understanding, vision-
language alignment, and text generation capabilities of deep learn-
ing models. In this section, we choose the VQA v2 benchmark for
fine-tuning and evaluation. Other comparative and ablation studies
are also mainly based on it, which will be detailed in the following
sections.

The fine-tuning results for VQA v2 are shown in Table 1, where
results on test-dev are reported. Note that all the models show
considerable improvement in accuracy when integrating VQA and
DC into pre-training, which indicates the effectiveness of our CC3M-
QA-DC dataset and multi-task pre-training method. Specifically, the
accuracy increases by 1.64% and 4.17% in Swin-BT and ViT-B/16"
settings, respectively. Furthermore, it’s worth noting that in the ViT-
L/14% setting, the accuracy score still shows a significant increase
(1.83%), revealing the potential for improving larger multimodal
models using our CC3M-QA-DC dataset.

Zero-shot performance is essential to evaluate the generalization
capability of deep learning models in different data domains and
tasks. Therefore, we test the zero-shot scores and report the results
in Table 1. The results show that VQA and DC tasks both help
boost zero-shot performance given different backbones, especially
in the VQA task. It considerably empowers the model with VQA
capabilities without any task-specific learning.

4.2.2 Image-Text Retrieval. The image-text retrieval task evalu-
ates the global understanding and matching between images and
text. For this task, we use COCO retrieval and report the results
for comparison. As shown in Table 1, the retrieval scores (R@1,
R@5, and R@10) improve when VQA and DC tasks are added, and
the R@1 score reaches 59.8 in the ViT-L/14% setting, which is 1.2
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Table 1: Fine-tuning and zero-shot results on 3 common multimodal benchmarks, including COCO text-to-image retrieval,
COCO caption and VQA v2. Results on karpathy test split are reported in COCO retrieval and COCO caption and Acc. scores on
test-dev are reported in VQA v2. tand }denote weight initialized from ImageNet-22K [12] and CLIP [39], respectively. During
pre-training and fine-tuning, all the settings share the same configuration (including training steps) except for pre-training

tasks and backbones.

Model Pre-Training Settings COCO Retrieval COCO Caption VOQA v2
CC3M QA DC R@1 R@5 R@10 CIDEr SPICE Acc.

Fine-Tuning

v 50.0 76.2 85.0 122.62 21.97 70.64
Swin-B' [32]-224 v/ v 51.0 (+1.0)  77.1(+0.9)  85.6 (+0.6)  124.55 (+1.93)  22.32 (+0.35)  71.68 (+1.04)

vV ooV V' 517(17) 77.8(+1.6) 86.0(+1.0) 124.97 (+2.35) 22.43 (+0.46) 72.28 (+1.64)

v 36.7 66.0 77.2 118.43 21.46 66.79
ViT-B/16" [13] v v 39.4 (+2.7)  68.1(+2.1) 78.9 (+1.7)  120.55 (+2.12)  21.76 (+0.30)  69.90 (+3.11)

vV oV V' 411(+44) 69.5(+3.5) 80.1(+2.9) 121.16 (+2.73) 22.04 (+0.58) 70.96 (+4.17)

v 50.1 76.7 85.3 129.43 22.98 72.30
ViT-B/16* [39] v v 52.5(+2.4) 78.8(+2.1) 86.8 (+1.5) 130.32 (+0.89) 23.15 (+0.17) 74.14 (+1.84)

vV oV V' 532(3.1) 79.2(+2.5) 87.0 (+1.7) 129.49 (+0.06)  23.02 (+0.04)  74.57 (+2.27)

v 58.6 82.4 89.1 137.54 24.04 76.47
ViT-L/14% [39] v o/ 59.6 (+1.0)  83.2(+0.8) 89.8 (+0.7) 138.09 (+0.55) 24.20 (+0.16) 77.81 (+1.34)

vV oV V' 598(+1.2) 83.2(+0.8) 89.7(+0.6) 137.89(+0.35)  24.17 (+0.13)  78.30 (+1.83)
Zero-Shot

v 36.6 62.5 72.9 44.73 11.14 -
Swin-B' [32]-224 v/ 39.2 (+2.6) 655 (+3.0) 748 (+1.9) 47.27 (+2.54)  11.62 (+0.48) 44.01

vV o/ V' 412(+46) 67.2(+4.7) 76.4(+3.5) 49.24 (+4.51) 11.86 (+0.72)  45.58

v 22.8 47.7 60.2 40.87 10.37 -
ViT-B/16" [13] v o/ 267 (+3.9) 521 (+4.4) 63.9(+3.7) 43.85(+2.98)  10.97 (+0.60) 41.74

V o/ V' 206(+6.8) 553(+7.6) 66.7(+6.5) 45.45(+4.58) 11.16 (+0.79)  42.64

v 34.9 61.5 71.1 45.22 11.1 -
ViT-B/16* [39] v o/ 39.4 (+4.5) 659 (+4.4) 757 (+4.6)  49.32 (+4.1) 11.71 (+0.61) 44.94

vV oV YV 409(+6.0) 66.7(+5.2) 76.3(+5.2) 50.84 (+5.62) 12.12 (+1.02)  45.65

v 44.2 69.2 78.2 54.73 12.37 -
ViT-L/14% [39] v o/ 48.8 (+4.6) 727 (+35) 807 (+2.5) 56.63 (+1.90)  12.8 (+0.43) 49.92

vV o/ V' 196(+54) 73.7(+4.5) 81.2(+3.0) 58.29 (+3.56) 12.99 (+0.62)  50.04

higher than the baseline score. Furthermore, our CC3M-QA-DC
dataset, along with the original CC3M dataset, can help build better
zero-shot models in the image-text retrieval task without access to
downstream datasets, as indicated by the zero-shot results in Table
1.

4.2.3 Image Captioning. The image captioning task measures the
generation capability of deep learning models. For evaluation and
comparison, we employ the COCO caption benchmark. The fine-
tuning results are shown in Table 1. The results indicate minor but
consistent improvement in SPICE and CIDEr scores. These findings
reveal that integrating our VQA and DC tasks into pre-training
can improve VQA performance while keeping image captioning
performance slightly increasing, at least non-decreasing. This is a
significant finding that illuminates the development of stronger and

more general foundation models. Moreover, the zero-shot results,
displayed in Table 1, exhibit clear growth in SPICE and CIDEr
scores. This demonstrates a new way of improving multimodal
understanding and generation abilities of large pre-trained models.

4.2.4 Larger Pre-training Data. To further demonstrate the effec-
tiveness of our CC3M-QA-DC dataset and pre-training method, we
incorporate a larger dataset, CC12M [7], into pre-training and com-
pare it with previous settings. As shown in Table 2, where VQA v2
Acc. scores on test-dev are reported, even with 5 times the number
of image-text pairs, the accuracy in the CC15M (CC3M + CC12M)
setting is still 1.61 lower than that in the CC3M + QA + DC setting
with the same number of training steps.

In addition, we also simultaneously use both CC15M and CC3M-
QA-DC datasets for pre-training and achieve higher accuracy scores.
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Table 2: Fine-tuning results using larger pre-training data.
ViT-B/16* is used for experiment. All the results adopt the
same configuration (including training steps) except for pre-
training tasks and data. }denotes the QA and dense caption-
ing data is derived from CC3M instead of CC15M.

ccsM QAT DCT cCizM | Ace

72.30
V| 72,96 (+0.66)
74.14 (+1.84)
V| 7443 (+2.13)
v 74.57 (+2.27)
v v | 74.88 (+2.58)

NN NN NN
AN NN

Due to the imbalanced amount of images between the original-
caption-related tasks (i.e., ITM, ITC, IMLM, and IC) and our pro-
posed tasks (i.e., VQA and DC), we use a two-pass method in pre-
training. In the first pass, image-text pairs are randomly sampled
from the CC15M dataset for the original-caption-related tasks, and
in the second pass, VQA triplets and dense captions are randomly
sampled from our CC3M-QA-DC dataset for our proposed tasks.
The final loss for backward is the sum of the loss values from both
passes. The results show that our CC3M-QA-DC dataset combined
with an even larger image-text dataset can lead to better perfor-
mance, while generating more VQA and dense captioning data may
further improve the performance.

4.3 Comparison with State-of-the-Arts

In this section, we pre-train the VALORy, [8] model using the re-
captioned CC15M dataset as well as the CC3M-QA-DC dataset,
and fine-tune it on the three downstream tasks. It is worth noting
that we do not include the MSCOCO, VG, and SBU datasets in the
pre-training process to maintain consistency with our previous
settings and including these in-domain datasets may lead to further
improvements in the results.

VQA v2. As presented in Table 3, VALORy, + QADC achieves a
score of 80.12 and 80.16 on the test-dev and test-std benchmarks
respectively, outperforming the originally reported performance by
a large margin. Our generated CC3M-QA-DC dataset proves to be
effective in improving VQA performance and achieving competitive
results using a relatively small scale of data. This convincingly
demonstrates that applying model-generated QA and dense caption
data can boost the model’s performance.

COCO Retrieval. As shown in Table 4, VALOR; + QADC
achieves a R@1 score of 64.1, far above the previously reported
result involving about 2x pre-training data. Moreover, our method
and dataset reach competitive results compared with BLIP [26],
which adopts 9x pre-training data and similar model scale. This
reveals that the model can benefit from fine-grained pre-training
tasks and improve its understanding between vision and language
modalities.

COCO Caption. To test the generation capability of our method,
we fine-tune VALOR}, + QADC on the COCO caption benchmark
in two ways: cross-entropy fine-tuning and SCST [40] fine-tuning.

MM 23, October 29-November 3, 2023, Ottawa, ON, Canada.

Table 3: Performance comparison on VQA v2 benchmark.
Results on test-dev and test-std are reported.

Method #Params #Data ‘ Test-Dev  Test-Std
Closed-ended models

FLIP [30] 414M 400M | 7470 -
SimVLM [51] 1.4B 1.8B 80.03 80.34
Florence [60] 893M 900M 80.16 80.36
OFAjgrge [49] 472M 18M 80.30 80.50
CoCa [59] 2.1B 4.1B 82.30 82.30
BEIT-3 [50] 1.9B 21M 84.19  84.03
Open-ended generative models

ALBEF [27] 314M 20M 75.84 76.04
BLIP [26] 385M 129M 78.25 78.32
GIT [48] 0.7B 0.8B 78.60 78.80
VALOR;, [8] 486M 33.5M 78.46 78.62
VALORy + QADC  486M 14M 80.12 80.16

Table 4: Performance comparison on COCO text-to-image
retrieval benchmark. R@1, R@5 and R@10 scores on the
karpathy test split are reported. Underline denotes the sec-
ond best in the methods.

Method #Params #Data ‘ R@1 R@5 R@10
ALIGN [17] 820M 1.8B 59.9 833 89.8
ALBEF [27] 314M 20M 60.7 84.3 90.5
FILIP [56] 417M 340M 61.2 84.3 90.6
Florence [60] 893M 900M | 63.2 857 -

BLIP [26] 446M 129M | 65.1 86.3 91.8
VALOR; [8] 486M 335M | 614 844  90.9
VALOR; + QADC  486M 14M 641 854 91.2

The results are shown in Table 5. It can be seen from the table that
VALOR[, + QADC achieves competitive CIDEr score and SOTA
SPICE score, further indicating the effectiveness of our method and
dataset.

4.4 Ablation Studies

4.4.1 Ablation of Pre-training Tasks. One crucial assumption about
our generated dataset is that, large-scale silver data produced by
deep learning models are more helpful than small-scale gold data
annotated mannually. Therefore, in this section, we go deeper into
the role of our dataset in the pre-training process. As introduced
in the previous sections, the generator and the filter models are
derived from fine-tuning on the VG dataset. We replace our CC3M-
QA-DC dataset with the original VG-QA dataset and examine the
fine-tuning results, which are shown in Table 6. The images in the
VG dataset and the CC3M dataset differ in sources and amount.
Therefore, we apply the two-pass training strategy as described
in Section 4.2.4. Unless otherwise indicated, ViT-B/ 16% is used for
ablation studies.

It can be seen from the table that, our automatically generated
CC3M-QA-DC dataset (e) outperforms the VG dataset (d) even
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Table 5: Performance comparison on COCO caption bench-
mark. CIDEr and SPICE scores on the karpathy test split are
reported. Underline denotes the second best in the methods.
* denotes using SCST [40] fine-tuning.

Method #Params #Data | CIDEr SPICE
SimVLM [51] 1.4B 18B | 1433 254
CoCa [59] 2.1B 41B | 1436 247
LEMON [14] 675M  200M | 139.1 241
LEMON* [14] 675M  200M | 1455 255
GITL* [48] 347M  20M | 1446 254
BLIP [26] 446M  129M | 1367 -
Flamingo (80B) [2] 1.2B 2.3B 138.1 -
VALOR_* [8] 486M  335M | 152.5 257
VALOR, + QADC ~ 486M  14M | 139.0 244
VALOR[ + QADC*  486M  14M | 1477  26.7

Table 6: Ablation of Different Pre-training Tasks. * denotes
cleaner caption dataset generated using the method proposed
by BLIP [26]. VQA v2 Acc. scores on test-dev are reported.

CC3M CC3M* VG QA DC‘ Acc.

@ v 72.30

(b) v 73.86 (+1.56)
() v 73.88 (+1.58)
@ v v 73.77 (+1.47)
e v v 74.14 (+1.84)
6 v V| 73.64 (+1.34)
© v v V| 7457 (+2.27)
(h) v vV V| 75.06 (+2.76)

though the VG dataset provides extra image data, which well
supports our hypothesis. Through fine-tuning and re-generation,
higher scores can be achieved, proving the effectiveness of large-
scale model-produced datasets.

Another similar method, proposed by BLIP [26], utilizes a pre-
trained captioner to produce cleaner caption data, which can also
improve the model’s performance. Therefore, we follow this method
and manage to re-generate CC3M captions, whose result is shown
in Table 6. The results prove that applying our CC3M-QA-DC
dataset (g) can achieve higher accuracy score than the cleaned
CC3M dataset (b).

Furthermore, the CC3M-QA setting (c) outperforms the CC3M-
only setting (a), which involves 4 training objectives (ITM, ITC, IC
and IMLM) and thus occupies more computing resources. It proves
that simply applying our CC3M-QA-DC dataset to pre-training for
VQA downstream tasks can be a better choice than the original
CC3M dataset with caption-related training objectives.

Additionally, we explore the function of the dense captioning
data and task. As shown in Table 6, integrating the DC task using our
CC3M-QA-DC dataset (f) can also improve the VQA performance,
mainly due to the involvement of local details and more text corpus.

Zikang Liu et al.

Table 7: Ablation of filtering strategies. VQA v2 Acc. scores
on test-dev are reported.

Generator  Filter ‘ Zero-Shot Fine-Tune

v 44.01 73.82
v 41.46 74.05
v v 44.94 74.14

4.4.2  Ablation of Filtering Strategy. The filter model in our pro-
posed method has been shown to be effective in removing mean-
ingless or wrongly-answered QA pairs generated by the generator
model. In this section, we analyze the performance of the filter
model in more detail, and the results are presented in Table 7. We
observe that applying the filter model significantly improves the
quality of the generated QA pairs, as the accuracy scores are much
higher compared to the unfiltered setting.

Interestingly, we also observe that considering the answers gen-
erated by both the generator and the filter models can lead to a
slight increase in performance compared to using only the answers
predicted by the filter model. This suggests that the generator model
can still provide useful information in certain cases, even if it some-
times generates incorrect or low-quality answers.

Overall, these results demonstrate the importance of using a filter
model to improve the quality of generated QA pairs, and suggest
that combining the predictions of both the generator and the filter
models can lead to even better performance.

5 CONCLUSION

In this paper, we introduce a novel method called Joint QA and
DC Generation (JADE) to automatically produce VQA and dense
captioning data, by leveraging the ability of large pre-trained mul-
timodal models. Our method considerably decreases the labor cost
needed for the creation of VQA and DC datasets. Using JADE, we
generate a large-scale VQA and DC dataset derived from the CC3M
dataset, named CC3M-QA-DC. Dense experiments show that our
proposed method and dataset can greatly improve the models’ zero-
shot and fine-tuning performance on various understanding and
generation tasks, which contributes to the development of general-
ist and foundation models.

Our work reveals the broad prospects of Al generated data
(AIGD) and stronger generalist models without task-specific fine-
tuning. We believe that applying larger pre-trained multimodal
models and more carefully curated VQA and DC datasets for fine-
tuning can generate data of higher quality, thus further improving
the effectiveness of our proposed method. In the future, we’ll ex-
plore VideoQA data generation method and build a Questioner that
can generate both VQA and VideoQA datasets, which may equip
large pre-trained models with more possible capabilities.
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A INFORMATION ABOUT CC3M-QA-DC

A.1 Visualization Examples

Figure 3 shows some examples of our generated CC3M-QA-DC
dataset. It can be seen from the examples that our JADE method
can produce detailed questions and dense captions about given
images, which is beneficial to multimodal pre-training.

> e
= rs-_
Question Answer Dense Caption
how many pictures are on the wall ? two a brown wooden door
where are the white pillows ? on the bed a black stripe on a blanket
where is the light ? on the wall the wall is brown
what room is pictured ? bedroom white and brown blanket
how is the print on the carpet ? zebra a zebra print on the ground
how is the wall colored ? brown picture hanging on wall
how many lamps are there ? two a white blanket on the bed
where is the white blanket ? onthe bed || 2 Ped with a white blanket and brown
stripes
how is the door made ? of wood the door is wooden
who is present ? no one brown wood panel wall
what is on the floor ? arug a white comforter on bed
what kind of print is on the rug ? zebra white and gold blanket

Question Answer Dense Caption
what sport is the man playing ? cricket a ball in the air
how many balls are there ? one spectator in the stand
what is the main color of the ball ? white a baseball flying through the air
how is the weather ? sunny the shirt is grey
how are the man's knees positioned ? bent this is a person
what is the man swinging ? a bat a baseball in flight

what is the batter wearing on feet ? | white shoes a blue and white cricket bat

how many players are in the picture ? one the ball in the air
how is the shirt of the man in the front blue red wall behind the player
colored ?
what is on head ? helmet the bat is white
does the helmet look orange ? yes a pair of white shoes

does the man to the right of the player

) no
wear a jacket ?

Figure 3: Examples of our generated CC3M-QA-DC dataset.
Note that in the generation process, each dense caption is
related to multiple QA pairs and after the filtering process,
not all the dense captions have the related QA pairs kept.
Therefore, in order to show as many examples as possible,
the QA pairs and the dense captions are listed independently.

MM 23, October 29-November 3, 2023, Ottawa, ON, Canada.

A.2 Statistics

In this section, we collect statistics from several datasets, which
are displayed in table 8. Compared with other datasets, our CC3M-
QA-DC contains more QA and dense caption data, which is more
suitable for pre-training.

Table 8: Statistics of several VQA and DC datasets.

Dataset #Images #QA Pairs #Dense Captions
VQA v2 [3] 123K 3.7M -
OK-VQA [34] 123K 14K -

Visual Genome [23] 108K 1.7M 5.4M
CC3M-QA-DC 2.8M 89.2M 37.9M

Furthermore, we count the distribution of question types in our
CC3M-QA-DC dataset, which is shown in Figure 4.

what

how ~ Eyaa others
when
binary

why

where who

Figure 4: Distribution of question types in the CC3M-QA-DC
dataset.

B EXPERIMENT CONFIGURATION

B.1 The Generator and The Filter Model

VALOR [8] is used as the foundation model for JADE. During
pre-training, the batch size is 1024 and the learning rate is le-4,
while during fine-tuning, the batch size and the learning rate are
set to 256 and 2e-5, respectively. Unless otherwise specified, all the
pre-training process adopts 224 resolution and all the experiments
apply AdamW optimizer with $; = 0.9, f2 = 0.98 and eps = 1e — 8.
Linear warm-up and Ir-decay are used.

When fine-tuning the generator and the filter model, we choose
batch size, learning rate and resolution as 256, 2e-5 and 224, respec-
tively.

B.2 Pre-Traing Experiments
Pre-Training. The pre-training dataset involves CC3M [44],
CC12M [7] and our CC3M-QA-DC. We set the batch size, learning
rate, and training epochs to 512, le-4, and 10, respectively.

COCO Retrieval. On the COCO retrieval benchmark, we fine-
tune the models with a resolution of 384, a batch size of 256, a
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learning rate of 2e-5, and 50 training epochs. We use the ITM
method for testing.

COCO Caption. On the COCO caption benchmark, the models
are fine-tuned for 25 epochs with the resolution, batch size and
learning rate set to 384, 256 and 2e-5, respectively.

VQA v2. The models are fine-tuned with the resolution, batch
size, learning rate, and training epochs set to 392, 256, 2e-5, and
100, respectively.

B.3 SOTA Experiments

Most of the configurations in the SOTA experiments are consistent
with those in the pre-training experiments, except for the train-
ing datasets and VQA v2 training epochs. We adopt re-generated
CC12M dataset for pre-training and 200 training epochs in the VQA
v2 fine-tuning. In the VQA v2 experiments, the generation process
is fully open-ended, without any restrictions or tricks.

C MORE EXPERIMENTS
C.1 Ablation of Data Scale

In this section, we present the results of our experiments where
we compare the performance of different data scales by randomly
taking subsets of our generated CC3M-QA-DC dataset. As shown
in Figure 5, the accuracy score increases as the scale of the data
becomes larger, indicating that more generated VQA and dense
captioning data can lead to better performance. These results reveal
the potential that generating more VQA and DC data, based on
CC12M, LAION-400M [41] or even larger datasets, may contribute
to the development of generalist and foundation models, which can
perform better on zero-shot and fine-tuning tasks.
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Figure 5: Ablation of different data scales of images in the
CC3M-QA-DC dataset. Zero-shot and fine-tuning scores on
VQA v2 test-dev are reported.

C.2 Experiments on More Benchmarks

To further evaluate the generalization of our proposed method, we
carry out experiments on two more downstream benchmarks, i.e.,
Flickr30K [58] and NLVR2 [45].

C.2.1 Experiments on Flickr30K. Zero-shot and fine-tuning results
of pre-training experiments and comparison with other methods
are shown in Table 9 and Table 10, respectively.

Zikang Liu et al.

Table 9: Zero-shot and fine-tuning results on Flickr30K text-
to-image retrieval benchmark. ViT-B/16 initialized from
CLIP [39] is used for experiments.

Method R@1 R@5 R@10
Fine-Tuning

CC3M 76.1 93.8 96.9
CC3M + QADC  80.4 (+4.3) 95.3 (+1.5) 97.5 (+0.6)
Zero-Shot

CC3M 62.3 86.0 92.0

CC3M + QADC  69.6 (+7.3) 90.5 (+4.5) 94.6 (+2.6)

Table 10: Zero-shot and fine-tuning performance comparison
on Flickr30K text-to-image retrieval benchmark. ViT-L/14
initialized from CLIP [39] is used.

Method R@1 R@5 R@10
Fine-Tuning

FILIP [56] 87.1 977 99.1
Florence [60] 87.9 98.1 -
VALORy + QADC 89.1 98.0 99.3
Zero-Shot

Florence [60] 76.7 936 -
Flamingo [2] 79.5 953 979
CoCa [59] 804 957 977

VALORp + QADC 86.1 97.1 984

Table 11: Fine-tuning results on NLVR2. ViT-B/16 initialized
from CLIP [39] is used for experiments.

Method Dev Test

CC3M 77.04 77.24
CC3M + QADC  80.44 (+3.40) 80.41 (+3.17)

Table 12: Fine-tuning performance comparison on NLVR2.
ViT-L/14 initialized from CLIP [39] is used.

Method Dev  Test
BLIP [26] 822 822
SimVLM [51] 845 85.2

VALORy + QADC 86.1 86.6

C.2.2  Experiments on NLVR2. As for the NLVR2 benchmark, given
the triplet input, we separately encode the two image-text pairs
using VALOR [8], and two output cls features are concatenated
and then fed into a classification head to predict the label. Fine-
tuning results of pre-training experiments and comparison with
other methods are shown in Table 11 and Table 12, respectively.
Accuracy scores on the dev set and the public test set are reported.
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