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ABSTRACT
Contrastive Language-Image Pre-training (CLIP) starts to emerge
in many computer vision tasks and has achieved promising perfor-
mance. However, it remains underexplored whether CLIP can be
generalized to 3D hand pose estimation, as bridging text prompts
with pose-aware features presents significant challenges due to
the discrete nature of joint positions in 3D space. In this paper, we
make one of the first attempts to propose a novel 3D hand pose
estimator from monocular images, dubbed as CLIP-Hand3D, which
successfully bridges the gap between text prompts and irregular
detailed pose distribution. In particular, the distribution order of
hand joints in various 3D space directions is derived from pose
labels, forming corresponding text prompts that are subsequently
encoded into text representations. Simultaneously, 21 hand joints in
the 3D space are retrieved, and their spatial distribution (in x, y, and
z axes) is encoded to form pose-aware features. Subsequently, we
maximize semantic consistency for a pair of pose-text features fol-
lowing a CLIP-based contrastive learning paradigm. Furthermore,
a coarse-to-fine mesh regressor is designed, which is capable of
effectively querying joint-aware cues from the feature pyramid.
Extensive experiments on several public hand benchmarks show
that the proposed model attains a significantly faster inference
speed while achieving state-of-the-art performance compared to
methods utilizing the similar scale backbone. Code is available
at: https://anonymous.4open.science/r/CLIP_Hand_Demo-FD2B/
README.md.
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Figure 1: Comparison with other methods on the FreiHAND
test set. The vertical axis represents PA-PJPE, and the hori-
zontal axis represents inference speed (FPS). The proposed
method achieves the fastest speed and the best-performing
compared to methods using the similar-scale visual encoder.

1 INTRODUCTION
3D hand pose estimation, which aims to recover the position of
each hand joint from its corresponding monocular image, plays a
crucial role in computer vision and behavior understanding due to
its extensive application prospects in areas such as virtual reality
[46], human-computer interaction [43], gesture recognition [41]
and sign language translation [37]. Recently, deep convolutional
neural network (CNN)-based 3D hand pose estimators have made
remarkable progress, with a variety of network architectures be-
ing proposed, which can be broadly sorted into two categories:
sparse joints regression (i.e., pose recovery [3, 4, 13, 16, 17, 28,
31, 35, 58, 64]) and dense vertices regression (i.e. shape recovery
[1, 6, 7, 10, 15, 29, 30, 55, 60, 63]). However, the success of these
methods in achieving reliable 3D hand recovery or understanding
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From left to right, the joints are: 

index MCP[0], thumb fingertip[1], 

little PIP[2], middle DIP[3] and 

ring fingertip[4].

From top to bottom, the joints are: 

little PIP[2], thumb fingertip[1], 

ring fingertip[4], index MCP[0], 

middle DIP[3].

From near to far, the joints are: 

thumb fingertip[1], ring fingertip[4]

, middle DIP[3], index MCP[0], 

little PIP[2].
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Figure 2: A schematic diagram of text prompts generation.
By randomly selecting 5 joints from the 21 joints and gen-
erating corresponding text descriptions according to their
distribution order in the x, y, and z directions.

mainly depends on large-scale feature encoders, such as 8-Stacked
Hourglass [60], HRNet-w48 [30], or 2-Stacked ResNet50 [7], which
seriously affects the inference speed (as shown in Fig. 1).

To achieve faster inference while maintaining high accuracy,
researchers have made two main efforts. On the one hand, they
carefully design limited-scale visual feature encoders to capture
more complex feature details. However, their performance is still
unsatisfied due to their inherent defects, that is, they excel at han-
dling and extracting relatively easily recognizable visual semantic
representations. On the other hand, they pay more attention to
expanding datasets. Although, this method can achieve superior
performance, it is still quite difficult to obtain high-quality datasets
with ground truth. From the above discussions, one question arises
immediately: Is it possible to leverage high-level human language
knowledge to guide them and thereby encode more latent hand se-
mantic details? Recently, Radford et al. [39] introduced the CLIP
model to simultaneously input image-text pairs into corresponding
feature encoder modules and maximize the feature consistency
between them through contrastive learning. Zhang et al. [59], Xu
et al. [53], Guzhov et al. [18] adopted the learning pattern of CLIP
and subsequently proposed their respective models. Experimen-
tal results from these studies demonstrate that appropriate text
prompts can enrich visual representations, effectively transferring
high-level human knowledge into deep neural networks. However,
unlike image classification and segmentation, 3D hand pose and
mesh recovery face challenges in connecting recapitulative text
prompts with irregular joint-aware distributions due to the unique
nature of labels (discrete 3D joint positions).

To address this issue, we propose a novel and effective model,
dubbed as CLIP-Hand3D, as illustrated in Fig. 2, which for the
first time, successfully transfers discrete 3D joint positions into
appropriate text prompts and generates the corresponding text
representations. Specifically, we employ a 1D convolution layer
to encode the spatial order of joints along the x, y, and z direc-
tions respectively. Simultaneously, the shallow perceptual features
encoding the Lixel-map are preserved, and subsequently used for
matching their corresponding text representation by a contrastive
learning paradigm. In addition, we design a novel hand mesh esti-
mator, incorporating a series of Transformer layers with multi-head
self-attention mechanisms. Initially, it adopts a coarse-to-fine learn-
ing strategy, iteratively refining sparse-to-dense vertex positions
with an appropriate positional encoding scheme for the current

mesh structure. Then, from a global to local perspective, it effec-
tively queries detailed cues from the feature pyramid by utilizing
a joint-related feature projection module. Furthermore, our model
achieves a significant inference speed due to a relatively lightweight
visual encoder and a lower-dimensional feature space of the de-
signed regression head. As depicted in Fig. 1, our model is capable
of real-time inference, achieving a substantially higher FPS value
than all other state-of-the-art methods.

The main contributions of our paper are three-folds:
• A novel model is designed to estimate 3D hand pose and shape
from monocular RGB images, exhibiting a significantly faster
inference speed, while achieving the state-of-the-art accuracy
compared to methods using the similar scale visual encoders.

• A novel text feature generation module is designed, which suc-
cessfully connects irregular joint position labels and text prompts
for the first time, thereby achieving consistent matching between
pose-aware features and text representations.

• A novel Transformer mesh regressor is designed, which effec-
tively locates the spatial positional encodings among all sparse-to-
dense mesh vertices, thereby matching the inherited joint-related
features from the visual encoder.

2 RELATEDWORK
3D Sparse Joints Regression: In terms of network structure and
regression methods, sparse joints regression works can be divided
into several categories: forward kinematics-based regression [1,
35, 38, 60, 61, 65], inverse kinematics-based regression [55, 63],
graph neural network-based pose estimators [4, 6, 7, 11, 12, 15,
17, 25, 31], 2.5D heatmap-based pose estimators [23, 28, 34, 46],
and Transformer-based regression networks [16, 21, 22, 29, 30, 32].
Besides, many researcher have explored weakly supervised learning
from various perspectives [3, 8, 9, 36, 44, 48, 54, 62].

3D Dense Vertices Regression: Boukhayma et al. [1] were the
first to attempt to estimate 3D hand mesh by predicting MANO
model hyperparameters. Ge et al. [15] constructed a graph structure
for each vertex position of the hand mesh. Lin et al. successively
proposed Transformer-based structures [29] and a carefully de-
signed Mesh-Graphormer [30] for 3D hand mesh estimation. Tang
et al. [46] presented a model to align estimated hand shape with
input image semantics. Chen et al. proposed CMR [7] and Mobrcon
[6], which estimate 3D hand mesh in camera space and focus on
a mobile-friendly model, respectively. Moreover, Li et al. [27], Yu
et al. [57], Kim et al. [24], and Lee et al. [26] developed a series of
impressive models for regressing two hands’ 3D pose and shape
from monocular images.

CLIP-based methods: Radford et al. [39] proposed the CLIP
model, which associated textual and visual representations and
enabled reliable zero-shot inference. Xu et al. [52] introduced the
Video-CLIP model, aiming to unify video and textual representa-
tions through contrastive learning pretraining. Wang et al. [49]
proposed the first text and image-driven NeRF implementation
method. Tevet et al. [47] utilized the knowledge encapsulated in
CLIP to introduce a generative model. Zhang et al. [59] proposed
Point-CLIP, achieving alignment between point cloud encoding in
CLIP and 3D classification text. Xu et al. [53] explored zero-shot
transfer from textual supervision to semantic segmentation tasks.
Rao et al. [40] introduced Dense-CLIP, transforming the original
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Figure 3: A detailed illustration of our proposed pipeline. First, Text Feature Generation (see Sec. 3.1 for details) converts 3D
pose labels into text prompts and generate text features 𝐹𝑡 ; then, we input image 𝐼 into a CNN-based Pose Feature Generation
(see Sec. 3.2 for details) to extract pose-aware features 𝐹𝑝 and regress 3D joint positions 𝑃 ; next, we construct matrices𝑀𝑙 𝑓 ,𝑀𝑡𝑏 ,
and𝑀𝑛𝑓 through the Feature Matching (see Sec. 3.3 for details), and maximize the semantic consistency between pose-aware
features and their corresponding text representation; finally, we estimate reliable 3D hand mesh vertices 𝑉 through the Mesh
Regressor (see Sec. 3.4 for details).

image-text matching problem in CLIP into a pixel-text matching
problem. Although CLIP-based methods have achieved impressive
results in classification and segmentation tasks, no existing work has
explored the use of text representations to connect pose-aware fea-
tures. Besides, it is a challenging task to transform irregular joint
positions into appropriate text prompts, particularly as it differs from
the generalized words used for character class descriptions.

3 METHOD
As discussed earlier, we are dedicated to building a bridge between
text prompts and pose-aware features, thereby introducing high-
level human knowledge to drive deep neural networks to encode
more semantic details. As depicted in Fig. 3, we provide a complete
pipeline and network structure containing various modules and
gradually introduce the implementation details of each sub-module
in the following sections.

3.1 Text Feature Generation
Text Prompts Generation: Unlike tasks such as image classifi-
cation and segmentation, generating corresponding text prompts
from pose labels is not a straightforward process. As shown in Fig. 2,
we propose a method for converting pose labels into text prompts.
Firstly, we randomly sample 𝑁 keypoints from the 𝐾 = 21 hand
keypoints, with 𝑁 ≤ 𝐾 . Then, we slice the pose label according to
the indices of the 𝑁 keypoints in the 𝐾 hand keypoints. For the
distribution of 𝑁 hand keypoints along the 𝑥-axis, we arrange them
in ascending order and generate a set 𝑁𝑥 describing the sampled
points in the 𝑥-direction according to the index order. For a specific
hand keypoint i, 𝑁𝑥𝑖 belongs to 𝑁𝑥 . Since there is a high semantic
consistency between the image and pose label, a text prefix "From
left to right," can be added to describe the order of hand keypoints
in the 𝑥-direction.

Similarly, we obtain the sets 𝑁𝑦 and 𝑁𝑧 for the sampled points
in the 𝑦 and 𝑧 directions, respectively, and generate corresponding
description prefixes "From top to bottom," and "From near to far,".

As shown in Fig. 2, assuming 5 keypoints are selected from the 21
keypoints, namely index MCP, thumb fingertip, little PIP, middle
DIP, and ring fingertip, we can generate three corresponding text
prompts𝑊𝑥 ,𝑊𝑦 , and𝑊𝑧 . Where𝑊𝑥 : "From left to right, the joints
are index MCP, thumb fingertip, little PIP, middle DIP, and ring
fingertip";𝑊𝑦 : "From top to bottom, the joints are little PIP, thumb
fingertip, ring fingertip, index MCP, and middle DIP";𝑊𝑧 : "From
near to far, the joints are thumb fingertip, ring fingertip, middle
DIP, index MCP, and little PIP."

Text Feature Encoding: Given text prompts𝑊𝑥 ,𝑊𝑦 , and𝑊𝑧 ,
we first employ a similar processing approach to the CLIP [39]
model for tokenization, resulting in 𝑇𝑥 , 𝑇𝑦 , and 𝑇𝑧 . Specifically,
input text prompts are tokenized into a list of tokens using a mini-
batch strategy. Next, with𝑇𝑥 ,𝑇𝑦 , and𝑇𝑧 provided, we feed them into
a pre-trained CLIP model to extract features 𝐹𝑐𝑥 , 𝐹𝑐𝑦 , and 𝐹𝑐𝑧 , and
further put them into their corresponding attention layer to get text
representations 𝐹𝑡𝑥 , 𝐹𝑡𝑦 , and 𝐹𝑡𝑧 , which describe the spatial order
of joints in each dimension. To adapt the dimensionality of latent
joint feature encodings, and further refine the specific downstream
task, we introduce several Transformer modules with multi-head
self-attention mechanisms to aid in consistently matching visual
features and text representations. Formally, we have:

𝐹𝑡 ⇒


𝐹𝑡𝑥 = Φ𝑥 (𝐹𝑐 (𝑇𝑥 )),𝑇𝑥 = 𝑇𝑜𝑘𝑒𝑛(𝑊𝑥 ),
𝐹𝑡𝑦 = Φ𝑦 (𝐹𝑐 (𝑇𝑦)),𝑇𝑦 = 𝑇𝑜𝑘𝑒𝑛(𝑊𝑦),
𝐹𝑡𝑧 = Φ𝑧 (𝐹𝑐 (𝑇𝑧)),𝑇𝑧 = 𝑇𝑜𝑘𝑒𝑛(𝑊𝑧),

(1)

where Φ𝑥 , Φ𝑦 , and Φ𝑧 represent text encoders based on the Trans-
former structure; 𝐹𝑐 denotes the pre-trained CLIP model; and
𝑇𝑜𝑘𝑒𝑛 means tokenizing the text prompts.

3.2 Pose Feature Generation
Visual Encoder: Following previous methods [7, 25, 46], we em-
ploy the original version of ResNet50 [20] as the Visual Encoder
to encode the input monocular RGB image 𝐼 ∈ 𝑅 (224,224,3) . Given
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From left to right, 
the key points are: 
wrist, …, thumb
fingertip, middle
MCP, ring MCP, …,
and ring fingertip.

ID: 1

From left to right, the 
key points are: ring 
fingertip, …, middle 
DIP, …, ring MCP, …, 
middle MCP, …, wrist, 
thumb DIP, … and 
thumb fingertip.

ID: 3

From left to right, the 
key points are: …, ring 
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key points are: thumb 
fingertip, thumb DIP, …, 
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middle DIP, ring DIP and 
middle fingertip.

ID: 5
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the key points are: 
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DIP, ring MCP, …

ID: 3
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Figure 4: A visualization of the logit latent matrix. The left subplot shows the text-pose feature pairs’ matching result in the
"left-to-right" direction in one batch; the right subplot shows the feature pairs’ matching result in the "top-to-bottom" direction
in another batch.

the input monocular image 𝐼 , the Visual Encoder yields the fol-
lowing features: shallow features 𝐹0 and feature pyramids 𝐹1, 𝐹2,
𝐹3, and 𝐹4. Specifically, 𝐹0 ∈ 𝑅 (56,56,56) retains the shallow repre-
sentation, thereby preserving rich high-resolution hand semantics
to facilitate refined hand vertices prediction. The feature pyramid
(𝐹1 ∈ 𝑅 (256,56,56) , 𝐹2 ∈ 𝑅 (512,28,28) , 𝐹3 ∈ 𝑅 (1024,14,14) ) offers a la-
tent distribution from global to local, which corresponds to the
coarse-to-fine mesh feature sampling in the Mesh Regressor mod-
ule. 𝐹4 ∈ 𝑅 (2048,8,8) is passed to the Joint Regressor module to
output joint spatial positions in the x, y, and z directions by feature
upsampling (de-convolution layer).

Joint Regressor: Given the feature encoding 𝐹4 produced by
the Visual Encoder, the Joint Regressor module generates spatial
positions of hand joints (in uvd space). Firstly, we employ a deconvo-
lution layer (kernel-size=4, stride=2) to perform feature upsampling
on 𝐹4, obtaining the feature 𝐹𝑙 , and subsequently reducing its num-
ber of channels from 1024 to 256. Following the Lixel-Map-based
approach proposed by [34, 46], we unfold the feature 𝐹𝑙 along the
specified dimension to obtain feature 𝐹𝑙𝑥 , 𝐹𝑙𝑦, 𝐹𝑙𝑧 , and further apply
1D convolution to obtain the latent features 𝐹𝑝 : {𝐹𝑝𝑥 , 𝐹𝑝𝑦, 𝐹𝑝𝑧}.
Then, we design corresponding 1D softmax layers according to
the heatmap size to capture the maximum response points of hand
joints 𝑃 : {𝑃𝑥 , 𝑃𝑦, 𝑃𝑧 } in the x, y, and z directions, respectively. By
identifying the position indices of the maximum response points in
the feature map and using the concatenate operation, the Joint uvd
Regressor module outputs the 3D hand joint positions 𝑃 ∈ 𝑅 (21,3)
in uvd space. Formally, we have:

𝑃 ⇒


𝑃𝑥 = 𝐴𝑟𝑔𝑚𝑎𝑥 (𝑆𝑜 𝑓 𝑡 (𝐹𝑝𝑥 )), 𝐹𝑝𝑥 = 𝐶𝑜𝑛𝑣1𝑑 (𝐹𝑙𝑥 ),
𝑃𝑦 = 𝐴𝑟𝑔𝑚𝑎𝑥 (𝑆𝑜 𝑓 𝑡 (𝐹𝑝𝑦)), 𝐹𝑝𝑦 = 𝐶𝑜𝑛𝑣1𝑑 (𝐹𝑙𝑦),
𝑃𝑧 = 𝐴𝑟𝑔𝑚𝑎𝑥 (𝑆𝑜 𝑓 𝑡 (𝐹𝑝𝑧)), 𝐹𝑝𝑧 = 𝐶𝑜𝑛𝑣1𝑑∗ (𝐹𝑙𝑧),

(2)

where 𝐶𝑜𝑛𝑣1𝑑 means 1D-Convolution layer; ∗ denotes multi-layer
structure; 𝑆𝑜 𝑓 𝑡 representes 1D-Softmax activation layer; 𝐴𝑟𝑔𝑚𝑎𝑥
means the index of the maximum value.

3.3 Feature Matching
Building on several prior CLIP-based works, we pass images and
texts through their respective feature encoders to obtain pose-aware
features 𝐹𝑝 and text representations 𝐹𝑡 . To enrich the pose-aware
features using text representations, we together project 𝐹𝑝 and 𝐹𝑡
into a common feature embedding space and compute the feature

similarity between them. Employing a mini-batch optimization
strategy with a batch size of B, we construct the logit latent matrix
M of shape [3, B, B], treating all matched pose-text pairs as posi-
tive samples and the remaining non-matching pose-text pairs as
negative samples. Intuitively, all values on the diagonal of the logit
latent matrix represent the B pose-text pairs in the current batch.
Formally, we have: 

𝑀𝑙𝑟 = 𝜏𝑥𝐹𝑝𝑥 · 𝐹𝑇𝑡𝑥 ,

𝑀𝑡𝑏 = 𝜏𝑦𝐹𝑝𝑦 · 𝐹𝑇𝑡𝑦,

𝑀𝑛𝑓 = 𝜏𝑧𝐹𝑝𝑧 · 𝐹𝑇𝑡𝑧 ,

(3)

where𝑀𝑙𝑟 ,𝑀𝑡𝑏 , and𝑀𝑛𝑓 represent three different logit latent ma-
trices and 𝑀 = {𝑀𝑙𝑟 , 𝑀𝑡𝑏 , 𝑀𝑛𝑓 }; 𝜏𝑥 , 𝜏𝑦 , and 𝜏𝑧 denote the corre-
sponding learnable temperature parameters to scale the logit matrix
respectively; 𝐹∗ stands for visual or text feature representations
after L2 regularization; · represents matrix multiplication; and 𝑇
indicates matrix transpose.

The left sub-figure in Fig. 4 presents a matching result of visual
and text representations in the "horizontal" direction for a batch
containing 8 samples, where the green elements on the diagonal
represent positive samples and the blue elements denote negative
samples. Specifically, we use yellow and red boxes to display two
image-text matching pairs for detailed illustration. On one hand,
images with ID 3 and ID 6 have a high matching similarity. This
is because their hand joint distributions exhibit high consistency
when viewed from the "From left to right" perspective ("ring fin-
gertip, middle DIP, ring MCP, middle MCP, wrist, thumb DIP, and
thumb fingertip"). We highlight their corresponding text prompts
in red. On the other hand, images with ID 1 and ID 3 have a lower
pose-aware features similarity.

The right sub-figure in Fig. 4 shows a matching result of visual
and text representations in the "vertical" direction for another batch
containing 8 samples, where the yellow elements on the diagonal
represent positive samples, and the black elements denote negative
samples. Intuitively, image samples with ID 1 and ID 5 have high
similarity in pose distribution from top to bottom, while samples
with ID 3 and ID 5 have low similarity. The hands in images with
ID 1 and ID 5 are both pointing "downward" while the hand in the
image with ID 3 appears to be pointing "upward".
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3.4 Mesh Regressor
To forward the Joint uvd into the Mesh Regressor module, we
first generate the corresponding heatmap 𝐻𝑝 according to the pre-
defined heatmap size. Then, we concatenate the 𝐹0 encoding the
shallow semantic information of the hand with heatmap 𝐻𝑝 along
the specified dimension, and after using the CNN and MLP layer to
adjust the number of channels and feature dimensions. Finally, we
obtain the 3D hand shape feature encoding 𝐹 𝐽 .

Mesh Regressor Layer: As depicted in Fig. 3, we designed a
mesh feature refinement network with a coarse-to-fine approach,
implemented in the order of [256, 128, 64, 32] to refine mesh fea-
tures. Additionally, we devised a mesh node sampling network with
a sparse-to-dense progression, increasing the number of hand mesh
points in the order of [21, 98, 389, 778]. We employed the upsam-
pling network based on GNN to expand the number of nodes while
utilizing an MLP layer to adjust the feature dimensions. Following
each feature dimension adjustment, we introduce a Transformer-
based multi-head attention regression network to enhance the mesh
features and enable self-attention interaction at that layer. Notably,
the Transformer-based regressor maintains the original node’s posi-
tional encoding, as it does not alter the number of nodes or feature
dimensions at each layer. Finally, we designed an MLP layer for
regressing and predicting the spatial coordinates of the mesh 𝑉 .

Feature Pyramid Projection: To fully harness the hand feature
encoding in the Visual Encoder, we designed a Joint-based Feature
Pyramid Projection module. As illustrated in Fig. 3, we project the
features of each level in the Feature Pyramid according to the Joint
uvd position. Specifically, we adopt a structure similar to U-Net
[42], linking the mesh feature encodings at each level with the
corresponding visual representation, ensuring the consistency of
feature encoding levels. For instance, when considering the 𝐹1 in
the feature pyramid, we project the joint uvd position to obtain the
corresponding feature sampling 𝐹1𝐽 , and then pass it to the feature
encoding representing the dense hand mesh. High-resolution fea-
ture maps possess a smaller spatial receptive field, which aids in
preserving more shallow hand semantics to assist the correspond-
ing hand mesh feature encoding in accurately determining the hand
mesh point positions.

3.5 Loss Functions
We mainly applied the following loss functions:

1) Supervised Learning Loss: For 3D hand pose and shape
recovery from monocular RGB image, we employ 𝐿1 norm for 3D
hand joint loss L𝑃 and vertices loss L𝑉 . Formally, we have:

L𝑃 =

𝐽∑︁
𝑖=1

����𝑃 (𝑔𝑡 )
𝑖

− 𝑃𝑖
����
1,L𝑉 =

𝐾∑︁
𝑖=1

����𝑉 (𝑔𝑡 )
𝑖

−𝑉𝑖
����
1, (4)

where 𝑃𝑖 and 𝑃
(𝑔𝑡 )
𝑖

represent the predicted 3D hand pose and its
ground truth, respectively; 𝑉𝑖 and 𝑉

(𝑔𝑡 )
𝑖

represent the predicted
hand vertices and their ground truth, respectively.

2) Norm Loss: To maintain the stability of predicted hand mesh
surface normals and vertices during the training process, we applied

normal loss L𝑁 and vertex loss L𝐸 .

L𝑁 =
∑︁
𝑐∈𝐶

∑︁
(𝑖, 𝑗 )⊂𝐶

���� 𝑉𝑖 −𝑉𝑗
| |𝑉𝑖 −𝑉𝑗 | |2

· 𝑛 (𝑔𝑡 )𝑐

����
1
,

L𝐸 =
∑︁
𝑐∈𝐶

∑︁
(𝑖, 𝑗 )⊂𝐶

��| |𝑉𝑖 −𝑉𝑗 | |2 − ||𝑉𝑔𝑡
𝑖

−𝑉𝑔𝑡
𝑗
| |2
��
1,

(5)

where 𝑉 and 𝐶 represent the predicted vertices and its correspond-
ing triangular faces respectively, 𝑛 (𝑔𝑡 )𝑐 denotes unit normal vector
for each face 𝑐 ∈ 𝐶 , 𝑉 (𝑔𝑡 ) means hand vertices ground-truth.

3) Consistency Loss: Following several self-supervision related
works, we applied 2D and 3D consistency losses (L𝐶2𝑑 and L𝐶3𝑑 )
to supervise the predicted pose and vertices.

L𝐶2𝑑 =
����𝐴𝑓 𝑓 (𝑃1) − 𝑃2����1,L𝐶2𝑑 =

����𝑅𝑜𝑡 (𝑉1) −𝑉2����1, (6)
where 𝑉1, 𝑃1 and 𝑉2, 𝑃2 represent the predicted hand vertices and
joint uvd positions under different viewpoints, and 𝑅𝑜𝑡 and 𝐴𝑓 𝑓
denote the rotation and affine transformation matrix.

4) CLIP Loss: To maximize the values distributed along the
diagonal of the logit matrix, thereby achieving a match between
text and pose-aware features, we introduce CLIP loss L𝐶𝐿𝐼𝑃 to
supervise a batch containing B image-text pairs. Formally, we have:

L𝐶𝐿𝐼𝑃∗ =
(
− 1
𝐵

𝐵∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝐹𝑝∗ · 𝐹𝑡∗/𝜏∗)∑𝐵
𝑗=1 𝑒𝑥𝑝 (𝐹𝑝∗ · 𝐹𝑡∗/𝜏∗)

)
+
(
− 1
𝐵

𝐵∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝐹𝑡∗ · 𝐹𝑝∗/𝜏∗)∑𝐵
𝑗=1 𝑒𝑥𝑝 (𝐹𝑡∗ · 𝐹𝑝∗/𝜏∗)

)
,

(7)

where L𝐶𝐿𝐼𝑃∗ describes the consistency loss of pose-text pairs
along the current coordinate axis direction; 𝐹𝑙∗ and 𝐹𝑡∗ represent
the corresponding normalized pose representation and text feature
encoding, respectively; Subsequently, we add the CLIP losses in
three directions (x, y, z) and compute the average to obtainL𝐶𝐿𝐼𝑃 =

1
𝑙𝑒𝑛 (𝑆 )

∑
∗∈𝑆 L𝐶𝐿𝐼𝑃∗, 𝑆 = {𝑥,𝑦, 𝑧}.

Finally, we train the whole framework to optimize all the learn-
able parameters in an end-to-end manner. Formally, we have:

L = 𝛼1 (L𝑃+L𝑉 )+𝛼2 (L𝑁 +L𝐸 )+𝛼3 (L𝐶2𝑑+L𝐶3𝑑 )+𝛼4L𝐶𝐿𝐼𝑃 , (8)

where the hyper-parameters 𝛼1, 𝛼2, 𝛼3 and 𝛼4 are balance factors
to weight the losses, where 𝛼1 = 1.0, 𝛼2 = 0.05, 𝛼3 = 0.1 and 𝛼4 = 0.1.

4 EXPERIMENTS
4.1 Datasets & Metrics
FreiHAND:The FreiHAND dataset (FHD) [65] contains 130,240
training images from 32 characters of different genders and ethnic
backgrounds, holding either nothing or various standard daily ne-
cessities. The test set in this dataset includes 3,960 samples collected
from specific outdoor and office scenes.

RHD:The RHD [64] dataset is a synthetic dataset, which poses a
significant challenge due to the complex texture-based backgrounds,
rich hand gestures, and severe self-occlusion present in the hand
objects. Following the same settings with the previous methods,
we used 41,258 images for training and 2,728 images for testing.

STB:The Stereo Hand Pose Tracking Benchmark (STB) [58] is a
real-world dataset. Following the same settings with the previous
methods, we use STB-SK subset includes 15,000 RGB images for
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Table 1: Quantitative evaluation. Comparison with other SOTA methods on the FreiHAND [65] test set. We evaluated them by
PA-PJPE, PA-PVPE, F@5/15mm and FPS metrics. We use bold font to indicate the best performance, and use "_" to represent the
second-best performance.

Method Backbone PA-PJPE ↓ PA-PVPE ↓ F@5mm ↑ F@15mm ↑ FPS ↑
MANO CNN (ICCV 19) [65] ResNet50 10.9 11.0 0.516 0.934 -
Hasson et al. (CVPR 19) [19] ResNet18 13.3 13.3 0.429 0.907 20
Boukh.et al. (CVPR 19) [1] ResNet34 13.2 35.0 0.427 0.894 11
Kulon et al. (CVPR 20) [25] ResNet50 8.4 8.6 0.614 0.966 60
I2L-MeshNet (ECCV 20) [34] ResNet50 7.4 7.6 0.681 0.973 33
I2UV-HandNet (ICCV 21) [5] ResNet50 7.2 7.4 0.682 0.973 -

HandAR (ICCV 21) [46] ResNet50 6.7 6.7 0.724 0.981 39
CycleHand (ACM MM 22) [14] ResNet50 8.3 8.3 0.631 0.967 -

Ours. ResNet50 6.6 6.7 0.728 0.981 77

Pose2Mesh (ECCV 20) [11] HRNet+Linear 7.4 7.6 0.683 0.973 22
MANO GCN (ICME 21) [50] HRNet-w48 9.5 9.5 0.579 0.950 -

CMR (CVPR 21) [7] Stack-ResNet50 6.9 7.0 0.715 0.977 30
METRO (ICCV 21) [29] HRNet-w48 6.7 6.8 0.717 0.981 4
HIU (ICCV 21) [60] Stack-Hourglass 7.1 7.3 0.699 0.974 9

MobRecon (CVPR 22) [6] Stack-ResNet50 6.1 6.2 0.760 0.984 45
Fast-METRO (ECCV 22) [10] HRNet-w48 6.5 - - 0.982 14

MeshGraphormer (ICCV 21) [30] HRNet-w48 5.9 6.0 0.765 0.987 4

training and another 3,000 RGB images for testing, all of which
provide accurate hand keypoint annotations.

Real-world:The real-world dataset [15] consists of two parts,
the training set and the test set. The training set contains over
300,000 synthesized hand images and corresponding labels, while
the test set provides more than 500 real-world hand images.

We use the following metrics to quantitatively evaluate model
performance: PJPE (per joint position error), PVPE (per vertice
position error), PA-PJPE, PA-PVPE,Median PJPE, 3D PCK,AUC
(area under PCK curve), F@5mm, and F@15mm.

4.2 Implementation Details
During the training and inference stages, we use PyTorch as the
framework to conduct all experiments. We train our full model
on a single NVIDIA RTX 3090 and a single NVIDIA RTX 2080Ti
for image inference. Initially, we pre-train the weight parameters
of the Visual Encoder (ResNet50) and Joint uvd Regressor. Before
this, we load the ImageNet pre-trained weight parameters into
the Visual Encoder. Subsequently, we fine-tune the entire network
parameters in an end-to-end optimization manner. The specific
process involves using the AdamW optimizer [33] with a mini-
batch size of 48 and training for 200 epochs. The initial learning
rate is set at 1e-3, and the learning rate schedule follows a fixed-step
decay strategy, where the learning rate is reduced to 0.25 times
the previous rate every 50 epochs. Although our proposed model
contains several MLP layers, the feature dimensions of the designed
fully connected layers are relatively low (e.g., 128, 64, 32), which
lays the foundation for fast inference. On a single NVIDIA RTX
2080Ti, the inference speed surpasses 77 FPS; on a single NVIDIA
RTX 3090, the inference speed achieves 120 FPS.

4.3 Quantitative and Qualitative Results
4.3.1 Quantitative Results. For the FreiHAND dataset, we primar-
ily conduct a detailed comparison with the current state-of-the-art
(SOTA) methods. As shown in Table. 1, among methods that employ
the original ResNet50 as the visual encoder (MANO CNN [65], Ku-
lon et al. [25], I2L-MeshNet [34], I2UV-HandNet [5], HandAR [46],

Table 2: Quantitative evaluation. Comparison with other
SOTA methods on the RHD and STB test sets. We use bold
font to indicate the best performance, and use "_" to repre-
sent the second-best performance.

Dataset STB [58] RHD [64]

Evaluation AUC ↑ PJPE↓ AUC ↑ PJPE↓
Zimmer. et al. (CVPR 2017) [64] 0.948 - 0.670 30.42
Spurr et al. (CVPR 2018) [45] 0.983 8.56 0.849 19.73
Cai et al. (CVPR 2018) [3] 0.994 - 0.887 -
Ge et al. (CVPR 2019) [15] 0.998 6.37 0.920 -

Boukh. et al. (CVPR 2019) [1] - 9.76 - -
Zhang et al. (ICCV 2019) [61] 0.995 - 0.901 -
Yang et al. (CVPR 2019) [56] 0.996 7.05 0.943 13.14
Zhou et al. (CVPR 2020) [63] 0.898 - 0.856 -
Wu et al. (ACM MM 2020) [51] 0.999 - 0.929 -
Kulon et al. (CVPR 2020) [25] - - 0.956 10.92
Yang et al. (BMVC 2020) [55] 0.997 10.05 0.951 12.76
Cai et al. (TPAMI 2020) [2] 0.996 7.10 0.915 -

Zhang et al. (ACM MM 2020) [62] 0.996 - - -
Li et al. (AAAI 2021) [28] 0.996 - 0.960 10.65
Chen et al. (CVPR 2021) [7] - - 0.949 -
Zhang et al. (ICCV 2021) [60] 0.995 - 0.964 -

CycleHand (ACM MM 2022) [14] - 7.94 - -

Ours 0.999 6.35 0.965 10.58

and CycleHand [14]), our approach achieves SOTA performance
and inference speed (compared to the fastest-performing method
by Kulon et al., F@5: 0.614 vs. 0.728, FPS: 60 vs. 77; compared to
the best-performing method by HandAR, F@5: 0.724 vs. 0.728, FPS:
39 vs. 77). It can also be found that, when compared with SOTA
models with large-scale visual encoders (MeshGraphormer [30],
and MobRecon [6]), our method can still achieve speed compaction
(FPS: 4, 45 vs. 77) with competitive performance (6.1, 5.9 vs. 6.6mm)
Visual encoders with relatively large complexity (Stack-ResNet50
[6, 7], HRNet-w48 [10, 29, 30, 50], N-Stacked Hourglass [16, 60])
can encode more semantic details of hand image yet can bring
trouble for the faster network inference. Besides, as the scale of
the visual encoder model increases, our model can also achieve the
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Figure 5: Qualitative evaluation results. We randomly selected some samples from the testset of FreiHAND [65], STB [58], RHD
[64] and real-world [15] datasets, and showed their 3D hand pose and shape in one camera view.

Left to Right Top to Bottom

Figure 6: Qualitative evaluation results. A mini-batch with 8 images: assessing textual descriptions via logits latent matrices
"Left to Right" and "Top to Bottom".

accuracy of state-of-the-art performance. Note that some methods’
performance using supplementary or mixed datasets is not included
in our statistics.

In addition, to further validate the superior performance of the
proposed method, as shown in Table. 2, we compared the model
comparisons on the STB and RHD datasets with several other meth-
ods. The STB dataset contains a relatively limited distribution of
hand poses, making it easier to fit. In the 20-50mm AUC curve eval-
uation, our method achieved SOTA performance (AUC: 0.999, PJPE:
6.35mm). On the other hand, the RHD dataset is a synthetic dataset,
with samples featuring highly complex textures and severe self-
occlusions. Compared to the currently the best-performing methods
proposed by Zhang et al. [60] and Li et al. [28], our proposed model
achieved the highest AUC value (0.960, 0.964 vs. 0.965) and the
lowest PJPE (10.65mm vs. 10.58mm). For the method proposed by
Kulon et al. [25], which uses the same visual encoder, our model still
has a certain advantage (FPS: 60 vs. 77, AUC: 0.956 vs. 0.965, PJPE:
10.92 vs. 10.58). Note that the methods that use supplementary
datasets were not included in the statistics.

4.3.2 Qualitative Results. As illustrated in Fig. 5, we randomly
selected over a dozen test images from the FreiHAND [65], STB [58],
RHD [64] and real-world [15] datasets and employed the proposed
method to infer reliable 3D hand poses and shapes. These images

Table 3: Ablation Study. Comparison model performance on
the FreiHAND validation set under different structures.

Structures
Matrices AUC(0-30mm) PJPE Median PJPE PA-PJPE

baseline 0.758 15.46 12.78 7.47
w/o CLIP 0.763 14.86 12.27 7.29

w/o Feature Projection 0.769 14.56 12.01 7.11
w/o Sparse-to-dense 0.773 14.21 11.80 6.97

Full model. 0.776 13.95 11.58 6.88

exhibit significant variations in hand poses, different degrees of
self-occlusion, and even some hand-object interactions. Intuitively,
our model can estimate reliable 3D hand poses and corresponding
mesh vertices distributions when faced with complex hand images.
Additionally, to further qualitatively demonstrate the role of CLIP,
as shown in Fig. 6, we provide the connection matrices between text
representations and visual features in a mini-batch containing 8
images. Whether in the "Left to Right" or "Top to Bottom" logit latent
matrices, the regular distribution of highlighted values along the
diagonal, which intuitively demonstrates that the proposed method
can semantically connect text prompts and pose space distributions.
Of course, besides the elements on the matrix diagonal, there are
several "highlights" in the matrix, representing several text-image
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Figure 7: 3DPCKcurve comparison. Itmeasures the inference
performance of network structures with different configura-
tions on the FreiHAND validation set.

RGB Image w/o CLIP with CLIPRGB Image w/o CLIP with CLIP

Figure 8: Ablation Study. Comparing the pose estimation
results with or w/o CLIP module.

pairs in a mini-batch that conform to the general distribution in
the respective direction.

4.4 Ablation Study
Ablation Study of different structures: In Table. 3, we show the
evaluation results of five methods with different model constraints
on the FreiHAND validation set. The most significant performance
gap is between the method "w/o CLIP loss" and the "Full mode"
(AUC: 0.763 vs. 0.776, PA-PJPE: 7.29 vs. 6.88); 2) The method "w/o
Feature Projection" is weaker than the "Full model" in all evalua-
tion metrics (AUC: 0.769 vs. 0.776, PA-PJPE: 7.11 vs. 6.88); 3) The
performance of model "w/o Sparse-to-dense" structure (using a
coarse-to-fine feature refinement strategy) is slightly behind the
"Full model" (AUC: 0.773 vs. 0.776, PA-PJPE: 6.97 vs. 6.88); 4) The
"baseline" method without any sub-module or loss from 1), 2), and
3) has a significant gap compared to the "Full model" (AUC: 0.758
vs 0.776, PA-PJPE: 7.47 vs 6.88). In summary, the supervision based
on CLIP can enhance pose-aware representation by introducing
text prompts, thereby improving model performance. The proposed
Feature Projection and designed Sparse-to-dense structure have a
positive impact on model inference.

As shown in the right part of Fig. 7, we provide the 3D PCK curve
within a given range and the corresponding PA-PJPE values to
quantitatively demonstrate these results. In Fig. 8, we qualitatively
compare the inference results of some images "w/o CLIP loss" and
"with CLIP loss," using red dashed boxes to indicate image details
and pose details separately. Taking the second image as an example,
the estimation result supervised by CLIP loss can more accurately
locate the position of the thumb fingertip on the left side of the
middle fingertip.

Ablation Study of batch size in CLIP: To further clarify the
impact of batch size on the proposed CLIP-based model, Table. 4,

Table 4: Ablation Study. Comparison model performance on
the FreiHAND validation set, under different batch size for
CLIP-based learning.

Batch Size
Matrices AUC(0-30mm) PJPE Median PJPE PA-PJPE

baseline 0.763 14.86 12.27 7.29
B = 8 0.770 14.44 11.96 7.07
B = 16 0.772 14.24 11.87 7.01
B = 32 0.776 13.95 11.58 6.88

we demonstrate the influence of different batch sizes on inference
performance for the FreiHAND validation set. Compared to the
"baseline" method without CLIP loss, inference accuracy positively
correlates with the batch size B. Specifically, when the "B = 16", the
model performance has a slight difference compared to that of "B
= 32" (AUC: 0.772 vs. 0.776, PA-PJPE: 7.01 vs. 6.88). We analyze
the reason that smaller batch sizes cannot effectively connect text
prompts and pose-aware features due to it being unable to provide
enough negative samples for the contrastive learning paradigm.
Regrettably, we cannot set a larger batch size to further verify
the impact of this factor due to limited computing resources. As
depicted in the left part of Fig. 7, we provide the 3D PCK curve
within a given range and the corresponding PA-PJPE values to
quantitatively demonstrate the model performance under different
batch size settings.

Table 5: Ablation Study. Comparison model performance
on the FreiHAND validation set under different number of
select joints for text prompts generation.

Configs
Matrices AUC(0-30mm) PJPE Median PJPE PA-PJPE

N = 10 0.767 14.55 12.19 7.16
N = 15 0.774 14.15 11.79 6.94
N = 21 0.776 13.95 11.58 6.88

Ablation Study of text prompts generation: In addition, we
conducted ablation experiments to verify the effectiveness of differ-
ent text prompt generation methods on the model. In Table. 5, we
compared three methods’ performance (10 joints, 15 joints, and 21
joints) of selecting hand joints and generating corresponding text
prompts. Compared to the method of selecting only 10 joints "N =
10" and converting them into text prompts, setting all 21 joints "N =
21" can encode a richer spatial distribution of hand joints, thereby
guiding pose-aware features to more accurately locate hand joints
detailed cues in 3D space.

5 CONCLUSION
This paper introduces CLIP-Hand3D, the first successful integration
of text representations containing advanced human knowledge into
3D hand recovery. The proposed model achieves state-of-the-art
performance on three public datasets, compared tomethods employ-
ing similar-scale visual encoders, while significantly increasing the
inference speed by a large margin (≈28.3%). Specifically, The Text
Feature Generation module converts the joint distribution order
concealed within pose labels into text prompts and further matches
pose-aware features with text representations through contrastive
learning, improving the model performance by approximately 8.1%.
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Additionally, the lightweight Mesh Regressor not only incorporates
position encodings of varying scales but also queries joint-related
semantic cues from the latent feature pyramid. We aim to delve
deeper into the relationship between text and vision in the future
for more flexible hand image understanding.
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A APPENDIX
A.1 Inference Speed Analysis
The inference process of the model is divided into two components:
Pose Feature Generation and Mesh Regression. As depicted in Ta-
ble 6, we provide the inference speeds of these two sub-models
on a single NVIDIA RTX 2080 Ti using the PyTorch framework.
The Pose Feature Generation takes 6.59ms, while the Mesh Re-
gressor takes 6.31ms, resulting in a total of 12.9ms, equivalent to
approximately 77.5FPS. Note that the Pose Feature Generation mod-
ule encompasses several sub-modules: a Visual Encoder with a
ResNet50 backbone, a Joint Regression based on the Lixel map mod-
ule, and a Hand Joint Projection Layer. Besides, the Mesh Regressor
module includes Heatmap Generation, a Multi-Transformer Layer,
and several Multilayer Perceptron (MLP) layers.

Table 6: Inference speed of each module in our model.

Module Pose Feature Generation Mesh Regressor Full Model

Inference Time(s) 0.00659 0.00631 0.0129

Frames Per Second(FPS) 151.7 158.4 77.5

RGB Image Heatmap xy Heatmap xz Heatmap yz

Figure 9: Qualitative evaluation. The 2Dheatmap distribution
corresponding to the 21 hand joints in various dimensions
is represented by heatmap xy 𝐻𝑥𝑦𝑝 ∈ 𝑅 (1,56,56) , heatmap xz
𝐻𝑥𝑧𝑝 ∈ 𝑅 (1,56,56) , and heatmap yz 𝐻𝑦𝑧𝑝 ∈ 𝑅 (1,56,56) .

A.2 3D Joint Heatmap Analysis
As we discussed in the main text, the objective of the Pose Feature
Generationmodule is to accurately predict 3D joint positions within
the uvd space. However, sparse joint representation tends to dilute
the rich semantic information inherent to the hand structure, given

that discrete spatial points may not fully encapsulate the hand
model. Therefore, mapping discrete joint positions to a 3D heatmap
representation 𝐻3𝐷

𝑝 ∈ 𝑅 (21,56,56,56) is both a direct and effective
approach. To retain more rich semantics of the hand model, we
choose to generate the corresponding 3D joint heatmap and pass
it to the subsequent Mesh Regressor module. Specifically, given
the predicted joint positions in the uvd space, the 2D heatmap in
the xy, xz, and yz pixel planes encodes the position distribution
of the hand model in the current orthogonal basis direction. As
illustrated in Fig. 9, we provide the heatmap results for several
images selected from the FreiHAND testset. These include the
heatmap xy 𝐻𝑥𝑦𝑝 ∈ 𝑅 (21,56,56) , heatmap xz 𝐻𝑥𝑧𝑝 ∈ 𝑅 (21,56,56) , and
heatmap yz 𝐻𝑦𝑧𝑝 ∈ 𝑅 (21,56,56) . Formally, we have:

H𝑖 (𝑢) = 𝑒𝑥𝑝 (−
1
2
| |𝑢 − 𝑃3𝐷𝑖 | |2/𝜎2), 𝑢 = [𝑢𝑥 , 𝑢𝑦, 𝑢𝑧],

where𝑢 represents the joints index in the 3D uvd space, 𝑃3𝐷
𝑖

denotes
the predicted 3D hand pose in the uvd space, 𝜎 = 2.0.

A.3 Matching Matrix Analysis
As we discussed in the main text, the logits latent matrix serves as
the bridge linking pose-aware features and text representation. To
further illustrate this concept qualitatively, refer to Fig. 10, which
displays the logits latent matrices (“Left to Right” 𝑀𝑙𝑟 ∈ 𝑅 (32,32) ,
“Top to Bottom”𝑀𝑡𝑏 ∈ 𝑅 (32,32) , and “Near to Far”𝑀𝑛𝑓 ∈ 𝑅 (32,32) )
that correspond to a batch of 32 samples during the model infer-
ence process. It should be noted that these logits latent matrices
in 3D space provide a more intuitive visualization of the distribu-
tion of image-text match pairs, with the highest matching values
predominantly distributed along the diagonal of the matrix.

To further increase the capacity of the logits latent matrix, as
shown in Fig. 11, the batch size has been further expanded to 32,
and three matrices containing 32 image samples are displayed to
qualitatively describe the image-text matching results. From these
illustrations, we can observe the following conclusions: 1) the high-
est values are distributed on the diagonal to indicate that the pose-
aware features and text representations have successfully paired;
2) the matrix is symmetrically distributed along the diagonal, veri-
fying the mutual matching between the text representations and
pose-aware features; 3) several localized highlights denote trends
in similar pose distribution, further illuminating the effectiveness
of our model.

A.4 Limitations and Discussions
To further investigate the current limitations of the model, we have
selected two representative failure inference cases for qualitative
illustration. As depicted in the first row of Fig. 12, the model deduces
an unreliable 3D hand pose due to significant self-occlusion. Our
analysis suggests that, despite the integration of advanced human
knowledge into the deep neural network via text prompts, the
key to determining inference performance remains the pose-aware
features. Particularly in cases of implicit self-occlusion, the network
is unable to provide accurate pose-aware encoding.

In addition, as shown in the second row of Fig. 12, partially
occluded hand semantics also cannot encode detailed joint distri-
bution due to the lack of corresponding image texture, even with
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“Left to Right” in 3D “Top to Bottom” in 3D “Near to Far” in 3D

Figure 10: Qualitative Evaluation. We provide the 3D logits latent matrices corresponding to a batch of 32 samples, organized in
the sequence of “Left to Right”, “Top to Bottom”, and “Near to Far”.

ID: 1 ID: 2 ID: 3 ID: 4 ID: 5 ID: 6 ID: 7 ID: 8 ID: 9 ID: 10 ID: 11 ID: 12 ID: 13 ID: 14 ID: 15 ID: 16

ID: 17 ID: 18 ID: 19 ID: 20 ID: 21 ID: 22 ID: 23 ID: 24 ID: 25 ID: 26 ID: 27 ID: 28 ID: 29 ID: 30 ID: 31 ID: 32

𝑀𝑙𝑓: Logit latent matrix “Left to Right” 𝑀𝑡𝑏: Logit latent matrix “Top to Bottom” 𝑀𝑛𝑓: Logit latent matrix “Near to Far”

Figure 11: Qualitative Evaluation. We present the logits latent matrix corresponding to a batch of 32 samples, arranged in the
sequence “Left to Right”, “Top to Bottom”, and “Near to Far”. Besides, we provide a comprehensive visualization of all the
images associated with this batch, each labeled with identification numbers ranging from 1 to 32.

RGB Image Results GT

Figure 12: Failure inference cases.

the assistance of text representation. As for the failure cases of 3D
hand shape estimation, we show a representative case in the last
row of Fig. 12. In this case, due to the color texture of the middle
finger being very similar to the background, the method mistakenly
identifies it as the background, thereby providing incorrect cues to
the subsequent pose-aware features, which indirectly affects the
feature matchingmodule. In future work, we aim to incorporate text
prompts more extensively to rectify the self-occlusion situation of
hand images from the perspective of human high-level knowledge,
thereby optimizing the joint distribution encoded in pose-aware
features, that is, strengthening the role of text representation in the
3D hand recovery model.
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