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Abstract—Video anomaly detection is an essential yet challeng-
ing task in the multimedia community, with promising applica-
tions in smart cities and secure communities. Existing methods
attempt to learn abstract representations of regular events
with statistical dependence to model the endogenous normality,
which discriminates anomalies by measuring the deviations to
the learned distribution. However, conventional representation
learning is only a crude description of video normality and lacks
an exploration of its underlying causality. The learned statistical
dependence is unreliable for diverse regular events in the real
world and may cause high false alarms due to overgeneralization.
Inspired by causal representation learning, we think that there
exists a causal variable capable of adequately representing the
general patterns of regular events in which anomalies will present
significant variations. Therefore, we design a causality-inspired
representation consistency (CRC) framework to implicitly learn
the unobservable causal variables of normality directly from
available normal videos and detect abnormal events with the
learned representation consistency. Extensive experiments show
that the causality-inspired normality is robust to regular events
with label-independent shifts, and the proposed CRC framework
can quickly and accurately detect various complicated anomalies
from real-world surveillance videos.

Index Terms—Causal Representation Learning, Video
Anomaly Detection, Unsupervised Learning, Normality
Learning, Deep Clustering

I. INTRODUCTION

Video anomaly detection (VAD) aims to automatically
analyze the spatial-temporal patterns and contactlessly detect
anomalous events of concern (e.g., traffic accidents, violent
acts, and illegal operations) from surveillance videos [1], [2],
which has promising applications in emerging areas such
as traffic management [3], [4], security protection [5], [6],
and intelligent manufacturing [7], [8]. However, anomaly is
a vague concept, making anomalous events unbounded and
difficult to predefine. Therefore, collecting all possible positive
samples is impractical, making VAD remain challenging in the
multimedia [9], [10], [11], [12], [13], [14], [15], [16], [17] and
pattern recognition [18], [19], [20], [21], [22], [23], [24], [25],
[26] communities.

To avoid the cost of collecting and labeling anomalous
events, existing VAD methods typically use only normal

†Equal contribution.
∗Corresponding authors.

videos to train a deep generative model (e.g., autoencoder
[27], [28], [29], generative adversarial network [30], and
transformer [31]) to perform reconstruction or prediction tasks,
which learns the distribution dependence of regular events
in an unsupervised manner and treating out-of-distribution
samples as anomalies. They assume that models learned on
negative samples cannot characterize unseen positive ones,
leading to significant deviations from the learned normality.
As shown in Figure 1(a), these methods [32], [33], [34] expect
to map regular events (green cubes) to a hyperspace, while
uncharacterizable anomalous events (red cubes) will fall out-
side. Benefiting from deep representation learning (DeepRL)
[35], [36], [37], [38], [39], unsupervised VAD has achieved
remarkable progress in recent years.

However, the long-overlooked problem is that regular events
are also diverse. Besides, due to the high dimensionality of
real-world videos and the complexity of target-scene interac-
tions, regular events contain both shared and private semantics,
i.e., prototypical and personalized features [40]. In addition,
positive and negative samples captured from the same scene
usually share the most appearance context, making it difficult
to filter these task-irrelevant semantics under an unsupervised
setting. Ultimately, an unaffordable consequence is that the
learned model may represent abnormal events well due to the
overgeneralization of deep neural networks [41], leading to
missed detections, as sample V1

a in Figure 1(a). Moreover, for
regular events with label-independent distribution offsets (e.g.,
the color of pedestrians’ clothes and their walking posture
in crowd anomaly detection), existing unsupervised methods
cannot resist such random disturbances due to insufficient
robustness, resulting in high false alarms, as sample V1

n

in Figure 1(a). Therefore, existing methods are limited by
DeepRL and only establish the crude statistical dependence of
the normal distribution, making the learned normality unable
to cope with complicated anomalies and normal events with
unseen bias.

Inspired by causal representation learning (CausalRL) [42],
we attempt to learn task-specific representations that contain
potential causal mechanisms capable of revealing the intrinsic
properties of regular events, which can mitigate the negative
impact of event diversity and random label-independent bias in
unsupervised normality learning [43]. In this regard, we con-
struct a structural causal model (SCM) shown in Figure 1(b),

ar
X

iv
:2

30
8.

01
53

7v
1 

 [
cs

.M
M

] 
 3

 A
ug

 2
02

3



2

Fig. 1. Motivation for addressing unsupervised VAD from a causality
perspective. (a) illustrates the expectation (left) and the actuality (right)
of the existing methods: they expect to train a characterizer to learn the
pattern boundaries for regular events. However, the learned boundaries cannot
effectively detect weak anomalies and unseen normal events. The structural
causal model in (b) states the shortcomings of existing methods: they try to
establish the statistical association (dashed arrow) of observable normal videos
X with labels Y , lacking effective exploration of causal factors. The sparse
mechanism shift hypothesis in (c) suggests that label-independent domain
shifts of diverse normal events (n → n′) have a limited and local impact on
the learned causality (marked by ô). In contrast, anomalous events (n → a)
cause a full collapse of consistency (marked by X) learned on regular events.
Inspired by the above observations, we expect to construct robust and efficient
VAD models with CausalRL.

where X and Y denote observable normal videos and labels,
respectively. According to the common cause principle, we
consider that there are causal factors in X that can fully
describe normality. We attempt to learn these unobservable
causal factors with the label consistency between shared and
private features of X . In addition, the sparse mechanism
shift hypothesis point out that diverse normal events with
significant distribution differences only vary locally in the
high-level causality space. This hypothesis suggests that learn-
ing causality-inspired normality may enable the model to
correctly infer shifted regular events and reduce false alarm
rates. To this end, we propose an end-to-end causality-inspired
representation consistency (CRC) framework to mining causal
variable for unsupervised video anomaly detection. In the
training phase, we optimize the CRC framework using the
causal independence and the consistency of the multi-view
representations for regular events. While testing, the causality-
inspired characterizer learned on negative samples will not
work for anomalies, making the anomalous events show
significant differences in causal consistency, as shown in
Figure 1(c).

Specifically, the CRC framework first utilizes a DeepRL-
based feature extractor to obtain original spatial-temporal
patterns containing causal and non-causal variables. Then, an
iteratively updated memory pool [44] is used to record the
general pattern of regular events. Distinguishing from existing

methods that use features retrieved from the memory pool
as representations for anomaly discrimination, we introduce a
prototype decomposer to split the shared and private features
[40]. The shared and private features come from the same
batch of training samples, so both are representations of
regular events by nature. Therefore, we use causal factorization
to reduce them into a set of causal factors and capture the
intrinsic causal mechanism. Finally, the features represented
by causal factors are fed into a clustering algorithm [45] to
obtain compact task-specific causal representations. The main
contributions of this paper are summarized as follows:

• We address the unsupervised video anomaly detection
from a causality perspective and propose a causality-
inspired representation consistency framework to learn
video normality and detect anomalous events by consis-
tency.

• We design prototype decomposer and causal factorization
to mine causal variable directly from the videos and use
causal representations to characterize normal events.

• Our method can cope with label-independent shifts and
amplify the deviation of subtle anomalies with causal
consistency. Experimental results prove the effectiveness
of CRC, which achieves superior performance on bench-
marks.

II. RELATED WORK

A. Video Anomaly Detection

VAD has been extensively studied for years due to its
potential applications in emerging fields such as smart cities
and secure communities, and various routes have been derived
with the development of DeepRL. Among them, unsupervised
methods [27], [46] follow the open-world assumptions without
predefining and collecting anomalies and avoiding annotation
costs and data imbalance problems, becoming the preferred
solutions. Early unsupervised methods [47], [48] treat VAD
as a one-class classification task and use OC-SVM, OC-NN,
or deep clustering to determine the boundaries of manual
features, which are prone to the curse of dimensionality when
dealing with real videos. Benefiting from the rise of deep
generative models, researchers used autoencoders [45] and
generative adversarial networks [49], [30] to extract spatial-
temporal representations and introduce proxy tasks to learn
the prototypical pattern of normal videos, i.e., normality.
Specifically, such methods assume that generative models
trained with normal videos are only effective in representing
regular events. Thus, positive samples will experience signif-
icant performance degradation on the proxy task during the
downstream anomaly detection phase. For example, Hasan et
al. [27] propose a 2D convolutional autoencoder to reconstruct
input sequences and use the reconstruction error to compute
anomaly scores. Liu et al. [49] pioneered a video prediction
framework to learn video normality and measure the degree
of anomalies with the appearance and motion prediction
errors. Following efforts lie in structure modifications (e.g.,
using dual-stream networks to learn appearance and motion
normality separately [45], [50]) and proxy task stacking [51].
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Recently, the intrinsic semantics consistency between dif-
ferent dimensions [46] or regions [52] is considered feasible
for video normality learning. Drawing that memory networks
[41], [44] can store prototype patterns of training samples, Cai
et al. [46] construct two memory-enhanced autoencoders to
learn appearance-motion consistency by learning relationships
between RGB images and optical flow. They argue that the
consistency learned on normal samples holds only for regu-
lar events. In addition, emerging object-level schemes [53],
[52], [54] attempt to explore normal target-scene semantics
interactions and discriminate anomalies accordingly. However,
due to the high dimensionality and complexity of videos,
both normal and abnormal events are diverse. Conventional
DeepRL struggles to obtain representations with sufficient
discrimination to describe diverse regular events. Studies show
that such methods may miss-detect positive samples due to
overgeneralization or fail to effectively reason about unseen
negative samples due to insufficient representation ability. In
contrast, our proposed CRC framework learns video normality
with CausalRL, aiming to balance representation and gen-
eralization with causal mechanisms. Although causality has
been proven practicable in numerous image processing tasks
[55], the one-class classification setting that only negative
samples are available for training in VAD makes designing
reasonable causal interventions and factorization schemes for
casual variable extremely challenging.

B. Causal Representation Learning

Conventional deep representation learning has flourished
in recent years with the emergence of large-scale multi-
source datasets. However, DeepRL only learns the statistical
independence between training samples and given labels,
subject to the independent and identically distributed (i.i.d)
assumption [42]. Causal representation learning considers sta-
tistical independence as a crude description of the physical
world, which cannot perform correct inference under distribu-
tion changes and intervention conditions. Currently, causality-
driven representation models achieve leading performance in
various applications such as domain generalization [55] and
online recommendation systems, demonstrating great potential
for learning robust representations and reusable mechanisms,
which are also the key to high-performance VAED. On the one
hand, real-world normal videos suffer from unpredictable bias,
i.e., regular events contain personalized semantics that does
not constitute anomalies. DeepRL-based characterizer can
hardly accommodate such private features and may misclassify
unseen regular events as anomalies. On the other hand, the
unbounded nature of anomalous events makes it inevitable that
their patterns intersect with the normal distribution. To sum-
marize, robust anomaly detectors need to learn representations
containing essential factors that adequately describe normality,
which motivates us to learn normality with CausalRL.

III. METHODOLOGY

A. VAD in Causality Perspective

As discussed in Sec. I, we consider that the spatial-temporal
features extracted by DeepRL contain both causal variable
that determine the normality and label-independent non-causal
variable. Existing VAD methods typically use DeepRL to learn
the statistical independence of normal videos with redundant
and non-helpful representations. In response, we design a
structural causal model (SCM) shown in Figure 1(b) to for-
mulate unsupervised VAD and guide our CRC framework to
learn robust knowledge beyond the available training data. The
following common cause principle describes the connection
between statistical dependence and causality:

§1 Common cause principle: If two observables X
and Y are statistically dependent, then there exists a
variable Z that causally influences both and explains all
the dependence in the sense of making them independent
when conditioned on Z.

For the unsupervised VAD task, we set X and Y to
denote observable regular events and normality (label 0),
respectively. The causal variable Z, which has a causal effect
on both the original data distribution and normality learning,
is not directly observable, which may be usual targets (as
opposed to unexpected objects in appearance anomalies) or
regular object-scene interactions (as opposed to violations in
motion anomalies). In this regard, we attempt to use the
directed acyclic graph in Figure 1(b) to implicitly learn a set
of causal factors {z1, · · · , zn} with internal consistency for
characterizing various types of normal events, as follows:

X := f (Z,U ,P ) ,Z⊥U⊥P , (1)
Y := h (Z,P ) = h (g(X),P ′) ,P⊥P ′, (2)

where U denotes the non-causal variable only affecting X ,
e.g., domain-specific information that contributes nothing to
normality learning. P and P ′ denotes joint-independent un-
explained perturbation noise. f(·, ·, ·), h(·, ·) and g(·) are
regarded as unknown structural functions with causal mecha-
nisms. According to §1 and the invariant causal mechanism,
for any distribution P (X,Y ) ∈ P , when the causal variable Z
is given, then a general conditional distribution P (Y |Z) must
exist. Thus, representations that imply causality are essential
for learning normality robust to diverse patterns of normal
events.

However, it is impractical to observe causal variable from
unstructured videos, i.e., there is no available prior to guide
us to define causal representations dissuasively. Following the
consensus in CausalRL, we attempt to encourage the model
to learn a set of orthogonal causal factors with the following
principle [56], [42]:

§2 Independent causal mechanism: The causal generative
process of a system’s variables is composed of autonomous
modules that do not inform or influence each other. In the
probabilistic case, this means that the conditional distribu-
tion of each variable given its causes (i.e., its mechanism)
does not inform or influence the other mechanisms.
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Fig. 2. Overview of the proposed causally-inspired representation consistency (CRC) framework. In the training phase, CRC extracts the spatial-temporal
features F of b normal sequences and stores the prototypes in the memory pool M, and then uses the prototype decomposer to strip the private and shared
features {Fp,Fs}, which are fed to the causally-inspired characterizer (CiC) to learn the causal variables. Inspired by §1 and §2, we exploit the independence
of the causal variables to compute the correlation matrices C1,2,3 and optimize CiC. A clustering is introduced to obtain compact task-specific causal
representations.

§2 inspires us to find the unobservable causal factors
{z1, · · · , zn} with the separate intervening nature of Z and
their independence. Corresponding to the causal factoriza-
tion of the VAD representations, we know that: (1) Z that
fully generalize normality are separated from U , i.e., inter-
ventions on U do not change Z and Y . (2) The causal
factors {z1, · · · , zn} is jointly independent, and mechanism
P (zi|PAi) does no inluence or transfer information with
P (zj |PAj) if j ̸= i, where PA denotes the causal parents. (3)
The learned task-specific causal representations are causally
sufficient for normality learning to explain all statistical inde-
pendence between X and Y . Therefore, we can factorize the
joint distribution of causal factors into conditional as follows:

P (z1, · · · , zn) =
n∏

i=1

P (zi | PAi) . (3)

In this work, we consider both the shared and private
features of regular events as a phenotypic form of normality.
Due to the diversity of video events, conventional repre-
sentation learning is challenging to outline the distribution
of these multi-view features that point to the same causal
variable. It is feasible to learn causal representations implicitly
through independence, which is consistent with the following
hypothesis [42]:

§3 Sparse mechanism shift: Small distribution changes
tend to manifest themselves in a sparse or local way in
the causal/disentangled factorization, that is, they should
usually not affect all factors simultaneously.

which motivates us to learn stable causal variable that can
respond sensitively to anomalies through intrinsic consistency
while resisting label-independent shifts. For implementation,
we construct a prototype decomposer to decompose the orig-
inal representations into private and shared features and train

the causality-inspired characterizer to further represent these
features with the same causal factors. Besides, we utilize
clustering and similarity constraints to explore the consistency
and obtain task-specific representations for unsupervised video
anomaly detection.

B. Prototype Learning and Decomposition

Inspired by the ability of the memory [44] to record the
prototype of normal events and constrain the overgeneral-
ization of the DeepRL, we use memory to construct the
prototype learning module and obtain the shared and private
features. As shown in Figure 2, the memory update process
Mt → Mt+1 illustrate the recording of the general patterns
of the spatial-temporal features F ∈ RH×W×C . Specifically,
the memory pool is a two-dimensional matrix, denoted as
M ∈ RC×N , where N denotes the number of memory entries
and determines the information capacity of Mt. The memory
pool contains no learnable parameters but updates its memory
entries to record normality through the write operation with
M serving as query QM , as follows:

Mt+1 = l2

(
M + VFΨ

(
KT

FQM√
C

))
,

VF = KF = e(F ) ∈ RC×N̂ ,

(4)

where e(·) denotes expanding F along the spatial dimension
so that N̂ = H×W . l2(·) is L2-norm to keep the data scale of
Mt and Mt+1 consistent, and Ψ denotes softmax. In contrast,
the read operation aims to reconstruct F as prototype F ′ with
expanded F serving as query QF , as shown in Figure 2:

F ′ = VMΨ

(
KT

Me(F )√
C

)
,VM = KM = M ∈ RC×N . (5)
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Existing work [44], [57], [58] assumes that F ′ can effec-
tively detect anomaly differences, i.e., the anomalous event
will lose its own patterns and thus encounter significant errors
in proxy tasks. However, over-strong memory may make the
well-trained model unable to reason about normal events with
shifts. Learning the distribution of prototype features is insuffi-
cient for describing diverse regular events and discriminating
complex anomalies. Therefore, We use CausalRL to further
explore the intrinsic connection and understand the inherent
differences between positive and negative samples with causal
consistency.

The raw features F contain shared prototypical semantics
and unique personalized semantics, i.e., shared and private
features, denoted as {Fs,Fp}. As stated in Sec. I, both Fs and
Fp are statistically associated with label 1. Referring to sparse
representation learning [40], we design a SE-like [59] process
to strip Fs and Fp from F and F ′. The details are shown in
Figure 2. First, F and F ′ are average and max pooled, denoted
as {favg,f

′
avg,fmax,f

′
max} ∈ RC , which are then mapped to the

difference scores {α, β} by two multi-layer perception (MLP)
with learnable parameters {θ1, θ2}, as follows:

α = MLP(favg − f ′
avg; θ1), β = MLP(fmax − f ′

max; θ2). (6)

Finally, we use α and β to quantitatively filter the prototypical
semantics in F , as follows:

Fp =
α+ β

2
⊛ F ,Fs =

(
1− α+ β

2

)
⊛ F ′, (7)

where ⊛ denotes the channel-wise multiplication.

C. Representation Consistency Learning

Inspired by principles §1 and §2, we know that there
exist jointly independent causal factors capable of fully gen-
eralizing the statistical dependence from low-level normal
videos to high-level normality. Furthermore, §3 indicates that
the individualized features of normal events have a limited
effect on the causal factors and their consistency. Therefore,
we construct a causality-inspired characterizer (CiC) to learn
unobservable causal variable and model the intrinsic con-
sistency of normal events. Specifically, the spatial-temporal
features of b video clips from the same batch are decom-
posed and fed into CiC, which maps their shared and private
features into causal representations: R = {r1; r2; · · · ; rb} =
CiC(F 1

s ,F
2
s , · · · ,F b

s ) ∈ Rb×n and R̃ = {r̃1; r̃2; · · · ; r̃b} =
CiC(F 1

p ,F
2
p , · · · ,F b

p ) ∈ Rb×n. In practice, n ≪ H×W ×C.
Unsupervised VAD attempts to learn the normality using only
regular events so that ri and r̃i point to the same label.
Then, the causal variables should remain causally invariant
to the so-called decomposition intervention, i.e., the causal
representations of shared and private features should remain
close in the causal factor dimension:

max
1

n

n∑
i=1

fif̃i

∥ fi ∥∥ f̃i ∥
, (8)

where fi and f̃i denote the i-th column of R and R̃,
respectively.

By maximizing the similarity of the same n causal factors
on shared and private features, we can encourage CiC to
learn causal factors that can strip label-independent non-causal
variable from redundant deep spatial-temporal features. In
addition, to ensure that the causal factors are jointly inde-
pendent, we construct three correlation matrices on R → R̃,
R → R, and R̃ → R̃, denoted as C1, C2, and C3,
as shown in Figure 2. similar to Eq. 8, the non-diagonal
elements of C1 are also the cosine similarity between the
corresponding columns of R and R̃. In contrast, C2 and C3

present the similarity within R and R̃: C2(i, j) =
fifj

∥fi∥∥fj∥

and C3(i, j) =
f̃if̃j

∥f̃i∥∥f̃j∥
. The final optimization objective is to

maximize the diagonal elements of the correlation matrix C1

(Note that the diagonal elements of C2 and C3 are constant
1) and minimize the non-diagonal matrices of C1, C2, and
C3, as follows:

minλ ∥ C1 − I ∥2F + ∥ C2 − I ∥2F + ∥ C3 − I ∥2F , (9)

where λ is a trade-off hyper-parameter, ans I denotes the
identity matrix. In this way, we can ensure that the causal
factors are jointly independent and invariant to the decompo-
sition intervention. According to §3, normal events with shifts
are only locally different regarding causal representations.
Therefore, we follow [45] to introduce clustering to obtain
a tighter causal representation R and further enhance the
model to discriminate normal events with clustering effects. In
addition, we introduce memory separateness and compactness
loss [44] to optimize the memory pool.

D. Anomaly Detection with Causal Consistency

Due to the special setting of the anomaly detection task,
only negative samples are available for training, so the well-
trained CRC framework is only effective in decomposing
and constructing causal representation consistency for normal
events. In the testing phase, we compute anomaly score st by
measuring the deviations to the learned causal factors in terms
of consistency and representations:

st = g(∥ C1 − I ∥2F ×D), (10)

where g(·) denotes the max-min normalization over all frames.
D is the clustering distance between the causal representations
of the input video clip and the cluster center. The former part
of st, C1 − I , discriminates anomalies by the consistency in
the causal variable, while the latter D measures the distance
to the normal representation.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We conduct extensive experiments to validate
the effectiveness of the proposed CRC framework on three
leading unsupervised VAD benchmarks, including UCSD Ped2
[48], CUHK Avenue [60], and ShanghaiTech [61]. All training
sets are normal videos collected from the real world, while
anomalous events from similar scenes are only available
to the test set. UCSD Ped2 [48] is a small-scale dataset
containing 16 training and 12 test videos, captured from the
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Fig. 3. Quantitative performance comparison. (a)-(b) show the frame-level AUC and EER of our method (marked by pentagrams) with existing methods
(marked by circles) on the three datasets, respectively, while (d) presents the inference speed on the CUHK Avenue dataset. ↑ denotes that larger values
indicate better performance, while ↓ vice versa. Best viewed in color.

university campus. As an early unsupervised VAD benchmark,
its scenario is simple, with regular samples walking normally
on the sidewalk, while the anomalous events include riding
bikes, skateboarding, and driving. CUHK Avenue [60] is a
large-scale single-scene VAD dataset. The training and test
sets contain 21 and 16 videos with 47 anomalous events.
The collectors simulated appearance-only (e.g., the person on
the lawn), motion-only (e.g., loitering and wandering), and
appearance-motion anomalies (e.g., papers being scattered),
making CUHK Avenue more challenging. ShanghaiTech [61]
is the most challenging benchmark, collecting 130 anomalies
from 13 scenes. The data size and cross-scene nature make
it difficult for unsupervised methods to learn effective deep
representations to describe diverse normal events.

2) Evaluation Metrics: In the testing phase, we measure the
input samples against the learned causality-inspired normality
to calculate the degree of abnormality and output a continuous
anomaly score in the range [0, 1]. A high score indicates
that the more likely the test sequence is to be anomalous.
In contrast, the given labels are binary discrete, where 0
indicates normal and 1 indicates abnormal. Following previous
work [49], [54], we calculate the true-positive-rate and false-
positive-rate at multiple thresholds and plot the receiver operat-
ing characteristic curve, using the area under the curve (AUC)
as the primary evaluation metric to present the effectiveness of
our method for anomaly detection. In addition, the equal error
rate (EER) is used as a complementary metric to demonstrate
the robustness of the CRC framework, which is compared with
available methods. With the same implementation platform,
we report the average inference speed of our method on
the CUHK Avenue [48] dataset to validate its deployment
potential on resource-limited terminal devices.

3) Implementation Details: We use the PyTorch [62] frame-
work to implement the proposed method on an Nvidia 3090
GPU. The Adam [63] optimizer is used to train the model
with an initial learning rate of 8 × 10−5. The batch size b
is set to 8. In the initial stage, we remove the clustering
constraints and optimize the characterizer without clustering.
After 100 epochs, we compute the clustering centers using K-
means and update them with an alternating optimization [45].
The video frames are resized to 224× 224 pixels. The feature
extractor is a 5-layer convolutional encoder. The two MLPs

TABLE I
RESULTS OF THE FRAME-LEVEL AUC COMPARISON.

Type Method Frame-level AUC (%)

UCSD Ped2 CUHK Avenue ShanghaiTech

Tr
ad

iti
on

al

MPPCA [47] 69.3 - -
MPPC+SFA [47] 61.3 - -
MDT [48] 82.9 - -
AMDN [65] 90.8 - -
Unmasking [66] 82.2 80.6 -
MT-FRCN [67] 92.2 - -

D
ee

p
L

ea
rn

in
g-

ba
se

d

ConvAE [27] 90.0 70.2 -
ConvLSTM-AE [68] 88.1 77.0 -
AMC [51] 96.2 86.9 -
FFP [49] 95.4 85.1 72.8
MemAE [41] 94.1 83.3 71.2
AnoPCN [69] 96.8 86.2 73.6
Mem-Guided [44] 97.0 88.5 70.5
AMMC-Net [46] 96.6 86.6 73.7
Clustering [45] 96.5 86.0 73.3
TAC-Net [70] 98.1 88.8 76.5
STD [50] 96.7 87.1 73.7
STC-Net [71] 96.7 87.8 73.1
STM-AE [30] 98.1 89.8 73.8
Bi-Prediction [53] 97.4 86.7 73.6
HSNBM [54] 95.2 91.6 76.5
MAAM-Net [58] 97.7 90.9 71.3

CRC (ResNet-18) 97.6 90.5 77.6
CRC (ResNet-50) 98.7 92.5 78.3

Bold numbers indicate the best performance.

in the prototype decomposer are three-layer fully connected
neural networks with sigmoid activation in the output layer.
We select ResNet-18 and ResNet-50 [64] as the backbone of
CiC. The trade-off hyper-parameter λ in Eq. 9 is set to 10,
18, and 20 for UCSD Ped2 [48], CUHK Avenue [60], and
ShanghaiTech [61], respectively.

B. Comparisons with State-of-the-art Methods

We perform quantitative comparisons with traditional hand-
icraft feature-based [47], [48] and DeepRL-based methods
[49], [41], [30], [69], [54] to demonstrate the effectiveness
of the proposed CRC framework. The results are shown in
Table I and Figure 3. Among them, Table I presents the
frame-level AUCs of existing unsupervised VAD methods on
three mainstream datasets, and our CRC framework achieves
98.7%, 92.5%, and 78.3% AUCs on UCSD Ped2 [48], CUHK
Avenue [60] and ShanghaiTech [61] datasets, respectively,
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TABLE II
RESULTS OF ABLATION STUDY.

ID Component Constraint Frame-level AUC (%)

C AP MP C1(F ) C2(F ) C3(F ) Ped2 Avenue S.T.

1 % " " " " " 91.6 83.2 72.4
2 " % " " " " 96.9 89.6 77.1
3 " " % " " " 97.1 89.4 76.6
4 " " " % " " 89.1 81.9 70.7
5 " " " " % " 96.3 88.2 76.1
6 " " " " " % 96.6 89.1 75.8
7 " " " " % % 96.1 88.1 75.3
8 " " " " " " 97.6 90.5 77.6

C: Clustering; AP/MP: Average/Max Pooling; Ci(F )=∥ Ci − I ∥2F , i =
{1, 2, 3}.

outperforming other methods. Compared with earlier manual
feature-based methods, deep learning methods achieve signif-
icant performance gains due to the powerful representational
learning capability of deep neural networks. However, they
fail to process the complex cross-scene ShanghaiTech [61]
dataset, and the performance is limited under the unsupervised
setting. The proposed CRC framework pioneers the causal
representations into unsupervised normality learning, which
attempts to mitigate the negative impact of diverse normal
events from a causal perspective and discriminates anomalies
with consistency, achieving an AUC gain of 1.8% on the
ShanghaiTech dataset. For complex real-world videos, the
learned normality with intrinsic causality by CausalRL is more
effective than conventional representation learning.

In addition, we show the EERs and inference speed of the
proposed method in Figure 3, where (a)-(c) show the AUC and
EER results on three publicly available benchmarks, while (d)
visually compares the performance and inference speed on the
CUHK Avenue [48] dataset. In addition to those already cited
in Table I, other methods involved in the comparison include
DRAM [72], WTA-AE [73], stackRNN [61], DFSN [74],
Street Scene [75], Trans-STR [31], and HN-MUM [76]. Our
CRC framework implemented using ResNet-50 achieves EERs
of 4.1%, 11.6%, and 21.1% on the UCSD Ped2 [48], CUHK
Avenue [60], and ShanghaiTech [61] datasets. The average
inference speed of CRC (ResNet-18) and CRC (ResNet-50)
is around 46 FPS and 32 FPS, respectively, which means that
they take 0.022s and 0.031s from video read-in to anomaly
score output, meeting the demand of real-time detection.
Although the inference speed of stackRNN [61] is faster
than the proposed method, our CRC (ResNet-18) and CRC
(ResNet-50) show an advantage in detection accuracy, with
AUC improvements of 8.8% and 10.8% (90.5% & 92.5% vs.
81.7%), respectively.

C. Ablation Study

To validate the impact of individual components and opti-
mization constraints on causality-inspired normality learning
and their effectiveness in the VAD task, we conduct an
ablation study and quantitatively compared the frame-level
AUC of each model variant, as shown in Table II. Model 1,
which removes the clustering module and learns the causal
factors by characterizing consistency only, suffers significant

Fig. 4. Results of sensitivity analysis on N and k. For better visual effects,
we interpolated the original data during the mapping. Best viewed in color.

performance degradation on all three benchmarks. Unlike the
classification task, VAD has only negative samples available
during the training phase and cannot construct classifiers to
encourage the model to learn task-specific representations,
so we introduce clustering to characterize normal events as
intrinsic to causal representations. The causal characterizer is
optimized to learn task-specific representations valid for video
anomaly detection by updating the clustering centers, yielding
remarkable improvement for the UCSD Ped2 [48], CUHK
Avenue [60], and ShanghaiTech [61] datasets with AUC gains
of 6.0%, 7.3% and 5.2%.

Models 2 & 3 compare the contribution of average pooling
and maximum pooling in the prototype decomposer. The per-
formance gap indicates that average pooling aggregates global
information and separates shared and private features more
effectively. Furthermore, both pooling strategies contribute
to normality learning with cumulative gains when compared
to the full framework in Model 8. As stated in Sec. III,
we are inspired by §1 and §2 to use constraints on the
correlation matrix to encourage the model to learn a set of
independent causal factors. The impact of each constraint
on performance is shown in Models 4-7. Model 4 suffers
the overall and most severe AUC decline, indicating that the
R → R̃ correlation constraint, i.e., C1, is critical for causal
representation learning. In contrast, the other two constraints
of the representation matrix, i.e., C2 in model 5 and C3 in
model 6, bring only minor gains for video anomaly detection.
Even ignoring the corresponding constraints under limited
computational resources, the impact on model performance
is limited, as shown in Model 7.

D. Sensitivity Analysis

We conduct extension experiments on CUHK Avenue [60]
to explore the sensitivity of model performance to the number
of memory entries and clustering centers, as shown in Figure 4,
where (a) is implemented with ResNet-18 while (b) is with
ResNet-50. Specifically, we test the AUC performance under
different parameter settings: N = {16, 32, 64, 128, 256, 512}
and k = {4, 8, 16, 32, 64, 128}. As stated in Sec. III, N deter-
mines the information capacity of the memory pool. A large
N may make the recorded memory entries untypical, while a
too-small N will cause the memory pool to lose prototypical
features. The results in Figure (4) show that choosing an
appropriate N is necessary for prototype decomposition. The
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Fig. 5. R → R̃ correlation matrix visualization.

clustering is used to make representations compact, and k is
critical for representation learning and downstream anomaly
detection. Figure 4(b) clearly demonstrates that the impact
of k is twofold: too small a k may make it difficult for
the CRC framework to find the appropriate cluster centers
that make the causal representation tight, while too large a
k may make learned cluster centers close to the anomalous
events. The effects N and k on the model performance are
joint. Our CRC framework achieves the best performance at
{N = 64, k = 128} and {N = 32, k = 128} on the CUHK
Avenue [60] with ResNet-18 and ResNet-50. In addition,
the performance shown in Figure 4(b) is more stable than
that in 4(a), indicating the superior robustness of ResNet-50
compared to ResNet-18.

E. Feasibility Analysis

The proposed CRC framework attempt to address unsu-
pervised VAD via causal representation learning and detect
anomalies with the learned consistency of the causal variables
for regular events. To qualitatively present the response of
causal representation consistency to anomalies, we randomly
select a normal and abnormal sample from the test set of
ShanghaiTech [61] dataset and partially visualized their R →
R̃ correlation matrices, as shown in Figure 5. The causal
factors of the regular events in (a) show good independence,
i.e., the diagonal elements of the matrix are close to 1 while
the other elements are as small as possible. In contrast, many
non-diagonal elements of the matrix for abnormal events in (b)
are greater than 0.4, indicating that the causal factors learned
on negative samples fail to represent the abnormal patterns.
Therefore, we can quantitatively measure the deviation of the
test samples from the learned representation consistency by
calculating the Frobenius norm (F-norm) of the correlation
matrix with the identity matrix, i.e., ∥ C1−I ∥2F . The F-norm
of the two selected samples are 18.3 and 22.4, respectively,
which can amplify the score gap between regular and abnormal
events, as presented in Eq. 10.

F. Temporal Localization

Moreover, we plot the score curves of two sample videos
from the UCSD Ped2 [48] dataset to qualitatively verify the
quick response of our method to abnormal events, as shown in
Figure 6. For the regular interval, the anomaly scores fluctuate
slightly but always remain low (generally < 0.2). When

Fig. 6. Results of temporal localization for anomalies.

anomalous events occur, the anomaly score rises rapidly and
remains high (generally >0.6) until the anomaly ends or leaves
the field of view, indicating that our CRC framework can
quickly respond to anomalies and provide accurate temporal
localization for abnormal events.

V. CONCLUSION

In this paper, we address unsupervised video anomaly detec-
tion from a causal perspective and propose causally-inspired
representation consistency learning to model video normality
with intrinsic causality. The proposed CRC framework exploits
causal principles to mine unobservable causal factors that
can fully characterize normality and discriminates anomalous
events with the learned representation consistency. Extensive
experimental results on three benchmarks validate the ef-
fectiveness and superiority of causal representation learning
on video anomaly detection. The learned normality-specific
causal variable with inherent consistency can effectively rea-
son about regular events with label-independent bias and
respond quickly and sensitively to real-world anomalies. In
future work, we will further explore potential causal mecha-
nisms in unsupervised normality learning and develop robust
video anomaly detection models that can bridge the domain
gaps in multi-scene and multi-view real-world videos.
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