
My Brother Helps Me: Node Injection Based Adversarial Attack
on Social Bot Detection

Lanjun Wang
∗

Tianjin University

Tianjin, China

wanglanjun@tju.edu.cn

Xinran Qiao
∗

Tianjin University

Tianjin, China

qiaoxinran@tju.edu.cn

Yanwei Xie

Tianjin University

Tianjin, China

xie_yw@tju.edu.cn

Weizhi Nie

Tianjin University

Tianjin, China

weizhinie@tju.edu.cn

Yongdong Zhang

University of Science and Technology

of China

Hefei, China

zhyd73@ustc.edu.cn

Anan Liu
†

Tianjin University

Tianjin, China

liuanan@tju.edu.cn

ABSTRACT
Social platforms such as Twitter are under siege from a multitude of

fraudulent users. In response, social bot detection tasks have been

developed to identify such fake users. Due to the structure of social

networks, the majority of methods are based on the graph neural

network(GNN), which is susceptible to attacks. In this study, we

propose a node injection-based adversarial attack method designed

to deceive bot detection models. Notably, neither the target bot nor

the newly injected bot can be detected when a new bot is added

around the target bot. This attack operates in a black-box fashion,

implying that any information related to the victim model remains

unknown. To our knowledge, this is the first study exploring the re-

silience of bot detection through graph node injection. Furthermore,

we develop an attribute recovery module to revert the injected node

embedding from the graph embedding space back to the original

feature space, enabling the adversary to manipulate node perturba-

tion effectively. We conduct adversarial attacks on four commonly

used GNN structures for bot detection on two widely used datasets:

Cresci-2015 and TwiBot-22. The attack success rate is over 73% and

the rate of newly injected nodes being detected as bots is below

13% on these two datasets.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
• Security and privacy→ Human and societal aspects of security
and privacy.

KEYWORDS
Black-box Adversarial Attack, Bot Detection, Social Media

∗
Both authors contributed equally to this research.

†
Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00

https://doi.org/10.1145/3581783.3612396

ACM Reference Format:
Lanjun Wang, Xinran Qiao, Yanwei Xie, Weizhi Nie, Yongdong Zhang,

and Anan Liu. 2023. My Brother Helps Me: Node Injection Based Adversarial

Attack on Social Bot Detection. In Proceedings of the 31st ACM International
Conference on Multimedia (MM ’23), October 29–November 3, 2023, Ottawa,
ON, Canada. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3581783.3612396

1 INTRODUCTION
As social media becomes an increasingly integral part of people’s

daily lives, public opinion is now more heavily influenced by its

content than ever before [7, 34]. With millions of daily active users,

Twitter is a thriving social media platformwith significant influence

in shaping public opinion. However, as well as bringing benefits,

social media also poses a major threat [37]. The platform’s im-

mense power has led to the proliferation of a new type of users,

known as social bots. These bots can amplify certain discussions

at the expense of others and manipulate public opinion to achieve

their own goals. Examples of such manipulation include extreme

propaganda [1], promotion of political conspiracies [16, 21], and

interference in elections [10, 15].

To address the various problems caused by social bots, social bot

detection tasks have been developed. Existing social bot detection

methods are usually divided into three categories: feature-based

methods, text-based methods, and graph-based methods. Feature-

based methods utilize user information for feature engineering and

apply traditional classification algorithms to detect bots [13, 24].

Text-based methods use natural language processing techniques to

process user tweets and user description texts for bot detection [3,

23]. Graph-based methods interpret the Twitter social network as a

graph and use the concepts of network science and geometric deep

learning for bot detection [11, 29].

Recent studies [12, 14] have shown that graph-based methods

achieve state-of-the-art performance in social bot detection. These

methods can detect novel bots and overcome the various challenges

associated with social bot detection. Graph-based methods typically

employ Graph Neural Networks (GNNs) to detect bots by interpret-

ing users as nodes and relationships as edges. Most GNNs follow

a message passing scheme and achieve significant performance in

many tasks [4, 30, 39] by iteratively aggregating representations of

representation learning nodes from their neighbors. Despite their

ar
X

iv
:2

31
0.

07
15

9v
1

 [
cs

.C
R

]
 1

1
O

ct
 2

02
3

https://doi.org/10.1145/3581783.3612396
https://doi.org/10.1145/3581783.3612396
https://doi.org/10.1145/3581783.3612396

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Lanjun Wang et al.

success, GNNs have been found to be highly vulnerable to adver-

sarial attacks [2, 31, 38, 41, 43]. Graph-based social bot detection

methods rely on GNNs for processing social networks, making

them similarly vulnerable to adversarial attacks.

However, there is no attempt at social bot detection tasks because

of the following difficulties. Firstly, most of the existing adversarial

attack methods are white-box attacks [5, 17], which require the

attacker to master the victim model in advance. On the contrary,

the information of the victim model is the key asset of the com-

panies who manage social platforms, and thus it is infeasible for

the attacker to access it. Therefore, the practical adversarial attacks

on social bot detection are in a black-box manner. Secondly, too

much modification on the social network can be noticed to lead

to the failure of the attack, so it is necessary to maintain the im-

perceptibility of the attack method, which requires not perturbing

too much information about the original network. According to

the studies on GNN adversarial attacks [9, 33, 35, 45], we choose

to leverage the single node injection method [35] to control the

change of the whole network on one node. Furthermore, since this

newly injected node is also a fake user in the social network, there

is a task-specific imperceptible requirement: the newly injected

node cannot be detected by the victim model. This is a different

constraint from the classical adversarial attacks on GNNs which

control the number of the perturbed nodes [35] or the access graph

range of the attackers [27]. Thirdly, most of the existing node in-

jection adversarial attacks against GNNs are carried out in the

intermediate embedding space [35, 42], which leads to the attack

generating an injected node in the form of embedding. However,

for our specific adversarial attack on social bot detection, since the

attacker needs to generate a new bot and inject it into the original

social network to achieve the undetectable of the target bot, the

original attributes of the injected bot have to be restored.

In this study, we address these challenges of black-box settings,

imperceptibility, and attribute recovery in the adversarial attack on

social bot detection. First, we set up a simple GNN structure based

on embeddings from the original attribute space as a substitute

model. This setting relies on the transferability of the adversar-

ial samples to achieve the black-box attack. Then, a single-node

injection adversarial attack approach, G-NIA [35], is applied to

address the imperceptibility of the attack from the perturbation

aspect. Moreover, to maintain the imperceptibility of the attack

from the attribute aspect, we collect statistics on the attributes of

human users, then convert them as a series of constraints, and apply

these constraints to the newly injected node. Finally, we design

an attribute recovery module to obtain the original features of the

injected node from the embedding space.

In summary, this study has the following contributions:

• In order to fool bot detection methods, we propose a black-

box node injection-based adversarial attack method, which

is to add a new bot around a target bot and to achieve both

the target bot and the newly injected bot undetectable by

the bot detection method. To the best of our knowledge, this

is the first study on the node injection-based bot detection

attack.

• We design an attribute recovery module to restore the node

feature from the graph embedding space to the original fea-

ture space in order to make the adding node perturbation

operable by the adversary.

• Weattack four existing bot detectionmethods on two datasets

(Cresci-2015 and TwiBot-22) to evaluate the generalizability

and effectiveness of the attack models. The attack success

rate is over 73% and the rate of newly injected nodes being

detected as bots is below 13% on two datasets. Specifically,

the newly injected node detection rate on Cresci-2015 is as

low as 0.06%.

2 RELATEDWORK
In this section, we introduce the vulnerability of bot detection and

the adversarial attack on GNNs.

2.1 Vulnerability of Bot Detection
Existing bot detection methods are vulnerable to attack. The error

of the bot detection model can be caused either by creating the bot

scenarios or by carrying out the adversarial attack.

Torusdağ et al. [36] investigate the vulnerability of existing social

bot detection systems by creating their own bot scenarios instead

of relying on public datasets. They experimentally show that the

existing social bot detection model is unable to detect their social

bots, thus demonstrating the vulnerability of these models. How-

ever, their study only serves to verify the vulnerability of the bot

detection model and does not offer further discussion on potential

solutions or improvements. Kantartopoulos et al. [20] obtain good

results in adversarial attacks for bot detection by poisoning the

training dataset. Their attack involved randomly modifying the

labels of the bot nodes in the training set and copying new nodes

based on the information of existing nodes. While this method is

an adversarial attack for bot detection, it is not within the same

scope as ours. This random attack method cannot specify nodes for

attack and lacks flexibility. Additionally, this attack method directly

uses the poisoned data to train the bot detection model, which

can only be used to enhance the robustness of the bot detection

model. In contrast, we propose an adversarial attack method based

on node injection. Our method involves adding a new node and a

new relationship to the original social network, which causes the

bot detection model to generate classification errors for both the

target bot node and the newly injected bot node. This approach

greatly improves the accuracy and benefits of the attack.

2.2 Adversarial Attack on GNN
Extensive studies have shown that graph neural networks (GNNs)

are vulnerable to various adversarial attacks [19, 28, 33]. These

attacks can perturb node attributes, graph structures, and labels [6,

40]. For instance, Nettack [46] is a targeted attack that aims to de-

ceive specific nodes by modifying their properties and the structure

of the gradient bootstrap graph. Meta-attack [44] is a non-targeted

attack based on meta-learning, but this method degrades the overall

performance of GNNs. Additionally, G-NIA [35] is a targeted attack

that adds only one new node and one new edge at a time, resulting

in minimal disturbance to the original graph structure.

My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

In this study, we use a similar approach to G-NIA to conduct

an undetectable adversarial attack against the social bot detection

model. G-NIA alone is insufficient to achieve our goal since this

method can only generate the embeddings of injected nodes and

requires reading the parameters of the victim model for a white-box

attack. As we cannot access the specific information of the targeted

bot detection model, we design a substitute model for a black-

box attack. Additionally, to realize the attack on social networks,

we need to obtain the attributes of injected nodes, including user

descriptions, tweets, numerical metadata, and categorical metadata.

To do so, we further propose an attribute recovery module to obtain

the attributes of injected nodes from the generated embeddings.

3 METHODOLOGY
In this section, we delve into the specifics of our proposed method.

In Sec. 3.1, we provide a definition of the problem we aim to address.

Subsequently, in Sec. 3.2, we present the overall framework of our

methodology. Finally, in Secs. 3.3-3.6, we specify the four primary

modules in our framework.

3.1 Problem Definition
3.1.1 Objective. Let 𝐺 = (𝑉 , 𝐸,𝐴) represents a social network,

where 𝑉 = {1, 2, . . . , 𝑘} constitutes the set of 𝑘 users, 𝐸 ⊆ 𝑉 × 𝑉

defines the relationships of the users, and𝐴 represents the attributes

of users.

The goal of the social bot detection task is to achieve accurate

prediction of user types in the social graph, i.e., 𝑓 (ℎ |𝐺) = 𝑦ℎ and

𝑓 (𝑏 |𝐺) = 𝑦𝑏 , where 𝑓 (·|𝐺) denotes the detection outcome of the

detection model with respect to the social network 𝐺 , ℎ and 𝑏

represent human and bot respectively, 𝑦ℎ and 𝑦𝑏 indicate the node

type is human and bot respectively.

Based on the difficulties of the adversarial attack against the

bot detection task mentioned in Sec. 1, we adopt the single-node

injection method to carry out the black-box attack. The problem is

defined as follows:

Definition 1 (Single-node Adversarial Attack on Social

Bot Detection). Given a social network 𝐺 , and a target bot 𝑏𝑡
which the attacker wants to evade the bot detection 𝑓 (·), the single-
node injection adversarial attack on bot detection is to obtain a new
social network graph 𝐺 ′, where 𝐺 ′ is constituted by 𝐺 and one new
bot 𝑏𝑖𝑛 𝑗 = (𝑣𝑖𝑛 𝑗 , 𝑒𝑖𝑛 𝑗 , 𝑎𝑖𝑛 𝑗), that is,𝐺 ′ = (𝑉 ∪𝑣𝑖𝑛 𝑗 , 𝐸∪𝑒𝑖𝑛 𝑗 , 𝐴∪𝑎𝑖𝑛 𝑗),
such that 𝑓 (𝑏𝑡 |𝐺 ′) = 𝑦ℎ and 𝑓 (𝑏𝑖𝑛 𝑗 |𝐺 ′) = 𝑦ℎ .

Specifically, this definition illustrates three requirements of this

adversarial task: 1) the new social network graph 𝐺 ′
only has one

new node (i.e., 𝑣𝑖𝑛 𝑗 with its attribute 𝑎𝑖𝑛 𝑗) and one new edge (i.e.,

𝑒𝑖𝑛 𝑗) to connect the node to the original graph 𝐺 , without altering

any existing nodes or edges in𝐺 . This aims to achieve imperceptible

perturbation on the social graph. 2) The original attribute 𝑎𝑖𝑛 𝑗 is

required to be attained, which keeps the adversarial attack operable

in practice. 3) Although the task is only to shield the target bot

𝑏𝑡 , as the new injected node 𝑏𝑖𝑛 𝑗 is also a man-made bot, 𝑏𝑖𝑛 𝑗 is

also required to be recognized as a human (i.e., 𝑓 (𝑏𝑖𝑛 𝑗 |𝐺 ′) = 𝑦ℎ) to

escape the bot detection.

3.1.2 Threat Model. As introduced in Sec. 1, this study focuses

on the black-box attack to keep it practical. That is, the adversary

does not know the structure and weight information of the victim

model because the victim model is the key asset of the companies

who manage social networks. Furthermore, the adversary knows

the target bot which they manage, as well as the corresponding

social networks which are published and can be crawled from social

media.

3.2 Framework
The overall framework of our method is shown in Figure 1, which

has four major modules: 1○substitute model, 2○embedding genera-

tion, 3○edge generation, and 4○attribute recovery. In detail, as the

adversarial attack is in a black-box manner, we train a Relational

Graph Convolutional Network (R-GCN) [32] as the 1○substitute

model, and leverage the transferability of the adversarial samples to

fool some latest bot detectors. More details of victim models are in

Sec. 4. Then, the node embeddings extracted from the 1○substitute

model as well as the weights of the 1○substitute model are used

to generate the embedding of the injected node in 2○embedding

generation. By leveraging the embedding of the injected node as

well as the information used in 2○, 3○edge generation obtains the

injected edge. As illustrated in the definition, it is not enough to

have the embedding of the new node, but the original attributes are

required. Thus, 4○attribute recovery restores the embedding of the

injected node output by 2○embedding generation into the original

attributes. Finally, the new node can be created by the attacker and

injected into the social graph to shield the target bot.

3.3 Substitute Model
To launch an attack without knowing the specific information of

the victim models, we devise a substitute model for transfer-based

attacks.

For each user 𝑣 in the social graph 𝐺 , the attribute 𝑎 includes

four types, which are the description 𝐷 , a set of tweets 𝑇 , a series

of numerical properties 𝑁 , and a series of categorical properties

𝐶 , that is 𝑎 = (𝐷,𝑇 , 𝑁 ,𝐶), where 𝐷 = {𝑑𝑖 }𝐿𝑖=1 represents a user’s
description with 𝐿 words, 𝑇 = {𝑡𝑖 }𝑀𝑖=1 signify a user’s 𝑀 tweets,

𝑁 = {𝑛𝑖 }𝑃𝑖=1 denotes a user’s numerical properties, and𝐶 = {𝑐𝑖 }𝑄𝑖=1
indicate a user’s categorical properties.

For edges between users, given the following and being followed

information, there are two types of edges: “friend” and “follow” [8],

that is 𝑅 =
{
𝑟 𝑓 , 𝑟𝑜

}
. Due to these different types of edges in the

social network, the social network is a heterogeneous graph. We

represent the friend and follow neighborhoods of a user 𝑣 as 𝐸𝑓 (𝑣)
and 𝐸𝑜 (𝑣), respectively, and all neighbors of 𝑣 is represented as

𝐸𝑟 (𝑣) = 𝐸𝑓 (𝑣) ∪ 𝐸𝑜 (𝑣).
The substitute model consists of two parts: individual attribute

encoding and structure-based feature transformation. We mainly

use four fully-connected layers for individual attribute encoding

and an R-GCN for structure-based feature transformation. Specif-

ically, the fully-connected layer networks are used to encode the

users’ semantic information from their descriptions and tweets,

as well as both user numerical and categorical property informa-

tion, respectively, as illustrated in below (a)-(d). Meanwhile, the

R-GCN is to obtain the overall user representation by considering

the heterogeneous social graph, which is specified as (e). In addition,

we set the dimension of the total user embedding 𝐷 . As the user

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Lanjun Wang et al.

following

follower

human

bot

Embedding Generation

Embedding NN

Mapping

Injected Embedding

Edge Generation

Mapping

Edge NN

Injected Edge

Substitute Model

R-GCNGraph Label

Node

Edge 1

0

0

0

1

Attribute Recover

Injected Node

Numerical

Property

Decoder

Categorical

Property

Decoder

00

G'

xinj einj

F x F e

G x G e

Representation

of target
xb

Weight of the

R-GCN
ub

Representation

of neighbors
xn

xb ubxn xinj ubxb xn

2

1

3 4

Figure 1: Framework of Single-node Adversarial Attack on Social Bot Detection

embedding is concatenated by attribute embeddings as defined in

Equation (3), the dimension of each attribute type is
𝐷
4
, that is, the

output dimension of the fully connected layer networks is
𝐷
4
.

The detailed processes are as follows.

a) User Description. We utilize pre-trained RoBERTa [25] to en-

code user descriptions. Initially, we transform the words in the user

description using RoBERTa:

𝑑 = 𝑅𝑜𝐵𝐸𝑅𝑇𝑎({𝑑𝑖 }𝐿𝑖=1), 𝑑 ∈ R𝐷𝑠×1
(1)

where 𝑑 represents the user description’s representation, and 𝐷𝑠

corresponds to the embedding dimension of RoBERTa. Next, we

extract representation vectors for the user’s description:

𝑥𝑑 = 𝜙 (𝑊𝐷 · 𝑑 + 𝑏𝐷), 𝑥𝑑 ∈ R
𝐷
4
×1

(2)

where𝑊𝐷 and 𝑏𝐷 are learnable parameters, 𝜙 is the activation

function.

b) User Tweets. We follow the same process as Equation (1) and

Equation (2) on each tweet. Then, by averaging the representations

of all tweets, we obtain the user tweet representation 𝑥𝑡 ∈ R
𝐷
4
×1
.

c) User Numerical Properties. We utilize numerical features that

can be directly accessed through the Twitter API, as shown in

Table 1. After performing z-score normalization, we obtain the

representation of user numerical features 𝑥𝑛 ∈ R
𝐷
4
×1

using a fully

connected layer.

d) User Categorical Properties. Similar to user numerical prop-

erties, we make use of directly available user categorical features

from the Twitter API, which are displayed in Table 2. By employing

one-hot encoding, concatenating, and transforming them with a

fully-connected layer, we derive the representation for the user’s

categorical features 𝑥𝑐 ∈ R
𝐷
4
×1
.

e) Overall User Embedding. Weencode the user description, tweets,

numerical, and categorical properties, then concatenate them to

Table 1: User numerical properties

Feature Name Description

followers number of followers

active days number of active days

screen name length screen name character count

followings number of followings

status number of public lists where this user belongs

Table 2: User categorical properties

Feature Name Description

protected protected or not

verified verified or not

default profile image the default profile image

serve as the user embedding. For each user 𝑖 ∈ 𝑉 , we represent the

user embedding as:

𝑥𝑖 = [𝑥𝑑𝑖 ;𝑥𝑡 𝑖 ;𝑥𝑛𝑖 ;𝑥𝑐𝑖] ∈ R𝐷×1
(3)

We employ an R-GCN [32] on the heterogeneous graph to learn

user representations. The overall user embeddings in Equation (3)

are used directly as the initially hidden vectors for nodes within

the graph:

𝑥
(0)
𝑖

= 𝑥𝑖 , 𝑥
(0)
𝑖

∈ R𝐷×1
(4)

Then, we apply the 𝑙-th R-GCN layer:

𝑥
(𝑙+1)
𝑖

= Θ𝑠𝑒𝑙 𝑓 · 𝑥 (𝑙)
𝑖

+
∑︁
𝑟 ∈𝑅

∑︁
𝑗∈𝐸𝑟 (𝑖)

1

|𝐸𝑟 (𝑖) |
Θ𝑟 · 𝑥 (𝑙)𝑗

(5)

where Θ is the projection matrix, 𝑙 = {0, . . . , 𝐿 − 1}, and 𝐿 is the

number of edge types. We directly use the output of the R-GCN as

the prediction label:

𝑦𝑖 = 𝑥
(𝐿)
𝑖

(6)

My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

Here, we jointly train the attribute encoding and overall feature

transformation in the substitute model. The loss function of the

substitute model is constructed as follows:

𝐿𝑠 = −
∑︁
𝑖∈𝑉

[𝑦𝑖𝑙𝑜𝑔(𝑦𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − (𝑦𝑖)] + 𝜆
∑︁
𝑤∈𝜃𝑠

𝑤2
(7)

where 𝑦𝑖 is the ground-truth label and 𝜃𝑠 are all parameters of the

substitute model.

3.4 Embedding Generation
We use the embeddings of the target node 𝑥𝑏𝑡 and its first-order

neighbors 𝑥𝑛 , to guide the generation of the injected node, where 𝑥𝑛
is the average embedding of all first-order neighbors of the target

node 𝑏𝑡 . Since feature transformation maps the embedding space to

the label space as shown in Equations (4)-(6), we adopt the column

of the feature transformationweights to represent the label class𝑢𝑏𝑡 .

The process of constructing 𝑢𝑏𝑡 is as follows. Since there are two

types of edges (i.e., “friend” and “follow”) in the graph, the weight

of the R-GCN is divided into𝑊𝑓 and𝑊𝑜 and then aggregated with

a fully-connected layer 𝑓𝑊 , that is𝑊 = 𝑓𝑊 (𝑊𝑓 ,𝑊𝑜). Finally, 𝑢𝑏𝑡 =

[𝑊 [:, 𝑦𝑏];𝑊 [:, 𝑦ℎ];𝑊], where𝑊 [:, 𝑦𝑏] represents the column of

𝑊 with respect to the label of before attacking (i.e. bot, 𝑦𝑏), and

𝑊 [:, 𝑦ℎ] represents the column of𝑊 with respect to the expected

label of after attacking (i.e. human, 𝑦ℎ).

Using the representations described above, we utilize two fully-

connected layers F 𝑥
and a Multi-Layer Perceptron (MLP) G𝑥

to

generate the embedding of the injected node, denoted as 𝑥𝑖𝑛 𝑗 :

𝑥𝑖𝑛 𝑗 = G𝑥 (F 𝑥 (𝑥𝑏𝑡 , 𝑥𝑛, 𝑢𝑏𝑡 ,𝐺 ;𝜃
∗
𝑥))

F 𝑥 (𝑥𝑏𝑡 , 𝑥𝑛,𝑢𝑏𝑡 ,𝐺 ;𝜃
∗
𝑥) = 𝜎 ([𝑥𝑛 ;𝑥𝑏𝑡 ;𝑢𝑏𝑡]𝑊

𝑥
0
+ 𝑏𝑥

0
)𝑊 𝑥

1
+ 𝑏𝑥

1

(8)

where 𝜃∗𝑥 =
{
𝑊 𝑥

0
, 𝑏𝑥

0
,𝑊 𝑥

1
, 𝑏𝑥

1

}
are trainable weights. The mapping

function G𝑥
maps the output of F 𝑥

to the designated embedding

space of the original graph, making the embeddings similar to

existing nodes.

3.5 Edge Generation
The injected edges serve to spread the attributes of the injected

node to the target nodes. The injected edge is limited to the target

node and its first-order neighbors, meaning that the injected node

must be at least a second-order neighbor of the target node. To

capture the coupling effect between network structure and node

features, we jointly model the injected embeddings and edges.

Specifically, we use the injected embeddings to guide the gen-

eration of injected edges. To guide the generation of the injected

edge 𝑒𝑖𝑛 𝑗 , we include the generated injected embedding 𝑥𝑖𝑛 𝑗 along

with the information of the target bot and its neighbors as used

in Equation (8). We employ two fully-connected layers F 𝑒
and an

MLP G𝑒
to generate 𝑒𝑖𝑛 𝑗 as follows:

𝑒𝑖𝑛 𝑗 = G𝑒 (F 𝑒 (𝑥𝑖𝑛 𝑗 , 𝑥𝑏𝑡 , 𝑥𝑛, 𝑢𝑏𝑡 ,𝐺 ;𝜃
∗
𝑒))

F 𝑒 (𝑥𝑖𝑛 𝑗 , 𝑥𝑏𝑡 ,𝑥𝑛, 𝑢𝑏𝑡 ,𝐺 ;𝜃
∗
𝑒) = 𝜎 ([𝑥𝑏𝑡 ;𝑥𝑛 ;𝑥𝑖𝑛 𝑗 ;𝑢𝑏𝑡]𝑊

𝑒
0
+ 𝑏𝑒

0
)𝑊 𝑒

1
+ 𝑏𝑒

1

(9)

where 𝜃∗𝑒 =
{
𝑊 𝑒

0
, 𝑏𝑒

0
,𝑊 𝑒

1
, 𝑏𝑒

1

}
are trainable weights.

Once the injected embedding and edge are generated, we inject

the injected node into the original graph 𝐺 to obtain the perturbed

graph 𝐺 ′
. We then feed𝐺 ′

into the substitute model and compute

the attack loss as follows:

𝐿𝑎𝑡𝑘 =
∑︁

𝑏𝑡 ∈𝑉𝑏
(𝑆 ′
𝑏𝑡 ,𝑦𝑏

− 𝑆 ′
𝑏𝑡 ,𝑦ℎ

) (10)

where 𝑆 ′
𝑏𝑡 ,𝑦

denotes the predicted label probability of the substitute

model in the new social network graph 𝐺 ′
with respect to the

target bot 𝑏𝑡 on the corresponding label (i.e. 𝑦ℎ and 𝑦𝑏). Here we

conduct joint training on the embedding generation module and

edge generationmodule. The optimization process aims tominimize

the attack loss 𝐿𝑎𝑡𝑘 , which guides the training process. We employ

gradient descent to iteratively optimize 𝐿𝑎𝑡𝑘 until convergence.

3.6 Attribute Recovery
The social network bot detection model detects users by extract-

ing features from the raw user data. However, the injected node

embeddings generated in Sec. 3.4 represent the total user features

that have been extracted by the feature extractor in the substitute

model, which is not consistent with the bot detection model whose

input is the original user features. To address this, we propose a

module named attribute recovery to recover the generated injected

node embeddings.

3.6.1 User Description & User Tweets. It is challenging to recover

text features, so we directly set the text features for the user de-

scription and user tweets to 0 for the injected node. This means

that the injected node does not contain any text information.

3.6.2 User Numerical Properties. To recover the numerical features

of the injected node, we train a multi-layer perceptron (MLP) using

the preprocessed numerical data 𝑁 = {𝑛𝑖 }𝑃𝑖=1 and the numerical

embeddings 𝑥𝑛 extracted by the feature extractor of the substitute

model. First, we calculate the loss per user at the original feature

level:

𝑙𝑛1 =

𝑃∑︁
𝑖=1

| 𝑀𝐿𝑃𝑛 (𝑥𝑛𝑖) − 𝑛𝑖 | (11)

Next, we also constrain the effects of the numerical MLP at the

feature level:

𝑙𝑛2 =

𝑃∑︁
𝑖=1

| 𝜙 (𝑊𝑁 ·𝑀𝐿𝑃𝑛 (𝑥𝑛𝑖) + 𝑏𝑁) − 𝑥𝑛𝑖 | (12)

Finally, we add the losses for each user 𝑗 as a loss function of the

numerical MLP:

𝐿𝑛 =
∑︁
𝑗∈𝑉

(𝑙𝑛1 + 𝛼𝑙𝑛2) (13)

where 𝛼 is a constant, and here we set 𝛼 = 0.01.

To ensure that the recovered numerical features are realistic,

we reverse the z-score normalization on the recovered features to

obtain the original integer numerical features. Then, we constrain

the numerical features to their respective appropriate ranges and

perform z-score normalization again to obtain the final user nu-

merical properties. The constraints are carefully designed based

on the statistics of the corresponding dataset where the node is to

be injected, in order to 1) achieve successful attacks to shield the

target bot, 2) make the injected node imperceptible, as well as 3) the

injection process operable by the attacker. Detailed setting criteria

can be referred to in Sec. 4.1.2.

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Lanjun Wang et al.

3.6.3 User Categorical Properties. Similar to the attribute recovery

of the user numerical properties, we train another MLP using the

data 𝐶 = {𝑐𝑖 }𝑄𝑖=1 obtained after data preprocessing and the cate-

gorical embeddings 𝑥𝑐 processed by the feature extractor of the

substitute model. For the categorical MLP, we calculate each user’s

losses at the original feature level only, similar to Equation (11),

and then sum all users’ losses as the loss function of categorical

property recovery. We recover the user categorical properties to

the one-hot encoding by adding a constraint during the attribute

recovery process.

3.6.4 Edge Type. After generating the injected node with the in-

jected embedding and recovering its attributes, we need to connect

it to the target node in the subgraph. Since the injected node is a bot,

we set the injected edge as "follow" to make it easier to establish.

4 EXPERIMENT
In this section, we conduct experiments to show the efficacy of our

method. In Sec. 4.1, we introduce the experiment settings. Then,

Sec. 4.2 shows the overall performance of our method. On this

basis, we conduct ablation experiments, parameter analysis, and

transferability analysis in Sec. 4.3, Sec. 4.4, and Sec. 4.5, respectively.

4.1 Experiment Settings
4.1.1 Datasets. We conduct experiments to evaluate the effective-

ness of our method on two datasets: Cresci-2015 [8] and TwiBot-

22 [12]. These datasets comprise heterogeneous graph data from

social networks, and their statistics are shown in Table 3.

Table 3: Statistics of the datasets

Dataset Human Bot Tweet Edge

Cresci-2015 1,950 3,351 2,827,757 7,086,134

TwiBot-22 860,057 139,943 86,764,167 170,185,937

Due to NVIDIA RTX 3090Ti GPU memory limitations, we are

unable to convert the complete social network graph provided by

the TwiBot-22 dataset into a sparse matrix for quickly obtaining

the first-order neighbors of the target as required in Equation 8 and

Equation 9. Therefore, We use a community selection algorithm to

select about 50,000 nodes to form five subgraphs for experiments.

The statistics of the subgraphs are shown in Table 4.

Table 4: Statistics of the five subgraphs selected on TwiBot-22

Graph Human Bot Edge

subgraph 1 45,081 4,491 993,930

subgraph 2 44,864 4,276 950,365

subgraph 3 46,079 4,278 953,733

subgraph 4 46,267 4,542 963,507

subgraph 5 45,553 4,496 983,006

whole graph 860,057 139,943 170,185,937

4.1.2 Constraint Settings. Tomake the injected node more realistic,

we set constraints to adjust its attributes as introduced in Sec. 3.6.

The constraints for injected nodes in the two datasets are shown in

Table 5 and Table 6.

In order to make the user numerical properties of the injected

node realistic and easy to implement, we apply the following constraint-

setting criteria.

• The number of followers is set to 0, which indicates that

the injected node does not need to be noticed by any others.

That is to say, this indicates that the attacker does not need

to buy any fan for this injected node.

• The maximum number of active days is set to 100, which

indicates that the attacker does not need too much time to

prepare for the shield. Noted this number is far lower than

the average active days in the social networks.

• The screen name length and the number of followings to the

maximum allowed by Twitter, as these are easily attainable

attributes.

• The numbers of statuses are on the same orders of mag-

nitudes as most users in the corresponding original social

networks.

Table 5: Mean and standard deviation of the numerical fea-
tures as well as the constraints on Cresci-2015

Feature Name Mean Std Constraints

followers count 246 5,879 0

active days 3,201 461 100

screen name length 11 3 15

following count 386 561 5,000

status 3 25 500

Table 6: Mean and standard deviation of the numerical fea-
tures as well as the constraints on TwiBot-22

Feature Name Mean Std Constraints

followers count 41,230 602,078 0

active days 2,128 1,633 100

screen name length 14 7 15

following count 2,251 15,782 5,000

status 21,689 120,247 40,000

4.1.3 Victim Models. We evaluate the effectiveness of our method

by attacking four GNNs that are used for bot detection, which

are benchmarks given by the Twibot-22 [12] dataset. The four

methods use Graph Convolutional Network (GCN) [22], Hetero-

geneous Graph Transformer (HGT) [18], Simple Heterogeneous

Graph Neural Network (Simple-HGN) [26], and Relational Graph

Convolutional Network (R-GCN) [32] respectively for social bot

detection. These four methods leverage text information from user

descriptions and tweets, user numerical and categorical property

information, as well as heterogeneous graphs based on user rela-

tionships to learn user representations for bot detection tasks on

My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

Twitter. Among them, the method based on R-GCN [14] is different

from our substitute model. It jointly encodes the various original

attributes of each user and inputs them to two R-GCNs. Then, it

uses a fully-connected layer to get the prediction label. Meanwhile,

as introduced in Sec. 3.3, we encode the four types of original at-

tributes respectively, splice them together, and then input them to

a network with one R-GCN to predict results directly.

4.1.4 Evaluation Metrics. To demonstrate the effectiveness of our

method, we set two evaluation metrics as follows:

Attack success rate. We measure the success of the attack by

evaluating whether the victim model can detect the target bot to

the new social network graph 𝐺 ′
. A successful attack occurs when

the target bot node is classified as a human. That is to say, the

higher the attack success rate, the better effectiveness of the attack.

New node detected as bot. We evaluate the imperceptibility of our

injected node by measuring whether the victim model can detect

it as a bot. A successful attack occurs when the injected node is

classified as a human. That is to say, the lower rate of the new node

detected as a bot, the better imperceptibility of the attack.

4.1.5 Implementation Details. When training the substitute model,

the learning rate is set as 1e-2, and the epoch is set as 150. In the

training for embedding generation and edge generation, we set a

maximum of 500 epochs. If the misclassification rate of the valida-

tion set does not increase for 5 consecutive epochs, the training

is stopped. Here, we set the batch size to 32 and the learning rate

to 1e-5. For the attribute recovery, we set the initial learning rate

as 1e-2, and the learning rate drops to 1e-5 with training. For the

numerical property recovery loss in Equation 13, we set 𝛼 = 0.01.

Each experiment is repeated five times to ensure reliability.

4.2 Overall Performance
We evaluate the effectiveness of our method on two datasets, Cresci-

2015 and TwiBot-22, and the results are presented in Table 7 and

Table 8, respectively.

Table 7: Overall performance on Cresci-2015 (%)

Method attack success rate new node become bot

GCN 95.68 ± 1.44 0.00 ± 0.00

HGT 94.79 ± 1.18 0.06 ± 0.12

Simple-HGN 95.74 ± 1.25 0.00 ± 0.00

R-GCN 95.74 ± 1.50 0.06 ± 0.12

Table 8: Overall performance on TwiBot-22 (%)

Method attack success rate new node become bot

GCN 93.97 ± 5.43 2.66 ± 5.09

HGT 89.37 ± 3.56 5.40 ± 10.80

Simple-HGN 74.94 ± 2.16 7.39 ± 14.78

R-GCN 73.73 ± 1.71 12.94 ± 19.19

Our method successfully achieves significant attack results on

both datasets. However, it is noteworthy that the attack results

on Cresci-2015 are better than those on TwiBot-22. This can be

attributed to the increasing complexity of social networks and the

advancements in camouflage technologies employed by bot users.

4.3 Ablation Study
To demonstrate the validity of our adversarial attack method, we

conduct ablation experiments on our method. Since the substitute

model and attribute recovery module are essential for data con-

version, they cannot be removed. Therefore, we perform ablation

on the embedding generation and edge generation modules. We

choose the TwiBot-22 dataset, which is more representative of the

current social network environment.

In the ablation experiment for embedding generation, we directly

assign the embedding of the target node to the injected node to

explore the importance of the embedding generation module in

adversarial attacks. The experimental results are shown in Table 9.

It is obvious that the attack effect decreases after removing the

embedding generation module. This shows that the embedding

generation module plays a vital role in both the attack success rate

and the probability of the new node becoming a bot.

Table 9: Ablation study for embedding generation on TwiBot-
22 (%)

Method

attack success rate new node become bot

ours assign ours assign

GCN 93.97 ± 5.43 85.99 ± 2.75 2.66 ± 5.09 39.24 ± 1.32

HGT 89.37 ± 3.56 84.36 ± 2.66 5.40 ± 10.80 26.86 ± 1.69

Simple-HGN 74.94 ± 2.16 74.10 ± 1.19 7.39 ± 14.78 37.54 ± 1.15

R-GCN 73.73 ± 1.71 74.91 ± 2.17 12.94 ± 19.19 35.29 ± 1.82

In the ablation experiment for edge generation, we randomly

select a node in the first-order subgraph of the target node to con-

nect with the injected node. The experimental results are shown in

Table 10. Overall, our approach achieves better performance, but

the improvement is modest. This may be due to the failure to select

all first-order nodes around the target bot during dataset construc-

tion and subgraph selection, resulting in a limited selection range

of edge generation. We consider that in practical application if all

the first-order neighbors can be selected to construct the subgraph,

our method can achieve better results.

Table 10: Ablation study for edge generation on TwiBot-22
(%)

Method

attack success rate new node become bot

ours random ours random

GCN 94.51 ± 1.57 93.80 ± 2.19 2.66 ± 5.09 2.17 ± 4.12
HGT 89.37 ± 3.56 86.48 ± 1.02 5.40 ± 10.80 4.34 ± 8.67

Simple-HGN 74.94 ± 2.16 75.52 ± 1.15 7.39 ± 14.78 6.37 ± 12.74
R-GCN 73.73 ± 1.71 74.39 ± 1.46 12.94 ± 19.19 8.37 ± 10.83

4.4 Parameter Analyse
4.4.1 Substitute model. In this experiment, we investigate the im-

pact of the substitute model on the performance of the attack. Be-

sides R-GCN used in the overall performance as shown in Sec. 3.3,

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Lanjun Wang et al.

Table 11: The number of R-GCNs in the substitute model on Cresci-2015 (%)

Method

attack success rate new node become bot

1 2 3 1 2 3

GCN 95.68 ± 1.44 95.86 ± 1.66 95.62 ± 1.60 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.15

HGT 94.79 ± 1.18 87.40 ± 10.19 95.66 ± 2.19 0.06 ± 0.12 28.23 ± 37.35 13.55 ± 12.16

Simple-HGN 95.74 ± 1.25 95.80 ± 1.74 94.57 ± 1.59 0.00 ± 0.00 28.64 ± 38.83 1.66 ± 1.41

R-GCN 95.74 ± 1.50 95.62 ± 1.39 95.62 ± 1.59 0.06 ± 0.12 3.37 ± 6.74 1.66 ± 1.07

Table 12: The number of R-GCNs in the substitute model on TwiBot-22 (%)

Method

attack success rate new node become bot

1 2 3 1 2 3

GCN 93.97 ± 5.43 95.08 ± 2.79 95.60 ± 1.50 2.66 ± 5.09 4.82 ± 7.27 0.40 ± 0.49
HGT 89.37 ± 3.56 85.67 ± 6.46 86.16 ± 5.76 5.40 ± 10.80 3.04 ± 4.60 0.04 ± 0.09

Simple-HGN 74.94 ± 2.16 72.07 ± 2.97 72.76 ± 5.05 7.39 ± 14.78 1.25 ± 1.63 0.00 ± 0.00
R-GCN 73.73 ± 1.71 79.40 ± 5.05 78.83 ± 1.42 12.94 ± 19.19 3.20 ± 2.74 0.04 ± 0.09

we implement the framework based on a GCN substitute model.

We use a GCN layer to directly replace the R-GCN in the substitute

model. Since GCN can only handle homogeneous graphs, we do not

add edge-type information during input. The outputs of GCN are

consistent with the output of R-GCN, which are predictive labels.

Table 13: GNN types in substitute model on Cresci-2015 (%)

Method

attack success rate new node become bot

R-GCN GCN R-GCN GCN

GCN 95.68 ± 1.44 96.51 ± 1.42 0.00 ± 0.00 0.00 ± 0.00
HGT 94.79 ± 1.18 94.02 ± 0.51 0.06 ± 0.12 8.46 ± 13.29

Simple-HGN 95.74 ± 1.25 96.75 ± 1.24 0.00 ± 0.00 11.12 ± 22.25

R-GCN 95.74 ± 1.50 96.16 ± 0.82 0.06 ± 0.12 11.54 ± 23.08

Table 14: GNN types in substitute model on TwiBot-22 (%)

Method

attack success rate new node become bot

R-GCN GCN R-GCN GCN

GCN 93.97 ± 5.43 80.22 ± 10.87 2.66 ± 5.09 66.79 ± 36.76

HGT 89.37 ± 3.56 84.13 ± 5.22 5.40 ± 10.80 75.91 ± 32.64

Simple-HGN 74.94 ± 2.16 76.89 ± 1.96 7.39 ± 14.78 79.74 ± 32.17

R-GCN 73.73 ± 1.71 74.61 ± 2.98 12.94 ± 19.19 71.93 ± 35.65

As shown in Table 13 and Table 14, we can observe that the

substitute model has a significant impact on the adversarial attack

effect. Specifically, R-GCN achieves the highest overall attack suc-

cess rate, and the probability of the injected node being detected

as a bot is lower, especially on the TwiBot-22 dataset. This may be

because R-GCN incorporates edge information when processing

information, resulting in the weight of R-GCN containing more

informative features than GCN.

4.4.2 Number of R-GCNs in the Substitute Model. In this experi-

ment, we investigate the effect of the number of R-GCNs in the sub-

stitute model on the performance of the adversarial attack method,

and the results are presented in Table 11 and Table 12.

The experimental results show that the number of R-GCNs in

the substitute model has little effect on the adversarial attack effect.

Therefore, we choose only one R-GCN as the structure of feature

transformation in the substitute model, which requires the least

amount of computation while carrying out the effective attack.

4.5 Transferability Analyse
Sec. 4.2 demonstrates the transferability between models because

we train on the substitute model and test on victim models. In

this experiment, we investigate the transferability between data,

namely whether the attack model can be trained on a subset of

social networks and used to attack nodes on the complete social

network. Since Twibot-22 has been divided into 5 subgraphs as

shown in Table 4, we train the attack model on one subgraph to

attack bot nodes on others. The results are shown in Table 15.

Table 15: Transferability analysis on TwiBot-22 (%)

Method

attack success rate new node become bot

same others same others

GCN 93.97 ± 5.43 94.03 ± 3.49 2.66 ± 5.09 7.72 ± 20.99

HGT 89.37 ± 3.56 88.29 ± 5.19 5.40 ± 10.80 8.27 ± 24.09

Simple-HGN 74.94 ± 2.16 74.92 ± 1.88 7.39 ± 14.78 8.44 ± 24.06

R-GCN 73.73 ± 1.71 74.09 ± 2.19 12.94 ± 19.19 16.65 ± 20.46

The experimental results demonstrate that our adversarial attack

method exhibits good transferability. By training on one social

network, it can achieve good attack performance on different social

networks. This shows that our model is general and not limited to

a specific social network.

5 CONCLUSION
In this study, we propose an adversarial attack framework to hide

bot users in social networks. We employ the single-node injection

method to conduct a black-box attack, and subsequently perform

attribute recovery on the injected node embedding. Our attack

makes neither the target bot node nor the injected bot node detected

as a bot by the victim model. Experimental results on the Cresci-

2015 and TwiBot-22 datasets demonstrate the effectiveness of our

method in achieving a high attack success rate and making the

injected node undetectable.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science

Foundation of China (U21B2024, 62202329).

My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

REFERENCES
[1] JonathonMBerger and JonathonMorgan. 2015. The ISIS Twitter Census: Defining

and describing the population of ISIS supporters on Twitter. (2015).

[2] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial Attacks on

Node Embeddings via Graph Poisoning. In ICML, Vol. 97. 695–704.
[3] Chiyu Cai, Linjing Li, and Daniel Zeng. 2017. Detecting Social Bots by Jointly

Modeling Deep Behavior and Content Information. In CIKM. 1995–1998.

[4] Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. 2020.

Popularity Prediction on Social Platforms with Coupled Graph Neural Networks.

In WSDM. 70–78.

[5] Giuseppe Castiglione, Gavin Ding, Masoud Hashemi, Christopher Srinivasa, and

Ga Wu. 2022. Scalable Whitebox Attacks on Tree-based Models. CoRR (2022).

[6] Liang Chen, Jintang Li, Jiaying Peng, Tao Xie, Zengxu Cao, Kun Xu, Xiangnan

He, and Zibin Zheng. 2020. A Survey of Adversarial Learning on Graphs. CoRR
(2020).

[7] Weilong Chen, ChenghaoHuang,Weimin Yuan, Xiaolu Chen,WenhaoHu, Xinran

Zhang, and Yanru Zhang. 2022. Title-and-Tag Contrastive Vision-and-Language

Transformer for Social Media Popularity Prediction. In ACM MM. 7008–7012.

[8] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and

Maurizio Tesconi. 2015. Fame for sale: Efficient detection of fake Twitter followers.

Decision Support Systems 80 (2015), 56–71.
[9] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.

Adversarial Attack on Graph Structured Data. In ICML, Vol. 80. 1123–1132.
[10] Ashok Deb, Luca Luceri, Adam Badawy, and Emilio Ferrara. 2019. Perils and

Challenges of Social Media and Election Manipulation Analysis: The 2018 US

Midterms. In WWW. 237–247.

[11] Ashkan Dehghan, Kinga Siuta, Agata Skorupka, Akshat Dubey, Andrei Betlen,

David Miller, Wei Xu, Bogumil Kaminski, and Pawel Pralat. 2022. Detecting Bots

in Social-networks using Node and Structural Embeddings. In DATA. 50–61.
[12] Shangbin Feng, Zhaoxuan Tan, Herun Wan, Ningnan Wang, Zilong Chen, Binchi

Zhang, Qinghua Zheng, Wenqian Zhang, Zhenyu Lei, Shujie Yang, Xinshun Feng,

Qingyue Zhang, Hongrui Wang, Yuhan Liu, Yuyang Bai, Heng Wang, Zijian

Cai, Yanbo Wang, Lijing Zheng, Zihan Ma, Jundong Li, and Minnan Luo. 2022.

TwiBot-22: Towards Graph-Based Twitter Bot Detection. CoRR (2022).

[13] Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, and Minnan Luo. 2021.

SATAR: A Self-supervised Approach to Twitter Account Representation Learning

and its Application in Bot Detection. In CIKM. 3808–3817.

[14] Shangbin Feng, Herun Wan, Ningnan Wang, and Minnan Luo. 2021. BotRGCN:

Twitter bot detection with relational graph convolutional networks. In ASONAM.

236–239.

[15] Emilio Ferrara. 2017. Disinformation and social bot operations in the run up to

the 2017 French presidential election. First Monday 22, 8 (2017).

[16] Emilio Ferrara. 2020. What types of COVID-19 conspiracies are populated by

Twitter bots? First Monday 25, 6 (2020).

[17] Chao Hu, Ruishi Yu, Binqi Zeng, Yu Zhan, Ying Fu, Quan Zhang, Rongkai Liu, and

Heyuan Shi. 2023. HyperAttack: Multi-Gradient-Guided White-box Adversarial

Structure Attack of Hypergraph Neural Networks. CoRR (2023).

[18] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous

Graph Transformer. In WWW. 2704–2710.

[19] Jinyuan Jia, BinghuiWang, Xiaoyu Cao, and Neil Zhenqiang Gong. 2020. Certified

Robustness of Community Detection against Adversarial Structural Perturbation

via Randomized Smoothing. InWWW. 2718–2724.

[20] Panagiotis Kantartopoulos, Nikolaos Pitropakis, Alexios Mylonas, and Nicolas

Kylilis. 2020. Exploring adversarial attacks and defences for fake twitter account

detection. Technologies 8, 4 (2020), 64.
[21] Franziska B Keller, David Schoch, Sebastian Stier, and JungHwan Yang. 2020.

Political astroturfing on Twitter: How to coordinate a disinformation campaign.

Political communication 37, 2 (2020), 256–280.

[22] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[23] Jürgen Knauth. 2019. Language-Agnostic Twitter-Bot Detection. In RANLP.

550–558.

[24] Sneha Kudugunta and Emilio Ferrara. 2018. Deep neural networks for bot

detection. Information Sciences 467 (2018), 312–322.
[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A

Robustly Optimized BERT Pretraining Approach. CoRR (2019).

[26] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming

He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really

making much progress?: Revisiting, benchmarking and refining heterogeneous

graph neural networks. In KDD. 1150–1160.
[27] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. 2020. Towards More Practical

Adversarial Attacks on Graph Neural Networks. In NeurIPS.
[28] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. 2021. Graph

Adversarial Attack via Rewiring. In KDD. 1161–1169.
[29] Phu Pham, Loan TT Nguyen, Bay Vo, and Unil Yun. 2022. Bot2Vec: A general

approach of intra-community oriented representation learning for bot detection

in different types of social networks. Information Systems 103 (2022), 101771.

[30] Bastian Rieck, Christian Bock, and Karsten M. Borgwardt. 2019. A Persistent

Weisfeiler-Lehman Procedure for Graph Classification. In ICML, Vol. 97. 5448–
5458.

[31] Jitao Sang, Xian Zhao, Jiaming Zhang, and Zhiyu Lin. 2022. Benign Adversarial

Attack: Tricking Models for Goodness. In ACM MM. 6883–6889.

[32] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,

Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convo-

lutional Networks. In ESWC, Vol. 10843. 593–607.
[33] Yiwei Sun, SuhangWang, Xianfeng Tang, Tsung-YuHsieh, and Vasant G. Honavar.

2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A

Hierarchical Reinforcement Learning Approach. In WWW. 673–683.

[34] Yunpeng Tan, Fangyu Liu, Bowei Li, Zheng Zhang, and Bo Zhang. 2022. An

Efficient Multi-View Multimodal Data Processing Framework for Social Media

Popularity Prediction. In ACM MM. 7200–7204.

[35] Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, YunfanWu, and Xueqi Cheng.

2021. Single Node Injection Attack against Graph Neural Networks. In CIKM.

1794–1803.

[36] M Buğra Torusdağ, Mucahid Kutlu, and Ali Aydın Selçuk. 2020. Are we secure

from bots? Investigating vulnerabilities of botometer. In UBMK. 343–348.
[37] Christian von der Weth, Ashraf M. Abdul, Shaojing Fan, and Mohan S. Kankan-

halli. 2020. Helping Users Tackle Algorithmic Threats on Social Media: A Multi-

media Research Agenda. In ACM MM. 4425–4434.

[38] LinaWang, Kang Yang,WenqiWang, RunWang, and Aoshuang Ye. 2020. MGAAt-

tack: Toward More Query-efficient Black-box Attack by Microbial Genetic Algo-

rithm. In ACM MM. 2229–2236.

[39] Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, and Xueqi Cheng. 2019. Graph

Convolutional Networks using Heat Kernel for Semi-supervised Learning. In

IJCAI. 1928–1934.
[40] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil K.

Jain. 2020. Adversarial Attacks and Defenses in Images, Graphs and Text: A

Review. Int. J. Autom. Comput. 17, 2 (2020), 151–178.
[41] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,

and Xue Lin. 2019. Topology Attack and Defense for Graph Neural Networks:

An Optimization Perspective. In IJCAI. 3961–3967.
[42] Qiuling Xu, Guanhong Tao, Siyuan Cheng, and Xiangyu Zhang. 2021. Towards

Feature Space Adversarial Attack by Style Perturbation. In AAAI. 10523–10531.
[43] Xing Xu, Jiefu Chen, Jinhui Xiao, Zheng Wang, Yang Yang, and Heng Tao Shen.

2020. Learning Optimization-based Adversarial Perturbations for Attacking

Sequential Recognition Models. In ACM MM. 2802–2822.

[44] Xiao Yang, Yinpeng Dong, Wenzhao Xiang, Tianyu Pang, Hang Su, and Jun Zhu.

2021. Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial

Robustness. CoRR (2021).

[45] Zheng Yuan, Jie Zhang, Yunpei Jia, Chuanqi Tan, Tao Xue, and Shiguang Shan.

2021. Meta Gradient Adversarial Attack. In ICCV. 7728–7737.
[46] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2019. Adversarial

Attacks on Neural Networks for Graph Data. In IJCAI. 6246–6250.

A ALTERNATIVE CONSTRAINTS
In Sec. 4.1.2, we set the followers count to zero, which is to minimize

the costs associated with buying followers, making the attack easier

to carry out. However, it should be noted that setting the followers

count to zero does not mean that it must be zero. According to [13]

showing that the number of followers is positively correlated with

the probability that a node is detected as human, if the injected

node can successfully attack without followers, then it can suc-

cessfully attack with any number of followers. Thus, we relax the

restriction on zero follower count and conduct more experiments.

In the following experiments, we set the follower count as 600 and

reduce the status to 18,000 for TwiBot-22. The rest of the settings

are the same as Table 6.

Table 16: Analysis of followers count on TwiBot-22 (%)

Method attack success rate new node become bot

GCN 93.27 ± 1.38 10.31 ± 11.28

HGT 89.00 ± 4.00 5.62 ± 11.24

Simple-HGN 74.37 ± 2.70 18.14 ± 30.44

R-GCN 76.53 ± 2.40 3.34 ± 6.05

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Lanjun Wang et al.

As shown in Table 16, increasing the followers count still keeps

the success rate of the attacks high. At the same time, increasing the

followers count can significantly reduce the status requirements of

the injection nodes. This shows that attackers can set the constraints

on their own according to the actual situation.

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Vulnerability of Bot Detection
	2.2 Adversarial Attack on GNN

	3 METHODOLOGY
	3.1 Problem Definition
	3.2 Framework
	3.3 Substitute Model
	3.4 Embedding Generation
	3.5 Edge Generation
	3.6 Attribute Recovery

	4 EXPERIMENT
	4.1 Experiment Settings
	4.2 Overall Performance
	4.3 Ablation Study
	4.4 Parameter Analyse
	4.5 Transferability Analyse

	5 CONCLUSION
	Acknowledgments
	References
	A Alternative constraints

