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Query: She looks back once more at SOMEONE then makes up her mind and 
starts running towards the exit.

Result:

(a) The text-to-video retrieval task (example from the LSMDC dataset
[37]). The query text is detailed, and the candidate video is short con-
taining redundant image frames.

Query

Result

He had a 
great time on 
the hike.

The dog was 
ready to go.

And was very 
happy to be 
in the field.

His mom was 
so proud of 
him. 

It was a 
beautiful day 
for him.

(b) The story-to-image retrieval task (example from the VIST dataset
[18]). Each sentence in the query text should be aligned with an image.
The transition in the image sequence is not coherent.

Query: In London, Pamela settles back into her home, the one she can no longer afford.

Result:

Long shot Close-up shot Extreme close-up 
shot Full shot Medium shot

(c) Our proposed text-to-storyboard task (example from ourMovieNet-TeViS dataset). It requires to retrieve a sequence of cinematically coherent
images to visualize the succinct text synopsis. We manually construct the dataset from movies to preserve the language of the film’s shot.

Figure 1: Comparison of different cross-modal retrieval tasks. Our proposed text-to-storyboard task is more beneficial than
existing tasks to assist amateurs in video creation.

ABSTRACT
A video storyboard is a roadmap for video creation which consists
of shot-by-shot images to visualize key plots in a text synopsis. Cre-
ating video storyboards, however, remains challenging which not
only requires cross-modal association between high-level texts and
images but also demands long-term reasoning to make transitions
smooth across shots. In this paper, we propose a new task called
Text synopsis to Video Storyboard (TeViS) which aims to retrieve
an ordered sequence of images as the video storyboard to visualize
the text synopsis. We construct aMovieNet-TeViS dataset based
on the public MovieNet dataset [17]. It contains 10K text synopses
each paired with keyframes manually selected from corresponding
† Both authors contributed equally to this research.
B Corresponding author.

movies by considering both relevance and cinematic coherence. To
benchmark the task, we present strong CLIP-based baselines and a
novel VQ-Trans model. VQ-Trans first encodes text synopsis and
images into a joint embedding space and uses vector quantization
(VQ) to improve the visual representation. Then, it auto-regressively
generates a sequence of visual features for retrieval and ordering.
Experimental results demonstrate that VQ-Trans significantly out-
performs prior methods and the CLIP-based baselines. Nevertheless,
there is still a large gap compared to human performance suggest-
ing room for promising future work. The code and data are available
at: https://ruc-aimind.github.io/projects/TeViS/
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1 INTRODUCTION
With the prevalence of video sharing platforms, more and more
video creators are emerging with enthusiasm to create videos us-
ing their own text synopses. A critical step in professional video
creation is to translate a text synopsis into a video storyboard1,
which is a sequence of shot-by-shot images to visualize key plots in
a screenplay. Creating a high-quality video storyboard is however
challenging for amateurs. It not only requires one to put relevant
scenes, characters and actions in the video, but also demands for
cinematic organizations of keyframes to enable coherent transitions
across shots. Hence, there are high application needs in assisting
amateurs to create more professional video storyboards from their
text synopses.

Although existing works have made great progress in text-to-
video retrieval [2, 24, 27, 49], story-to-image [7, 16, 25] and even
text-to-video generation [15, 40, 48], they are insufficient to sup-
port storyboard creation given the text synopsis. The text-to-video
retrieval or generation tasks mainly focus on short-term video clips
with only a few seconds as shown in Fig. 1a. The images in these
videos are highly redundant and cannot satisfy the requirement
of a video storyboard for coherent keyframes. The story-to-image
work targets one-to-one mapping from 𝑁 sentences of detailed
description to 𝑁 images (see Fig. 1b). The transitions across images
are not required to be smooth considering the lens language. In
addition, all these works care more about the text-image relevance
with detailed query texts. The text synopses, however, are usually
more abstract and brief as shown in Fig. 1c. As a result, one-to-
many mapping from the text to cinematically coherent images is
necessary to visualize the text. As shown in Fig. 1c, to film the event
of a woman returning home, a professional director first captures a
distant frame showing the exterior of the house, then a close-up
shot of the woman, an extreme close-up shot of the woman entering
the house, and finally a full shot of the interior.

In this paper, we propose a new task called Text synopsis to
Video Storyboard (TeViS). In the TeViS task, we aim to retrieve an
ordered sequence of images from a large-scale movie database as a
video storyboard to visualize an input text synopsis. For this pur-
pose, we collect theMovieNet-TeViS dataset based on the public
MovieNet dataset [17]. The MovieNet dataset contains high-level
text synopses for movies and a coarse-grained alignment between
movie segments and text synopses paragraphs. We ask annotators
to split paragraphs into semantically compact sentences and select a
minimum set of keyframes from its aligned movie segment for each
text synopsis sentence. Annotators should consider both relevancy
to the text and cinematic coherency across frames for keyframe
selection. Finally, we obtain 10K text synopses, and each paired
with 4.6 keyframes on average.

We propose an auto-regressive generation model VQ-Trans as
a starting point to benchmark the TeViS task. VQ-Trans first en-
codes the text synopsis and images into a joint embedding space.
However, it is difficult to learn the language of cinematography
from a vast and diverse collection of images. Inspired by previous
work using Vector Quantization to represent continuous data as
discrete vectors [12, 31, 45], we achieve this objective by combining

1https://creately.com/guides/how-to-make-a-storyboard-for-video/

recent advances in vector quantization and large language model-
ing. Our VQ-Trans uses vector quantization to improve the visual
features and convert images from continuous visual features into
discrete visual tokens. Then, VQ-Trans auto-regressively generates
a sequence of visual tokens where each token can be used to retrieve
images from the candidate image pool.

We design two settings to evaluate methods: i) an ordering set-
ting that provides models with oracle keyframes to re-order condi-
tioning on the text, and ii) a retrieving-and-ordering setting that
requires models to retrieve relevant frames from 500 candidate
images and order them. Experimental results show that employing
Vector Quantization for image discretization and utilizing text as a
prefix in a decoder-only model significantly improves the ordering
performance. Both quantitative and qualitative results show that
our model is able to create reasonable video storyboards.

Our contributions are summarized as follows:
• We propose the Text Synopsis to Video Storyboard task

(TeViS) with the goal of retrieving an ordered sequence of
images to visualize a high-level text synopsis.

• We construct a MovieNet-TeViS benchmark based on the
MovieNet dataset [17]. It contains 10K text synopses with
4.6 keyframes on average for each synopsis.

• We establish a decoder-only baseline and propose Vector
Quantization on frames to improve training stability and
generation quality in long-term video storyboards.

2 RELATEDWORKS
Our work is related to previous works of two categories: text-to-
vision and movie understanding.

2.1 Text-to-Vision
Text-to-vision aims to retrieve or generate visual information cor-
responding to an input text. Inspired by the success of the pre-
training paradigm in NLP [4, 10], recent advances in text-to-image
retrieval also leverage massive image-text pairs to pre-train a large
model for retrieval [9, 19, 20, 29, 50, 51]. These methods achieve
promising results on caption-based image retrieval tasks such as
MSCOCO [8]. CLIP [24] adopts a dual-encoder architecture, uses
400 million image-text pairs for pre-training with a contrastive loss,
and shows strong generalization power on cross-modal alignment.
Some works also pre-train video-language models on large-scale
video-text pairs [2, 26, 27, 43, 49]. However, text-to-image tech-
nologies can only produce static images which can not describe
the dynamics in text synopsis, while text-to-video retrieval target
searching existing video clips, rather than picking up keyframes
from clips to collage out something new, which is demanded for
if users input new texts. Text-to-vision generation also develops
rapidly. Earlier methods widely adopt GAN-based methods con-
ditioned on text [28, 36, 52]. Recent deep generative models use
large Transformer networks [11, 31, 48] or diffusion models [30, 38]
that can generate high-quality images. Text-to-video generation
has been explored recently by extending advanced text-to-image
generation methods [15, 40]. However, even advanced text-to-video
generation methods can only generate GIF-like short videos with-
out complicated motions and dynamics.

https://creately.com/guides/how-to-make-a-storyboard-for-video/
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Table 1: Comparison between MovieNet-TeViS and other movie datasets.

Datasets avgDuration avg#Words SecondsperWord #unique bi-grams avgConcreteness
LSMDC [37] 4.1s 9.03 0.4539 44.0K 2.993
MAD [41] 4.04s 12.69 0.3188 59.0K 2.991
CMD [1] 132s 18 7.33 83.2K 2.598
MovieNet-TeViS (Ours) 63.7s 24.82 2.82 134.5K 2.761

2.2 Movie Understanding
Existing works on movie understanding mainly explore content
recognition and cinematic style analysis. Content recognition in-
cludes action [3, 22], scene recognition [6, 14, 33], and text-to-video
retrieval task that focuses on movie datasets [1, 37]. Some works
aim to analyze shot styles [32, 46], movie genre [39, 53] from a pro-
fessional perspective. There are also some movie-related datasets [1,
17, 37]. LSMDC [37] dataset contains short clips paired with human-
annotated captions. CondensedMovie Dataset (CMD) [1] consists of
key scenes from the movie, each of which is accompanied by a high-
level semantic description of the scene. The MAD [41] dataset is
based on the LSMDC [37] dataset. Our constructed dataset is built
on MovieNet [17] dataset, which is a large collection of movies
annotated with many kinds of tasks such as scene segmentation,
cinematic style classification, story understanding and so on.

In terms of the text inputs, previous works have collected aligned
script [55], caption [37], Descriptive Video Service (DVS) [44],
book [54], or synopsis [42] to movies. However, books cannot be
well-aligned with adapted movies; DVS is hard to obtain and thus
limited in scale; while scripts and captions are too detailed to com-
pose for most non-professional users. We consider synopses are the
most appropriate source which mimic the texts written by users
in real scenario and contain desired level of details. MovieNet [17]
and CMD [1] provide synopses but MovieNet is more appropriate
as we explain in Sec. 3.1.

3 MOVIENET-TEVIS DATASET
In this section, we explain why we choose MovieNet as the basis,
describe the dataset annotation process and present analyses on
our dataset.

3.1 Why MovieNet
Our goal is to assist amateur video makers to create video story-
boards from text inputs. Since it is hard to obtain original video
storyboards from professional video makers, we decided to select
keyframes from released movies to reconstruct a succinct story-
board that a human user can use as a shooting plan. Tab. 1 presents
the comparison of our dataset and related movie datasets. It shows
that the duration of movie clips corresponding to a description in
LSMDC and MAD is only 4 seconds and the average number of
words in a description is only 9-12, which is much lower than ours.
It is impossible to extract a meaningful storyboard from such short
clips. Our MovieNet-TeViS and CMD give a synopsis or summary
of 64-second or 132-second video segments respectively and thus
we can expect such text is higher-level. Compared to CMD, our
MovieNet-TeViS uses more words to describe video segments with

Dorothy Gale is an orphaned teenager who lives with her Auntie
Em and Uncle Henry on a Kansas farm in the early 1900s.

[subtitle]: "Aunt Em! Aunt Em!"

[subtitle]: "Just listen to what Miss Gulch did to Toto--", 
"Dorothy, please. We're counting.“…

shot_0004_img_0 shot_0004_img_1 shot_0004_img_2

shot_0005_img_0 shot_0005_img_1 shot_0005_img_2

Figure 2: Annotating keyframes of a storyboard for a text
synopsis.

half the duration of CMD. This indicates that our text synopses
provide more details than those in CMD. As a start of such a chal-
lenging new task, our dataset is the most appropriate in duration
of video clip and semantic level of text.

3.2 Data Annotation
MovieNet provides 4,208 text synopsis paragraph and movie seg-
ment pairs. A paragraph consists of 8 sentences (113 words) on
average and a segmentation contains 95 shots. It might be too dif-
ficult to learn semantic association and long-term reasoning over
such long sequences with large variance. Therefore, we first split
a paragraph into sentences and then align each sentence with a
minimum number of keyframes in the movie segment.

Fig. 2 shows the annotation interface. We present a synopsis
paragraph sentence by sentence and all the shots aligned with the
paragraph in MovieNet. For each shot, we display three evenly
spaced frames as well as corresponding subtitles below the shot
to help annotators understand the images better. The annotator
should first select the sentences to form a text synopsis, and then
choose a minimum number of images to visualize the text. We
construct detailed guidelines to assure the quality of each annotated
storyboard as follows:
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(1) The number of keyframes should be less than 20. Split the
sentence if the number of selected keyframes is more than
20, or filter the sentence out of the dataset;

(2) Do not select adjacent similar images, e.g., for the example
in Fig. 2, shot_0004_img_1 should be deleted when given
shot_0004_img_0;

(3) The image must add value to express the synopsis sentence
in terms of relevancy or coherency, e.g., shot_0005_img_2
cannot add any new value given shot_0005_img_0;

(4) If there is a basic conversation with a cycle of repeated im-
ages, only keep one pattern to make the storyboard succinct
by selecting the first images in the first cycle and the last
image in the last cycle. For example, in Fig. 3,𝐴𝑖𝐵𝑖 is a basic
conversation pattern and it has been repeated 3 times. We
ask annotators to select 𝐴1 and 𝐵3 to compose a complete
conversation.

To ensure data quality, our data are annotated in three rounds.
We hire 60 annotators in the first round to select keyframes that
are necessary for relevancy or a vision language; in the second
round the annotators further simplify or revise the storyboards by
consistent rules; and six volunteer experts in the third round review
and finalize the selected keyframes.

In addition, we find some non-adjacent images are still similar
and some images in a conversation can be re-ordered without hurt-
ing the storyboard. Therefore, we further ask annotators to detect
such interchangeable images over our testing data and add these
re-ordered storyboards into the ground-truth set.

A1 B1 A2

A3B2 B3

Figure 3: Simplifying a storyboard by deleting redundant
images.

3.3 Dataset Analysis
Dataset statistics. Our collected MovieNet-TeViS dataset uses
2,949 paragraph-segment pairs from MovieNet after filtering im-
proper examples by annotators. We sort storyboards by the number
of keyframes ascendingly and use the first 10,000 pairs of a synop-
sis sentence in English and a video storyboard, i.e., a sequence of
keyframes as our final dataset. There are 45,584 keyframes in total.
The number of keyframes in a storyboard ranges from 3 to 11, and
about 60% of storyboards consist of 3 or 4 keyframes. The average
number of words in a synopsis sentence is about 24. In addition,
MovieNet-TeViS covers 19 diverse movie genres. More details are
presented in the Appendix B.

Concreteness measurement. The concreteness level of texts has
a large influence on visualization difficulty. To systematically mea-
sure the concreteness of texts, we leverage a concreteness database
introduced by Brysbaert et al [5] to calculate average concreteness
of words in synopsis and compare with text descriptions of other
datasets, i.e., LSMDC, MAD, and CMD and show the results in
Tab. 1. To be specific, Brysbaert et al. [5] create a database that
ask annotators to assign concreteness ratings from 1 to 5 for 40
thousand English words. The average ratings can evaluate the de-
gree of how concrete a concept denoted by a word is. The larger
value means more concrete. For example, the concreteness rating
of “banana” is 5 while that of “love” is 2.07. As shown in the Tab. 1,
our dataset has 2.76 average concreteness ratings while LSMDC
and MAD have 2.99. This means that the text synopsis in MovieNet-
TeViS is more abstract or higher-level than descriptions in LSMDC
and MAD. CMD has 2.60 concreteness score which is slightly lower
than ours. This makes sense because CMD use 18 words on average
to describe 132-second video clips whereas our MovieNet-TeViS
uses 24 words to describe 64-second video segments. As the first
trial of a new task, our dataset has appropriate concreteness.
Diversity measurement. Following [47], we use the number of
words, the number of unique n-grams and the number of words
with different POS tags to compare diversity of text description
or synopsis in LSMDC, MAD, CMD and our dataset. For fair com-
parison, we randomly sample 10,000 texts from LSMDC, MAD,
and CMD datasets. We find that our built dataset MovieNet-TeViS
has the richest n-grams, nouns, verbs, adjectives and adverbs. Due
to space limitation, we only show the number of words and the
number of unique bi-grams results in Tab. 1. We present the full
comparison in the supplementary material. From Tab. 1, we observe
that CMD is also richer than LSMDC. This supports our observa-
tion that LSMDC has caption based descriptions whereas CMD and
MovieNet have high-level summaries of movie clips or segments.
Our dataset is richer than CMD, which is consistent with what the
seconds per word show.When looking into our dataset, we find that
many text synopses contain dialogues, psychological descriptions,
shot languages, etc. Such free text styles are closer to that of our
target non-professional video makers.

4 TEXT SYNOPSIS TO VIDEO STORYBOARD
TASK

The Text Synopsis to Video Storyboard (TeViS) task aims to retrieve
a set of keyframes and order them to visualize the text synopsis.
Assume we have a text synopsis 𝑇 = {𝑤1,𝑤2, ...,𝑤𝑛} with 𝑛 words,
the goal of TeViS task is to retrieve𝑚 images from large candidate
images and order them to visualize the text synopsis. The number
of images𝑚 is different for each text synopsis 𝑇 . We design two
evaluation settings for the TeViS task: i) ordering the shuffled
keyframes conditioned on the text, and ii) the task of retrieving and
then ordering.

4.1 Ordering the Shuffled Keyframes
Task Definition. For a given text synopsis and its shuffled ground-
truth images, how well can the models order them? This is a key
step for creating a storyboard that needs to consider coherence
across frames. To measure the long-term reasoning capability of
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models for ordering, we let the models order the ground-truth
images for this evaluation.
Task Evaluation. For the ordering task, we are given a text synop-
sis and its shuffled ground-truth images, the models need to predict
their order conditioned on text synopsis. We then can compute
𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏 [21] metric to report the result.

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏 = 1 − 2 ∗ #𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠
𝑚 ∗ (𝑚 − 1)/2 (1)

where #𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 are the number of inverse-order pairs, i.e., the
number of steps needed to switch to the original order, and𝑚 is
the number of frames. 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏 is always between -1 and 1, with
1 representing the full positive order and -1 representing the full
inverse order.

4.2 Retrieve-and-Ordering Keyframes
Task Definition. For a given text synopsis, how well can the
models select the relevant images from a large set of candidates
and then order them? This task is more practical in real situations.
Task Evaluation. For this evaluation, we are given a text synopsis
and a large set of candidate images. The candidate images contain
ground-truth images annotated by humans and other negative im-
ages which are randomly sampled from other images in the corpus.
The number of candidates including ground-truth and negative
samples is 500.

After retrieving top K from the 500 candidates and re-ordering
the top K results by different methods, we can calculate 𝑅@𝐾 and
𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏 to compare them. However, as some ground-truth im-
ages cannot be returned at top K, 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏 is calculated upon
the returned ground-truth images at top K only. Consequently,
it happens that when fewer correct images are returned at the
top, the 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏@K tends to be higher as there are less inver-
sions. This issue can be cured somehow by multiplying R@K and
𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏@K:

𝑅@𝐾 ∗ 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏@𝐾 (2)
This is used as the final measurement of the retrieve-and-ordering
task.

5 METHOD
To provide a starting point for tackling the task, we propose a text-
to-image retrieval model based on a pre-trained image-text model
(i.e., CLIP [29]), and a decoder-only model for ordering images. In
the retrieval stage, we leverage a pre-trained visual language model
(CLIP) to achieve text-to-image retrieval. (Sec. 5.1) In the first stage
of ordering, we utilize a pre-trained visual language model (CLIP) to
extract word-level and frame-level representations independently,
while simultaneously mapping both to the same semantic space.
Furthermore, a Vector Quantization module is used to discretize
the continuous frame representations. In the second stage, a prefix
language model is trained over the text token and discrete frame
tokens sequence generated by the first stage. (Sec. 5.2)

5.1 Text-to-Image Model for Retrieval
5.1.1 Model. To establish a connection between textual and visual
modalities, we draw inspiration from the extensive employment
of large models in multimodal domains. We leverage a pre-trained

image-text model CLIP [29]to conduct text-to-keyframe retrieval.
During training, we randomly sample one frame from the ground-
truth keyframe sequence to create a positive image-text pair and
frames from other sequences as negatives for a text synopsis.

5.1.2 Training. We leverage a contrastive loss to maximize the sim-
ilarity of matched images and texts while minimizing the similarity
of unmatched images and texts, which is:

L𝑖2𝑡 = − 1
𝐵

𝐵∑︁
𝑖=1

log
exp

(
𝐼⊤
𝑖
𝑇𝑖/𝜏

)∑𝐵
𝑗=1 exp

(
𝐼⊤
𝑖
𝑇𝑗/𝜏

) ,
L𝑡2𝑖 = − 1

𝐵

𝐵∑︁
𝑖=1

log
exp

(
𝑇⊤
𝑖
𝐼𝑖/𝜏

)∑𝐵
𝑗=1 exp

(
𝑇⊤
𝑖
𝐼 𝑗/𝜏

) (3)

where 𝐼𝑖 and 𝑇𝑗 are the normalized embeddings of 𝑖-th image and
𝑗-th sentence in a batch of size 𝐵 and 𝜏 is the temperature. The
overall text-image alignment loss L𝑎𝑙𝑖𝑔𝑛 is the average of L𝑖2𝑡 and
L𝑡2𝑖 .

5.1.3 Inference. During inference, we calculate the similarities
between the text synopsis and a set of frame candidates and retrieve
the top K frames.

5.2 Decoder-only Model for Ordering
5.2.1 Model. Inspired by the success of decoder-only framework in
Large Language Model, we propose a VQ-Trans model that adopts
decoder-only architecture to Translate Text synopsis to Video
Storyboard. This design can not only sort the candidate images
but also handle the variable length problem when creating video
storyboards. In addition, our storyboard dataset exhibits a high
degree of visual diversity, making it challenging for the model to
learn the language of movie shots. To overcome the visual diversity
problem,we introduce a vector quantization (VQ)method to convert
images from continuous visual features into discrete visual tokens.

As illustrated in Fig. 4, given synopsis text tokens {𝑤1,𝑤2, ...,𝑤𝑛}
and the history images 𝐼<𝑡 , our VQ-Trans will predict the latent
feature of the next image 𝐼𝑡 .
Text encoding. We employ a fine-tuned CLIP text encoder to
encode the text 𝑤𝑖 into 𝑤 ′

𝑖
, along with global text features 𝑤 ′

𝑠𝑜𝑠

and𝑤 ′
𝑒𝑜𝑠 . All these text features will work as prefix inputs of our

decoder.
Image encoding with vector quantization (VQ). And we use
a fine-tuned CLIP image encoder to encode the frame 𝐼𝑖 into 𝐼 ′𝑖 .
Subsequently, we compute the cosine similarity between each 𝐼 ′

𝑖
and the discrete features of VQ codebook 𝐶 and choose the most
similar 𝐼𝑞′

𝑖
as the discrete feature of image 𝐼 ′

𝑖
encoded by VQ.

Transformer decoder. Then, given the synopsis text token fea-
tures {𝑤 ′

𝑠𝑜𝑠 ,𝑤
′
1,𝑤

′
2, ...,𝑤

′
𝑛,𝑤

′
𝑒𝑜𝑠 } and the quantized history image

features 𝐼𝑞′<𝑡 , VQ-Trans decoder generates a sequence of visual to-
kens auto-regressively, where each token can be used to retrieve
images from the candidate image pool and abort the translation by
judging ⟨𝑒𝑜𝑠⟩ during inference. These generated discrete visual to-
kens can be used to retrieve images through dot-product similarity.
To be more specific, the text prefix and discrete frame tokens are
fed into the same transformer decoder without a cross-attention
layer, which proves more effective than with cross-attention in
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In order to enhance the representation ability of images and learn visual semantic features, we used a Vector Quantization(VQ)
module to map continuous frame features from the continuous space to the discrete space. Frames are represented by the
nearest codebook entry in the codebook 𝐶 through similarity calculation, yielding a discrete image representation. Then the
decoder-only transformer will autoregressively generate discrete frame features with text representations as a prefix and can
abort the translation by judging ⟨𝑒𝑜𝑠⟩ in the inference phase.

our experiments, and use the same position embeddings. We use
bi-directional self-attention over text prefixes and use monotonous
self-attention on discrete frame tokens.

5.2.2 Training. The model is optimized with an NCE loss L𝑡𝑟𝑎𝑛𝑠

and a Vector Quantization loss L𝑣𝑞 .
NCE loss in each prediction step with negative images sampled

randomly from a mini-batch:

L𝑡𝑟𝑎𝑛𝑠 = − 1
𝐵𝑀

𝐵∑︁
𝑖=1

𝑀∑︁
𝑚=1

log
exp

(
𝐼⊤
𝑖,𝑚
𝐼
′
𝑖,𝑚

/𝜏
)

∑
𝐼
′ ∈N𝑖,𝑚∪𝐼𝑖,𝑚 exp

(
𝐼⊤
𝑖,𝑚
𝐼
′/𝜏

) (4)

where 𝐼𝑖,𝑚 is the normalized embeddings of the𝑚-th image from
the 𝑖-th image sequence from the batch, N𝑖,𝑚 is the normalized
embeddings of the negative images sampled from the batch.

Vector Quantization loss for image feature sequence discretiza-
tion:

𝐼
𝑞

𝑖
= q(𝐼𝑖 ) =: argmin

𝐼
𝑞

𝑖
∈C

(𝐼𝑖 − 𝐼𝑞𝑖 ),

L𝑣𝑞 =
∑︁

𝐼𝑖 ∈N𝑖,𝑚∪𝐼𝑖,𝑚
∥sg[𝐼𝑖 ] − 𝐼𝑞𝑖 ∥

2 + 𝛽 ∥𝐼𝑖 − sg[𝐼𝑞
𝑖
] ∥2

(5)

where 𝐼𝑖 and 𝐼
𝑞

𝑖
are the i-th frame features and quantized frame

tokens, q(·) is the Vector Quantization module, sg[·] is the stop-
gradient operator, 𝛽 is a commitment loss hyperparameter set to
0.8 in all our experiments.

Thus, the total training objective becomes:

L = L𝑡𝑟𝑎𝑛𝑠 + L𝑣𝑞 (6)

5.2.3 Inference. During inference, the input text is first fed into an
encoder block to extract the text representation, and the decoder-
only transformer autoregressively generates frame features condi-
tioned on these text features and a ⟨𝑠𝑜𝑠⟩ embedding. The generated
image feature and the candidate discrete frame embeddings which
use the VQ module are compared for similarity, and the top 1 simi-
larity discrete frame embedding is selected as the predicted result.
The vector of the top 1 similar image retrieved is then concatenated
with the input for the next frame’s prediction in the decoder. This
top 1 frame is deleted from the candidate discrete frame pool.

6 EXPERIMENTS
We evaluate the performance of proposedmethods on theMovieNet-
TeViS dataset for the Text Synopsis to Video Storyboard task. We
first describe the setup of the experiment(Sec. 6.1) and then present
the results of both the ordering task(Sec. 6.2) and the retrieve-
and-ordering task(Sec. 6.3). Finally, we show some qualitative re-
sults(Sec. 6.4).

6.1 Experimental Setup
Datasets.We randomly divided our MovieNet-TeViS dataset into
three separate datasets, consisting of 8035, 1059, and 906 synopsis-
keyframes pairs, respectively, for training, validation, and testing.
And we ensured that there were no overlapping movies across the
subsets.
Implementation Details.We utilize CLIP-ViT-B/32 as the back-
bone in all compared methods. The initial learning rate is set to
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1e-6, and we use a linear learning rate scheduler to decay the learn-
ing rate linearly after a warm-up stage. The network is optimized
by AdamW optimizer, with the weight decay value of 5e-2 and
the batch size of 16. For vector quantization, we empirically set a
codebook of size K as 4096 with 32 dimensions, three layers, and a
commitment loss hyperparameter of 0.8 for the L𝑣𝑞 .

6.2 Ordering Task
Compared methods. In addition to the proposed VQ-Trans model,
we design three strong baselines based on CLIP for ordering, as
shown in Appendix Fig. C.2. And during inference, our proposed
model is able to predict a ⟨𝑒𝑜𝑠⟩ symbol to stop, which does not need
to know the number of frames in the inference phase. CLIP-based
baselines may use the average number.

1) CLIP-Naive: we use CLIP model to calculate the similarity
between a text synopsis used as a query and its corresponding
keyframes, and then order the keyframes based on the similarity
scores.

2) CLIP-Sliding: we first divide the sentences into several seg-
ments as a group of queries where the number of segments is equal
to the number of its corresponding keyframes. We then use a sliding
window to use each segment to retrieve the most similar keyframes
in turn. Once a keyframe is chosen, this keyframe will be removed
from the candidates.

3) CLIP-Cumulative: we first divide the sentences into several
segments as CLIP-Sliding. However, when doing retrieval, we ac-
cumulate each segment and retrieve the most similar keyframes,
which consider more context. For example, to retrieve the second
keyframe, we use the first two segments as the query. We also re-
move the keyframes from the candidates once they are chosen in
the previous step.

4) Neural Storyboard [7] and CNSI [34]:we train the state-of-the-
art story-to-image models [7, 34] on our dataset. In the CNSI model,
we used the same way as CLIP-Cumulative to adapt the models for
one-to-many text-image retrieval.

5) Re-Ranking: we replace our decoder with a standard trans-
former block and predict the indexes of input frames.
Main Results. We conducted several experiments to verify the
effect of different methods on the text synopsis to video storyboard
task, and results are shown in Tab. 2. The CLIP-Naive method
achieves the poorest performance due to the lack of sequence mod-
eling. The CLIP-Sliding and CLIP-Cumulative methods outperform
the CLIP-Naive method, proving to be more effective ways of ap-
plying CLIP, thanks to the ability to segment semantic information
of the text and thus able to model sequences. We also compare with
two SOTAmethods of story-to-image task [7, 34]. The two methods
perform significantly worse than CLIP-Sliding and our VQ-Trans .
It indicates that CLIP-Sliding is a simple but effective baseline. We
carry out a comparison with a re-ranking manner in Tab. 2. Our VQ-
Trans method achieves significantly better performance, because
it can better decouple semantic representation and ordering, and
thus requires fewer data, demonstrating the ability of sequence
generation models to learn long-term information in keyframe se-
quences. And more importantly, the proposed feature prediction
model enables an extension to generative models in the future.

Table 2: Results of ordering task. Our method VQ-
Trans achieves the best overall performance, though still
leaving much room for improvement compared to human
capabilities. [𝑠−𝑒] under Kendall’s 𝜏 denotes sequence length
from 𝑠 to 𝑒.

Method Kendall’s 𝜏↑
Over-All [3-5] [6-11]

Neural Storyboard [7] 0.163 0.214 0.047
CNSI [34] 0.182 0.234 0.064
Re-Ranking 0.192 0.252 0.058
CLIP-Naive 0.183 0.248 0.036
CLIP-Sliding 0.230 0.278 0.123
CLIP-Cumulative 0.244 0.291 0.139
VQ-Trans (ours) 0.367 0.407 0.278

Human 0.821 0.860 0.734

Table 3: Ablation study of image Vector Quantization (VQ)
method and the combination ways of text and images.

Method Kendall’s 𝜏↑
Image-VQ. Text Over-All [3-5] [6-11]

✗ Cross 0.224 0.291 0.071
✗ Prefix 0.230 0.287 0.102
✓ Cross 0.268 0.327 0.133
✓ Prefix 0.367 0.407 0.278

Table 4: Text-to-image retrieval performance on MovieNet-
TeViS.We compare CLIPmodel with andwithout fine-tuning.

Fine-tuning R@1↑ R@5↑ R@10↑ R@30↑
✗ 5.73 19.72 28.98 46.90
✓ 7.62 25.99 38.18 58.19

In addition, a human study was conducted to make a better as-
sessment of the task. We invited participants to reorder the shuffled
keyframe sequences. The performance of humans is presented in
Tab. 2. Humans achieve much better performance than our best
model, suggesting there is high potential for improvement.
Ablations. We conduct a ablation study of image vector quanti-
zation (Image-VQ) and the combination ways of using text. The
results in Tab. 3 show that by applying Image-VQ, the performance
is significantly improved in all metrics. This indicates that Image-
VQ is effective to reduce the vision space to learn. When Image-VQ
is enable, using text as a prefix significantly outperforms using text
to cross-attend images in all metrics. This indicates that our pro-
posed decoder-only method is more effective than the traditionally
widely-used encoder-decoder model.
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Figure 5: Qualitative examples of different models for the ordering task on our Movie-TeViS dataset.

6.3 Retrieve-and-Ordering Task
Retrieval Results.We first evaluate the performance of text-to-
image retrieval. We compare CLIP models [29] with and without
fine-tuning on our MovieNet-TeViS dataset. As shown in Tab. 4,
although CLIP shows reasonable performance by zero-shot, the
fine-tuned CLIP model can achieve significantly better performance
in all metrics.
Retrieve-and-OrderingResults.We report the result of the Retrieve-
and-Ordering Task in Tab. 5. Initially, a pool of image candidateswas
retrieved from 500 images (including positive and negative exam-
ples) by fine-tuning the CLIP model. Subsequently, diverse models
were employed to retrieve the top K images from this candidate
set. In this process, 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏 was used to evaluate the ranking
of ground truth among the top K images. Finally, the performance
evaluation of the task was based on 𝑅@𝐾 ∗𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏@𝐾 . It indi-
cates that the method of VQ-Trans achieves the best performance
while Neural Storyboard, CNSI, and Re-Ranking are the overall
poorest, with CLIP related methods in the middle. This result is
basically consistent with the experimental results of the ordering
task, suggesting that the difference in performance primarily stems
from the difference in methods’ ability of ordering.

6.4 Qualitative Results
In addition to the quantitative results, we further carry out a case
study on how well our proposed methods perform in the TeViS
task. As Fig. 5 shows, for the given text synopsis, our proposed VQ-
Trans method performs the best and can correctly order all three
frames in Case 1, as well as the No.2, 3, and 5 images in Case 2.
CLIP-Naive takes the synopsis as the whole to encode and thus it
actually considers relevance only without any order information. It
performs worst as expected. Our proposed CLIP-Sliding and CLIP-
Cumulative address the limitation because text synopsis is split into
several text fragments and the ordering of keyframes depends on the

ordering of text fragments. In this case, the text fragments are well
aligned with ground-truth keyframes from human’s perspective,
but it is still difficult for CLIP-Sliding and CLIP-Cumulative in
ordering these cases. Our proposed pre-training and transformer
based model can correctly order the keyframes, which shows the
advantages in learning the visual language for storyboard creation.

Table 5: Results of Retrieve-and-Ordering Task. Our
method VQ-Trans outperforms other CLIP-based methods.
We use 𝑅@𝐾 ∗ 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 ′𝑠 𝜏@𝐾 as the final measurement.

Method K=20 K=30
Neural Storyboard [7] 0.116 0.107
CNSI [34] 0.114 0.126
Re-Ranking 0.124 0.121
CLIP-Naive 0.203 0.078
CLIP-Sliding 0.202 0.131
CLIP-Cumulative 0.219 0.138
VQ-Trans 0.300 0.219

7 CONCLUSION
In this paper, we introduce a novel TeViS task (Text synopsis to
Video Storyboard), which aims to retrieve an ordered sequence of
images to visualize the text synopsis.We also construct aMovieNet-
TeViS dataset to support it. To align the diverse text synopsis
with keyframes, we utilize a pre-trained Image-Text model to over-
come this challenge. We propose a decoder-only model called VQ-
Trans which translates text synopsis to keyframe sequence. We
also propose a VQ module on Movies frames to discrete the con-
tinuous Movies frames representations. Ablation studies verify the
effectiveness of our proposed model. Both quantitative and qualita-
tive results show our method is better than other baselines.
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TeViS: Translating Text Synopses to Video Storyboards

A LIMITATION AND SOCIAL IMPACT
We propose a new dataset that consists of text synopses and cor-
responding keyframes. During the annotation progress, we main-
tained a professional visual language. Our new task is based on
this dataset that aims to create video storyboards for text synopses.
Thus we hope our work can help amateurs when creating their
videos by providing references. However, the movie styles that
we consider now are not very comprehensive, such as the design
of camera angles, and how the camera moves, etc. These will be
considered in our future works.

B MOVIENET-TEVIS DATASET DETAILS
B.1 Keyframe sequence length and text length
We select 2,949 paragraph-segment pairs from MovieNet [17] for
labeling by removing some pairs which are offensive. We ask an-
notators to label these data and obtain 10,000 pairs of synopses
and keyframe sequences. There are 45,584 keyframes in total. As
Fig.B.1a shows, the number of keyframes is from 3 to 11 and about
60% storyboards contain 3 or 4 keyframes. Fig.B.1b shows the dis-
tribution of the number of words in a text synopsis. The peak is
around 20 and most of the sentences contain less than 80 words. In
addition, as Fig.B.1c shows, MovieNet-TeViS contains movies with
diverse genres. There is no dominant category. The top 1 genre
occupies about 20% and the top three genres occupy only about
40%.

(a) Description of the keyframe
length.

(b) Description of the sentence
length.

(c) Distribution of movie genres.

Figure B.1:More detailed statistics ofMovieNet-TeViS dataset.

B.2 Semantic Richness
The text synopses in our dataset are rich in script types, including
dialogue, scene descriptions, mental activities, etc. We compare the
semantic richness of our dataset with previous movie datasets [1, 37,
41] in terms of the average unique n-grams and part-of-speech (POS)
tags. For a fair comparison, we randomly selected 10K examples

from LSMDC [37], CMD [1], MAD [41] dataset. As Tab. B.1 shows,
our MovieNet-TeViS dataset is higher in both unique n-grams and
POS tags, which can further reflect the semantic richness of our
dataset.

C IMPLEMENTATION DETAILS
We design three strong baselines based on CLIP for ordering, as
shown in Fig. C.2.

C.1 Potential improvement with alternate CLIP
models

(1) CLIP-Dynamic: It may be challenging to adjust the number
of segments as it needs to match the number of keyframes.
We have implemented a dynamic segmentation approach
for dividing the synopsis into segments (considering com-
plexity, we adopt 10,000 divisions). While the number of
segments remains the same across all divisions, the cutting
positions vary. We use bipartite graph matching to calculate
the optimal matching between segments and keyframes.
Based on this optimal matching result, we report the final
metrics.

(2) CLIP-Contextual: Our CLIP-Cumulative method is equiv-
alent to CLIP-Contextual with a greedy strategy. We im-
plement CLIP-Contextual with a beam search strategy and
show the results in Tab. C.2. As the table shows, the gap
between CLIP-Contextual with a beam search strategy and
CLIP-Cumulative is relatively small.

: text word
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Figure C.2: Illustration of additional baseline models for
ordering.

Table C.2: Comparing results of our methods with story-to-
image baselines and CLIP-based methods in ordering sub-
task.

Method Kendall’s 𝜏↑
Over-All [3-5] [6-11]

CLIP-Sliding 0.230 0.278 0.123
CLIP-Cumulative 0.244 0.291 0.139
CLIP-Dynamic 0.218 0.250 0.146
CLIP-Contextual 0.241 0.287 0.138
VQ-Trans (ours) 0.367 0.407 0.278
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Table B.1: Diversity statistics for our dataset and other datasets.

#unique n-grams #unique words (POS tags)

Dataset 1-gram 2-gram 3-gram noun verb adjective adverb
𝐿𝑆𝑀𝐷𝐶10𝑘 [37] 10,137 44,010 67,231 29,989 15,085 4,486 3,686
𝑀𝐴𝐷10𝑘 [41] 14,215 59,352 89,686 38,336 17,219 5,567 4,260
𝐶𝑀𝐷10𝑘 [1] 17,566 83,202 121,992 53,070 24,152 7,181 3,151
𝑀𝑜𝑣𝑖𝑒𝑁𝑒𝑡 −𝑇𝑒𝑉𝑖𝑆 24,325 134,524 248,021 108,832 97,235 21,946 30,559

C.2 Limitations of Vector Quantization (VQ) and
contrastive loss

We have conducted an analysis to investigate the impact of code-
book dimension and size on the ordering task, as shown in Tab. C.3.
Based on the results, we selected a codebook size of 4,096 and a
dimension of 32.

Table C.3: Exploring the impact of codebook dimensions and
sizes.

dim codebook_size Kendall’s 𝜏
32 1024 0.349
32 4096 0.367
32 8192 0.338
64 1024 0.319
64 4096 0.353
64 8192 0.355
128 1024 0.348
128 4096 0.344
128 8192 0.346
512 1024 0.344
512 4096 0.335
512 8192 0.348

In addition, we investigated alternative variants of vanilla Vector
Quantization (vanilla-VQ) in our study, namely Multi-Stage Vec-
tor Quantization (MS-VQ) [23], Soft Vector Quantization (Soft-VQ)
[13], and Hierarchical Vector Quantization (Hi-VQ) [35], as recom-
mended. a) We utilized a three-stage approach to model residual
VQ for MS-VQ. b) We employed SoftMax membership calculation
to model soft VQ for Soft-VQ. c) We implemented a two-layer hier-
archical approach for the Hi-VQ variant. The results are presented
in Tab. C.4. Experimental results show that different variants of
VQ tend to perform better at lower dimensions. The variants did

not exhibit the expected superiority over vanilla-VQ. Moreover, we
find that the training process of MS-VQ, including the loss curve
and validation curve, was remarkably stable compared to other
implemented versions. MS-VQ may be promising to achieve better
performance.

Table C.4: Comparison of different vector quantization vari-
ants.

dim, size Vanilla-VQ MS-VQ Soft-VQ Hi-VQ
32, 4096 0.367 0.360 0.250 0.298
64, 8192 0.355 0.354 0.224 0.278
128, 1024 0.348 0.349 0.230 0.286
512, 8192 0.348 0.320 0.235 0.213

C.3 Balancing loss functions and sensitivity to
hyper-parameters

For instance, we introduce a coefficient 𝜆 to linearly combine the
two losses in Formula 6: 𝐿 = 𝐿_𝑡𝑟𝑎𝑛𝑠+𝜆∗𝐿_𝑣𝑞. Then we investigate
the impact of various values on the final performance and present
preliminary results in Tab. C.5. The results indicate that our current
setting, specifically 𝜆 = 1, yields the best performance.

Table C.5: Performance with different coefficients of the loss
function.

Method Kendall’s 𝜏↑
Over-All [3-5] [6-11]

𝜆 = 0.1 0.345 0.384 0.258
𝜆 = 1 (ours) 0.367 0.407 0.278
𝜆 = 10 0.364 0.396 0.290
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