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ABSTRACT
Personalized interior decoration design often incurs high labor costs.
Recent efforts in developing intelligent interior design systems have
focused on generating textual requirement-based decoration de-
signs while neglecting the problem of how to mine homeowner’s
hidden preferences and choose the proper initial design. To fill this
gap, we propose an Interactive Interior Design Recommendation
System (IIDRS) based on reinforcement learning (RL). IIDRS aims
to find an ideal plan by interacting with the user, who provides
feedback on the gap between the recommended plan and their ideal
one. To improve decision-making efficiency and effectiveness in
large decoration spaces, we propose a Decoration Recommenda-
tion Coarse-to-Fine Policy Network (DecorRCFN). Additionally, to
enhance generalization in online scenarios, we propose an object-
aware feedback generation method that augments model training
with diversified and dynamic textual feedback. Extensive experi-
ments on a real-world dataset demonstrate our method outperforms
traditional methods by a large margin in terms of recommendation
accuracy. Further user studies demonstrate that our method reaches
higher real-world user satisfaction than baseline methods.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
As interior design becomes increasingly prevalent in our daily
life, designing a decoration plan that satisfies the personalized
requirements of the homeowner has become a critical challenge.
Effective communication can be hindered by the homeowner’s lack
of professional design knowledge and a clear idea of the desired
decoration effect. Consequently, a significant amount of effort is
spent repeatedly redesigning and rendering the decoration plan to
collect concrete feedback on the owner’s preferences, resulting in
extremely high labor and time costs.

In recent years, there has been an emerging trend in developing
intelligent indoor design facilitation systems. Along these lines,
major research efforts are being devoted to generating decoration
effects based on textual descriptions [8, 28, 33, 34]. For example,
Text2Room [11] generates 3D indoor scenes according to the input
text, Text2Scene [26] recurrently generates objects and attributes
in the current scene according to the input text. These methods
can generate high-quality decoration displays when people have
determined their specific requirements and can explicitly describe
them. However, there is an undeniable problem: users may not be
clear about what they want at the beginning. The problem of how
to identify a user’s hidden preferences and choose the proper initial
design has been largely neglected.

Recommending the interior designs according to the inherent
user preferences is a non-trivial task. First, non-expert users typi-
cally require multiple rounds of interaction to express their poten-
tial desires in terms of their instant likes and dislikes of presented
decoration effects [15, 16, 37]. Learning an effective and sustain-
able interaction strategy for selecting optimal decoration plans
from a large space that inspires and guides users to express their
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“I want a bright and beautiful 
living room.”

“No, the style is too romantic. 
Maybe a formal style is better.”

𝑈𝑠𝑒𝑟

𝑈𝑠𝑒𝑟

𝑅𝑜𝑢𝑛𝑑	0

𝑅𝑜𝑢𝑛𝑑	1

“It’s OK. But I still prefer a French 
window and a spacious room.”

𝑈𝑠𝑒𝑟

𝑅𝑜𝑢𝑛𝑑	2

“Nice!  That is what I want.”

𝑈𝑠𝑒𝑟

𝑅𝑜𝑢𝑛𝑑	3

𝐴𝑔𝑒𝑛𝑡 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝐴𝑔𝑒𝑛𝑡 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝐴𝑔𝑒𝑛𝑡 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒

Figure 1: User-agent interaction process in IIDRS.

preferences is a challenging task. The interior decoration design
interaction process involves users providing language feedback re-
garding visual decoration effects. Modeling hidden user preferences
from complex multimodal semantic interactions [18, 19, 27, 29]
is another challenging task. Third, real-world user feedback ex-
hibits subjectivity, imprecision, uncertainty, and diversity, which
can bring difficulty for model training [13, 14].

To address these challenges, we propose an Interactive Interior
Design Recommendation System (IIDRS). 1 This system aims to
find an ideal plan through limited rounds of interactive recommen-
dation to a user who provides textual feedback on the gap between
the recommended plan and the ideal one. Specifically, we propose
a novel Decoration Recommendation Coarse-to-Fine Policy Net-
work (DecorRCFN). Observing the multimodal interaction history,
DecorRCFN employs Reinforcement Learning (RL) [36] to learn the
interactive recommendation strategy that explores user preferences
and fulfills their requirements. In particular, a coarse-to-fine two-
policy structure is proposed to raise efficiency and effectiveness
of decision-making on the large decoration action space. Further-
more, to enhance model generalization in online scenarios that are
characterized by uncertain and diversified feedback, we design an
object-aware feedback generation method which augments model
training with dynamic and diversified textual feedback. Finally, we
conduct extensive experiments on a real-world decoration dataset.
The experimental results show that DecorRCFN outperforms exist-
ing methods by a large margin in terms of recommendation accu-
racy. Moreover, user studies demonstrate that our method achieves
the highest level of user satisfaction in real-world interactions.

2 RELATEDWORK
2.1 Intelligent Interior Design Systems
In the field of interior design, one direction is to learn furniture
layouts for indoor scenes. For example, SceneFormer [33] uses a
self-attention mechanism to learn object relations. Di et al. [7] use
a multi-agent reinforcement learning-based scene design method
to learn the optimal 3D furniture layout. With the development

1The dataset and source codes are available at https://github.com/ZhHe11/IIDRS.

of deep generative models [8, 20, 22, 23], indoor scene generation
has become another important research direction. For example,
Text2Room [11] generates 3D indoor scenes based on the input text.
Text2Scene [26] recurrently generates objects and attributes in the
current scene according to the input text. NeuRIS [31] employs a
neural rendering framework to handle texture-less areas and gener-
ate high-quality 3D indoor scenes from 2D images. Different from
existing works, we focus on identifying a user’s hidden preferences
and choosing the proper initial design. We propose an interactive
recommendation system to solve this problem.

2.2 Interactive Recommendation
Interactive recommender systems aim to extract user preferences
through multiple rounds of interactions, and recommend items
that match their interests, including attribute-based dialogue rec-
ommendation [4, 15, 25] and generative dialogue recommenda-
tion [1, 17, 41, 42]. Traditional methods usually interact with users
in a textual dialogue manner [17]. However, interactive recommen-
dation in design scenarios depend on the user’s intuitive visual expe-
rience. Therefore, visually-grounded dialog system researches have
also emerged in e-commerce platforms in recent years [2, 10, 39, 40].
For example, Yuan et al. [39] proposes a conversational fashion im-
age retrieval method that predicts the desired image based on text
and image information in the conversation history. Different exist-
ing works, we propose a method for decoration recommendation,
which contains more complex attributes and involve more diversi-
fied multi-modal interaction than single items.

3 PRELIMINARIES
3.1 Problem Formulation
The overall procedure for the interactive interior design recommen-
dation process is shown in Figure 1. The user interacts with the
agent for multiple rounds. At the 𝑡-th round, the user provides tex-
tual requirements or feedback 𝑓𝑡 on the recommended decoration.
The agent then recommends a decoration 𝑎𝑡 from the database 𝐷 .
The user determines the gap between the recommended an inte-
rior design case 𝑎𝑡 and the ideal case. Accordingly, they provide
feedback 𝑓𝑡+1 and an overall satisfaction score 𝑟𝑡 on a five-level
scale: strongly dislike, dislike, neutral, like, and strongly like. We
assume that there exists an ideal decoration𝑇 that satisfies the user.
The interaction ends either when the ideal decoration is recom-
mended or when the maximum number of rounds 𝑡𝑚𝑎𝑥 is reached.
Intuitively, even if the user is initially unclear about the ideal deco-
ration, their feedback and satisfaction can be regarded as generated
from the differences between the recommended decoration and
their ideal decoration, which guide the exploration for the ideal
decoration. Our objective is to train an agent with an effective strat-
egy to recommend a design case 𝑎𝑡 , using historical interactions
< 𝑓0, 𝑎0, 𝑟0, 𝑓1, 𝑎1, 𝑟1, · · · , 𝑓𝑡 >, and to reach the ideal case 𝑇 within
the fewest number of rounds.

3.2 Data Description
The interior design data used in this paper were gathered from
a popular Chinese interior design website2. The data comprises

2https://www.jiajuol.com

https://github.com/ZhHe11/IIDRS
https://www.jiajuol.com
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(The open design of entire dining room weakens the TV-centered 
layout and focuses on comfort to create a comfortable living 
atmosphere. The entire space is paved with walnut wood floors, 
and the simple wood-colored furniture is displayed. The space is 
natural and warm.)

整个餐厅开放式的设计，弱化了电视为中心的布局，以舒适惬意
为主调，营造自在的生活氛围；整个空间以胡桃木地板铺贴出质
朴，并陈列简约的木色家具，让空间自然而温润。

三居室(Three bedrooms) 简约(Minimalist style) 90平米(90 square meters) 

Figure 2: An interior design case from our dataset.

90,000 decoration cases covering 20 different decoration styles and
10 room types. Each instance consists of images, descriptive texts, as
well as tags such as house types and room styles. The text consists
of lengthy paragraphs that include multiple sentences of subjective
descriptions. These descriptions are provided by expert designers
and focus on the decoration of a scene, including both overall de-
scriptions of the entire scene, such as atmosphere and color, as well
as specific views of individual objects, such as French windows
and pendant lights. We create an object/attribute dictionary with
300 object types to identify different aspects of these descriptions.
An illustrative example is shown in Figure 2, where the red words
indicate objects/attributes. Formally, we formulate each interior de-
sign instance as (𝑑 𝑗 , 𝑙 𝑗 , {𝑜 𝑗

𝑖
}𝑀𝑗

𝑖=1), where 𝑑
𝑗 denotes the decoration

image, 𝑙 𝑗 denotes the description, {𝑜 𝑗
𝑖
}𝑀𝑗

𝑖=1 refers to objects set ap-
pearing in the 𝑗-𝑡ℎ instance’s description,𝑀𝑗 refers to the number
of such objects. Notably, since textual descriptions may not always
be available for online interior design platforms, we develop our
system for the generic case where the database 𝐷 = {𝑑 𝑗 }𝑁𝑗=1 only
contains images, where 𝑁 denotes the total number of images in
the database. The textual descriptions and objects are optional to
develop a synthetic environment for training augmentation and
model evaluation, which are detailed in Section 4.3 and Section 5.1.2,
respectively.

4 METHOD
4.1 RL Formulation
We define the interactive interior design recommendation pro-
cess as a Markov Decision Process (MDP) with the formulation
(S,A,R), where S, A, and R denote the state, action, and reward
space, respectively. At round 𝑡 , the state 𝑠𝑡 is formulated as

𝑠𝑡 =< 𝑓0, 𝑎0, 𝑓1, 𝑎1, · · · , 𝑎𝑡−1, 𝑓𝑡 > . (1)

In particular, 𝑠0 = 𝑓0 is the first request from the user. We use
𝐹𝑡 = {𝑓𝑖 }𝑡𝑖=0 to represent the historical feedback from the user
and 𝐴𝑡 = {𝑎𝑖 }𝑡−1𝑖=0 to represent the historical recommended images
selected by the agent. The action 𝑎𝑡 ∈ A (i.e., the recommended
image) is selected from action space 𝐷 (i.e., the entire instance
database) with a learned policy 𝜋𝜃 by a network parameterized 𝜃 .

To balance the exploration-exploitation trade-off during the training
process, we involve a parameter 𝜖 valued from [0,1].When 𝜖 = 1, the
agent exploits the known optimal strategy without any exploration.
When 𝜖 = 0, the agent explores the environment fully randomly,
without considering any known information. We set the reward
𝑟𝑡 ∈ R according to the five levels of user satisfaction score, labeled
as {−2,−1, 0, 1, 2} respectively. Moreover, if the agent successfully
recommends the user’s ideal instance at round 𝑡 , the reward 𝑟𝑡 is
assigned a value of 10 and the process is terminated. The long-term
return is formulated as discounted cumulative reward:

𝑣𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + · · · = ∑𝑡𝑚𝑎𝑥−𝑡
𝑘=0 𝛾𝑘𝑟𝑡+𝑘 , (2)

where 𝛾 represents the discount factor. The objective of the agent is
to learn an optimal policy 𝜋𝜃 through interacting with the environ-
ment by maximizing 𝑣𝑡 . Notably, different from existing works [10],
our supervision signal does not come from the rank of a specific
target item since the ideal instance is defined to be implicit in our
problem formulation, which is unknown unless the agent succeeds
in finding it in 𝑡𝑚𝑎𝑥 rounds.

4.2 Decoration Recommendation
Coarse-to-Fine Policy Network

In the decoration recommendation problem, the action space is
large due to the many possible decorations to recommend. Learn-
ing a fine-grained policy on all possible choices with a complex
model can lead to low exploration-efficiency and make model con-
vergence difficult. Inspired by the classic preranking-ranking 2-step
recommendation schema, we propose DecorRCFN, a coarse-to-fine
policy network consisting of two sub-policy modules. Its architec-
ture is shown in Figure 3. Specifically, the coarse-grained policy
network learns the policy 𝜋𝑐

𝜃
for selecting a set of candidate actions

from the entire image set𝐷 , based on the similarity of user feedback
and decoration representations. The fine-grained policy network
then models multimodal state-action interaction and learns the
policy 𝜋 𝑓

𝜃
for selecting the final action from the candidate images.

4.2.1 Coarse-grained Policy Network. Given the large action space,
it is necessary to reduce the number of candidate interior design
cases from the entire database 𝐷 that need to be considered by a
complex, fine-grained policy. Intuitively, the historical feedback
provided by users can be seen as incomplete descriptions of desired
decoration. Therefore, a straightforward idea is to extract a repre-
sentation of the user’s demands from their historical feedback and
match it with representations of decoration images. We employ
CLIP [21, 38], a prominent multimodal pre-trained model for image-
text matching, as the encoder module for generating embeddings
𝑭𝒕 ∈ R𝑡×ℎ and 𝑫𝒕 ∈ R𝑁×ℎ for textual feedback 𝐹𝑡 and decoration
images in 𝐷 :

𝑭𝒕 = {Encoder(𝑓𝑖 ) |𝑓𝑖 ∈ 𝐹𝑡 },
𝑫 = {Encoder(𝑑 𝑗 ) |𝑓𝑗 ∈ 𝐷},

(3)

where ℎ represents the embedding dimension. Then, we calculate
a similarity matrix 𝑀 ∈ R𝑡×𝑁 , the element 𝑀𝑖, 𝑗 represents the
similarity between historical feedback 𝑓𝑖 ∈ 𝐹𝑡 and 𝑑 𝑗 ∈ 𝐷 can be
computed as:

𝑀𝑖, 𝑗 = sim(Encoder(𝑓𝑖 ), Encoder(𝑑 𝑗 )) (4)
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Figure 3: Architecture of DecorRCFN.

where sim(·, ·) computes the cosine similarity of two embeddings,
outputting a value ranging from −1 to 1. Based on the similarity
matrix, a trivial candidate selection method is to add up the scores
of all the feedback and retrieve the images with the highest scores.
However, this approach may be suboptimal because different feed-
back contains various information and may have differing levels of
importance in reflecting user preferences. Therefore, we consider
candidate selection as a learnable policy, with the action space de-
fined as the entire interior design database, i.e., A𝑐 = 𝐷 . To model
the importance of each 𝑓𝑖 ∈ 𝐹𝑡 , we use a multi-head self-attention
module [30], formulated as

SelfAttn(𝑋 ) = softmax(
(𝑋𝑊𝑄 ) (𝑋𝑊𝐾 )𝑇√︁

𝑑𝑘

) (𝑋𝑊𝑉 ) (5)

where 𝑋 represents the input for the self-attention layer,𝑊𝑄 ,𝑊𝐾 ,
and𝑊𝑉 are trainable parameters, 𝑑𝑘 is the key dimension in the
attention mechanism. Based on the self-attention module, we get
the attention vector 𝑤 ∈ R𝑡 as 𝑤 = MLP(SelfAttn(𝑭𝒕 )), where
MLP is a Multi-Layer Perceptron, and accordingly calculate the
selection probability as

𝜋𝑐
𝜃
(·|𝑠𝑡 ) = softmax(𝑤𝑇𝑀) . (6)

Since direct supervision of the proper candidate is unavailable,
we train the coarse-grained policy with a reinforcement learning
schema. Specifically, we employ coarse-grained policy to draw the
recommendation sequence and adopt Policy Gradient (PG) [36]
to train the model. For each step, among all the images in 𝐷 , the
one with the largest sore is selected as the action, formulated as
𝑎𝑐𝑡 = argmax𝑎𝑐 ∈A𝑐

𝜋𝑐
𝜃
(𝑎𝑐 |𝑠𝑐𝑡 ). The agent aims to maximize the

object function 𝐽𝑐 , formulated as:

𝐽𝑐 =
∑︁

𝑎𝑐 ∈A𝑐

𝜋𝑐
𝜃
(𝑎𝑐 |𝑠𝑐 ) · 𝑣,

∇𝜃 𝐽𝑐 ≈
∑︁
𝑡

∇𝜃 𝑙𝑜𝑔(𝜋𝑐𝜃 (𝑎
𝑐
𝑡 |𝑠𝑐𝑡 )) · 𝑣𝑡 ,

(7)

where 𝜋𝑐 (𝑎𝑐 |𝑠) denotes the coarse-grained policy. The optimiza-
tion problem can be reformulated as the minimization of the loss
function L𝑐 , which is given by:

L𝑐 = −
𝑡𝑚𝑎𝑥∑︁
𝑡=1

𝑙𝑜𝑔(𝜋𝑐
𝜃
(𝑎𝑐𝑡 |𝑠𝑐𝑡 )) · 𝑣𝑡 . (8)

Notably, the similarity calculation requires encoding images for all
the images in the database everytime the parameters are updated.
To reduce model complexity, we freeze the image embeddings in
CLIP module so that we can pre-calculate them for quick retrieval.

4.2.2 Fine-grained Policy Network. The coarse-grained network
usually prioritizes the textual modality but ignores how it interacts
with the image modality in recommendation history. Indeed, since
each textual feedback specifies user opinion for specific visual char-
acteristics of the given image, looking into the informative visual
signals based on the feedback can facilitate user preference mod-
eling. Therefore, instead of directly choosing the final action with
coarse-grained policy, we select the top-𝑘 decorations as candidate
set 𝐼𝑐 . Then, we train the fine-grained policy network in Decor-
RCFN to further determine the best choice from the candidate set.
Specifically, the fine-grained policy network models the semantic
interaction between 𝐴𝑡−1, 𝐹𝑡 , and each candidate in 𝐼𝑐 . We obtain
embeddings𝑨𝒕−1 of the action history𝐴𝑡−1 and 𝑪 of the candidate
images 𝐼𝑐 through the CLIP encoder module:

𝑨𝒕−1 = {Encoder(𝑎𝑖 ) |𝑎𝑖 ∈ 𝐴𝑡−1},
𝑪 = {Encoder(𝑐𝑖 ) |𝑐𝑖 ∈ 𝐼𝑐 }.

(9)

To capture user preferences from multiple modalities in multiple
rounds, we fuse the embeddings of feedback sentences 𝑭𝒕 and the
action history 𝑨𝒕−1 to form a new embedding vector 𝒉𝒕 . In order
to select the action of the fine-grained network that best matches
the user preferences, we use a multi-head cross-attention module
[9, 35] to compare the 𝒉𝒕 and 𝑪 . The cross-attention module is
defined as:

CrossAttn(𝑋𝑄 , 𝑋 ) = softmax(
(𝑋𝑄𝑊𝑄 ) (𝑋𝑊𝐾 )𝑇√︁

𝑑𝑘

) (𝑋𝑊𝑉 ), (10)

where𝑋𝑄 and𝑋 are the query and key-value matrices, respectively.
We utilize 𝒉𝒕 as the query matrix and 𝑪 as the key-value matrix to
obtain the attention matrix, which is then fed into a Multi-Layer
Perceptron (MLP) with Softmax activation to obtain the probability
of each actions:

𝜋
𝑓

𝜃
(·|𝑠 𝑓𝑡 ) = softmax(MLP(CrossAttn(𝑪,𝒉𝒕 ))) . (11)

Therefore, the optimal action of the fine-grained network is repre-
sented as 𝑎𝑓𝑡 = argmax𝑎𝑓 ∈A𝑓

𝜋
𝑓

𝜃
(𝑎𝑓 |𝑠 𝑓𝑡 ), where A𝑓 = 𝐼𝑐 denotes
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the action space (i.e., candidate pool) of the network. Similar to the
coarse-grained policy, Based on PG algorithm, we define the object
function and loss function of the fine-grained network as follows:

L𝑓 = −
∑︁
𝑡

𝑙𝑜𝑔(𝜋 𝑓
𝜃
(𝑎𝑓𝑡 |𝑠

𝑓
𝑡 )) · 𝑣𝑡 . (12)

We combine the coarse-grained and fine-grained loss to formulate
the overall Coarse-to-fine Network loss, based on sampled recom-
mendation paths from the final policy 𝜋𝜃 = (𝜋𝑐

𝜃
, 𝜋
𝑓

𝜃
), as

L𝑐 𝑓 = −
𝑡𝑚𝑎𝑥∑︁
𝑡=1

(𝛼 · 𝑙𝑜𝑔(𝜋𝑐
𝜃
(𝑎𝑓𝑡 |𝑠

𝑓
𝑡 )) + 𝑙𝑜𝑔(𝜋

𝑓

𝜃
(𝑎𝑓𝑡 |𝑠

𝑓
𝑡 ))) · 𝑣𝑡 , (13)

where 𝛼 ∈ [0, 1] balances the importance of the two policies.

4.3 Training Augmentation with Object-aware
Feedback Generation

Real-world user feedback exhibits subjectivity, imprecision, uncer-
tainty, and diversity nature. Themodel needs abundant explorations
before it learns effective strategies to dig the preference from the
complex and uncertain user feedbacks whose patterns vary with
user’s personal habits. However, collecting user feedback through
real interaction can be expensive. The limited data can harm model
performance for easily causing overfiting problem. Therefore, data
augmentation is important to enhance model generalization in com-
plex online scenarios. To enhance model generalization in complex
online scenarios, we propose augmenting our training procedure
with diverse simulated feedback dynamically generated based on
the differences between the recommended decoration and the target
decoration. As a decoration design can be described from various as-
pects [3, 12, 32], our method generates difference descriptions in an
objects/attributes-aware manner, containing three steps: object de-
tection, object-aware image captioning, and difference description
filtering. The overall framework is shown in Figure 4.

4.3.1 Object Detection. Our dataset includes selective descriptions
of objects and attributes that appear in an image. We first train a
model to identify objects or attributes that can be found in the image.
Specifically, we treat the object as text and fine-tune a CLIP model
with image-object pairs. This allows the model to calculate the
similarity between an image 𝑑 and an object 𝑜 . A higher similarity
score indicates a higher chance of the object existing in the image.

4.3.2 Object-aware Image Captioning. After recognizing objects
in an image, we train an object-aware image captioning model to
generate captions describing these objects in their corresponding
images. To be specific, based on our decoration dataset, we build a
training set in which each sample formulated as < (𝑑, 𝑜, 𝑙𝑚), 𝑦 >,
where 𝑑 represent the image, 𝑜 represents an object, 𝑦 denotes the
target sentence that describes object 𝑜 within image 𝑑 , 𝑙𝑚 is the rest
descriptions after masking the target sentence. To model these data,
our model embeds the image 𝑑 with a CNN backbone, and embed
the text 𝑜𝑖 and 𝑙𝑚 with a BERT [5] encoder. The embeddings are
represented as 𝒅, 𝒐, and 𝒍𝒎 . Then, we utilize a transformer module,
which has proven to be superior in image captioning tasks [24, 30],
to generate textual descriptions. However, directly feeding all types
of embeddings into the transformer can lead to high computation
costs due to excessive length of sequences. Therefore, we involve
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Figure 4: Framework of Object-aware Feedback Generation.

two cross-attention modules (as Eq. 10) to reduce the sequence
length. The two cross-attention modules both use 𝒐 as𝑄 and 𝒅 and
𝒍𝒎 as 𝐾 and 𝑉 , respectively. The features contain information of
the object within the images and descriptions. Finally, we concate-
nate the features and feed them into the transformer module to
produce an object-aware image caption 𝑦. Following existing image
captioning works, we train the model by minimizing cross-entropy
loss between target description 𝑦 and the generated sentence 𝑦.

4.3.3 Difference Description Filtering. So far, a variety of sentences
can be generated to describe different aspects of a decoration image.
To filter the sentences that describe differences between the current
image and target image, we developed a filter module with a CLIP
model fine-tuned on image-sentence pairs in our dataset. Using
the filter, we identify sentences that have high similarity to one
image and low similarity to the other as describing their differences.
Ultimately, we synthesize user behavior based on the rules intro-
duced in Section 5.1.2. This enriches the diversity of feedback and
improves the recommendation performance.

5 EXPERIMENT
5.1 Experimental Setup
5.1.1 Datasets and Settings. To ensure both the effectiveness and
efficiency of reinforcement learning training in a large action space„
we further selectively screen detailed and clear interior design
cases from the data. Specifically, we select 5731 samples from the
screened data to be used as the experimental dataset for subsequent
analysis. In order to more accurately evaluate the performance
and generalization of the model, we split the dataset into training
and testing sets in a 1:1 ratio, which ensures that the size of the
action space is the same. The CLIP models have been fine-tune
with our training set. To demonstrate the effectiveness of Object-
aware Feedback Generation, we then create two datasets based
on the source of feedback: Real-world Sentences(RS), which con-
sists of synthesized feedback derived from real-world descriptions,
and Generation Sentences(GS), which utilizes feedback generated
through the Object-aware Feedback Generation model. We select 10
objects with the highest similarity to each image. The parameters
of DecorRCFN are empirically set as: 𝜖 = 0.8 (Section 4.1), 𝛾 = 0.8
(Equation 2), 𝛼 = 0.1 (Equation 13), the number of candidates 𝑘 = 4,
and the learning rate 𝑙𝑟 = 10−5.

5.1.2 User Simulation. For multi-round interactive recommenda-
tion systems, the environments needs real users to converse with
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Model

Feedback from
Generated Sentences(for test)

Feedback from
Real-world Sentences(for test)

Max round = 10 Max round = 8 Max round = 6 Max round = 10 Max round = 8 Max round = 6
r@1 r@2 r@1 r@2 r@1 r@2 r@1 r@2 r@1 r@2 r@1 r@2

Random 0.43% 0.53% 0.35% 0.40% 0.31% 0.42% 0.60% 0.71% 0.35% 0.42% 0.31% 0.39%
CLIP-greedy 42.23% 47.05% 33.15% 38.86% 21.84% 27.30% 28.12% 32.78% 25.46% 28.64% 21.70% 24.43%
CLIP-random 44.11% 48.97% 32.80% 38.97% 21.27% 28.82% 32.41% 33.86% 27.80% 30.03% 22.62% 25.67%
DecorRCGN 48.12% 54.46% 38.04% 44.14% 21.66% 27.16% 32.26% 33.79% 28.33% 30.98% 21.66% 24.44%
DecorRCFN 49.82% 55.56% 38.23% 44.64% 24.53% 30.88% 33.80% 35.63% 29.40% 31.76% 23.57% 26.27%

Table 1: Performance Evaluation for IIDRS.

the agent and provide rewards, which is challenging to create for
research purposes [6]. A common solution is using simulated users
to interact with the agent. In IIDRS, the user simulator simulates
the ideal case by randomly drawing a decoration image from the
database. Accordingly, it simulates the following three behaviors:
1) providing feedback 𝑓𝑡 according to the given image 𝑎𝑡−1 and
the ideal image 𝑇 ; 2) providing satisfaction level (Section 4.1); 3)
terminating the interaction when the target case𝑇 is recommended
or the number of rounds exceeds 𝑡𝑚𝑎𝑥 . To simulate feedback, we
create rules that use a set of description sentences for the current
and target images to construct candidate feedback. We evaluate
the feedback using the CLIP model to determine whether a given
sentence accurately describes the differences between the two im-
ages. An effective feedback should exhibit a significant contrast
between the similarity score to 𝑇 and the 𝑎𝑡 . If a sentence 𝑓 has a
high similarity score to 𝑎𝑡 but a low similarity score to 𝑇 , we use
the template "I don’t like {𝑓 }" to generate a sentence describing
the user’s dislike of the current image. Conversely, if 𝑓 has a high
similarity score to 𝑇 but a low similarity score to 𝑎𝑡 , we use the
template "I prefer {𝑓 }" to generate a sentence describing the user’s
demand for the ideal decoration. During the interaction, feedback
sentences are randomly sampled from the constructed candidates
based on the current and target image. For satisfaction level sim-
ulation, we design a rule based on the rank rank(𝑎𝑡 ,𝑇 , 𝐷) of 𝑎𝑡 in
terms of its embeddings’ cosine similarity to 𝑇 among images in 𝐷 .
Specifically, the satisfaction level 𝑟𝑡 is defined as

𝑟𝑡 =


2, rank(𝑎𝑡 ,𝑇 , 𝐷) ≤ 𝑙0
1, 𝑙0 < rank(𝑎𝑡 ,𝑇 , 𝐷) ≤ 𝑙1
0, 𝑙1 < rank(𝑎𝑡 ,𝑇 , 𝐷) ≤ 𝑙2
−1, 𝑙2 < rank(𝑎𝑡 ,𝑇 , 𝐷) ≤ 𝑙3
−2, rank(𝑎𝑡 ,𝑇 , 𝐷) > 𝑙3,

(14)

where 𝑙{0,1,2,3} denotes the thresholds for different satisfaction lev-
els. We set 𝑙{0,1,2,3} = {10, 20, 30, 50} in our experiment.

5.2 Recommendation Performance Evaluation
5.2.1 Baseline Performance Analysis. We primarily evaluate the ef-
fectiveness of our recommendation model using recall@1(𝑟@1) and
recall@2(𝑟@2). As online reinforcement learning for multi-round
text-image recommendation represents a new task, we compared
our approach with two baseline methods: Random search(Random)
and CLIP models(CLIP). Specifically, for Random search, we ran-
domly select images from the database for𝑀𝑎𝑥𝑟𝑜𝑢𝑛𝑑 rounds. For
CLIP-greedy model, we select the image that receive the highest

similarity score with all feedback during an interaction, calculated
by a fine-tuned CLIP model. However, the greedy strategy is not
always optimal, as user preferences are uncertain during the whole
recommendation process. Therefore, we introduce a CLIP-random
baseline, which is based on CLIP but randomly selects the next
image from the top 4 candidates calculated by CLIP.

Table 1 presents our experimental results. Random search per-
formed poorly, failing to hit the target image. On the other hand, the
fine-tuned CLIP model achieved relatively good performance. We
observed that the score of 𝑟@2 using CLIP-greedy outperformed
𝑟@1 by almost 5%, indicating that the image with the highest simi-
larity score is not always the optimal choice. It also reflects that the
user feedback is information limited, leading to the most similar im-
age not necessarily being the most appropriate choice. Furthermore,
the random strategy appears to be less stable and uncontrollable in
performance compared to Greedy search and other models. Specif-
ically, the variance of the results obtained using CLIP-random is
higher than that of CLIP-greedy and other methods.

5.2.2 DecorRCGN and DecorRCFN. In Table 1, the Decoration Rec-
ommendation Coarse-Grained policy Network (DecorRCGN) and
the Decoration Recommendation Coarse-to-Fine policy Network
(DecorRCFN) exhibit superior performance compared to the base-
lines in general. DecorRCGN ranks the actions in database by recal-
culating the weights of different feedback sentences(Section 4.2.1).
To illustrate its effect, we conduct an experiment as shown in Table
2. While all feedback sentences carry equal weights in CLIP-based
models, DecorRCGN assigns different weights to each sentence
based on its content. For instance, the first feedback ‘White’ being
the shortest and providing the least information, receives the low-
est weight of 0.5557. In contrast, the third line sentence, ‘A white
bedroom with enough space for kids to play’, containing the most
information, obtains the highest weight of 0.9711. After assigning
weights to each feedback sentence based on their importance, the
scores of similarity between each image and sentence are summed
up. When selecting the next action in DecorRCGN, it is found that
the third sentence, which contains the most information, has the
highest weight and thus contributes the most to the next image.
As shown in Table 1, DecorRCGN outperforms both CLIP-greedy
and CLIP-random by 5.8% and 4.0%, respectively, in terms of 𝑟@1
when 𝑀𝑎𝑥𝑟𝑜𝑢𝑛𝑑 = 10. Nonetheless, DecorRCGN has two draw-
backs. Firstly, it still employ the greedy strategy when selecting the
next action, ignoring the fact that the image with the highest score
does not necessarily represent the best choice. Secondly, when the
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Feedback in English CLIP DecorRCGN

White 1 0.5557
A white bedroom 1 0.8720
Spacious white bedroom for kids to play. 1 0.9711

Table 2: Weights of different feedback sentences.

𝑀𝑎𝑥𝑟𝑜𝑢𝑛𝑑 is set to 6, DecorRCGN fails to surpass CLIP-greedy due
to insufficient feedback information. However, our proposed Decor-
RCFN effectively addresses these issues. The DecorRCFN model
employs a more refined policy by selecting the top k candidates
filtered by DecorRCGN. This helps to avoid always selecting images
with the highest scores, which may not necessarily be the optimal
choice. Furthermore, DecorRCFN enhances candidate comparison
by utilizing information from both feedback history and images
recommended in the previous round. This results in improved per-
formance of DecorRCFN, especially achieving 24.53% in terms of
𝑟@1 when textual modality is limited when𝑀𝑎𝑥𝑟𝑜𝑢𝑛𝑑 = 6, shown
in Table 1. In both the test set with generated sentences(GS) and
the test set with real-world sentences(RS), DecorRCFN consistently
outperforms DecorRCGN and achieves the best performance.

5.2.3 Ablation Study. We conduct an ablation study to illustrate
the effectiveness of the RL compared to supervised learning. In
this problem formulation, the agent is unable to acquire additional
information beyond feedback and rewards. Therefore, the loss of
supervised learning can only incorporate rewards. In Table 3, L𝑐
and L𝑐 𝑓 represent the losses of the DecorRCGN and DecorRCFN,
respectively. The 𝑟𝑒𝑤𝑎𝑟𝑑 indicates that the loss is calculated solely
based on 𝑟𝑡 , which can be regarded as reward supervised learning.
The 𝑣𝑎𝑙𝑢𝑒 means the loss is calculated according to 𝑣𝑡 Equation
2, where 𝛾 = 0.8 to get the best results. We compare the recall@1
performance of these settings with𝑀𝑎𝑥𝑟𝑜𝑢𝑛𝑑 = 10. And the results
indicate that models based on reward supervised learning achieve
much lower values of 𝑟@1 compared to RL models. This is because
when 𝛾 = 0, the models never consider future rewards but only
focus on the current choices, leading to performance similar to
CLIP-greedy. Once we incorporate future rewards into the loss, the
agent could choose a better action based on the entire episode.

We conduct another ablation study on the influence of object-
aware feedback generation. Figure 5 displays the correlation be-
tween the number of rounds and the value of recall@1 when Decor-
RCFN is trained on different dateset and test on different dataset.
Specifically, GS denotes the dataset using generated sentences from
object-aware feedback generation, and RS denotes the dataset with
real-world sentences. All of the curves show an upward trend.
Specifically, the red and purple curves, which represent DecorRCFN
tested on GS, exhibit increasingly steeper slopes as the number of
rounds increases. This observation suggests that DecorRCFN’s per-
formance improves with additional feedback and image information
from multiple rounds. However, the models tested on RS(the yellow
and blue curves) show slower growth. This is because the infor-
mation from real-world sentences doesn’t increase necessarily as
the rounds increasing, due to the limited number of sentences in
real-world descriptions. Furthermore, the figure indicates that the
models trained on GS(represented by the red and yellow curves)
perform better than those trained on RS(represented by the purple
and blue curves) in both test sets. This highlights the effectiveness

L𝑐
(reward)

L𝑐
(value)

L𝑐 𝑓
(reward)

L𝑐 𝑓
(value)

Max round=10
recall@1

✓ 42.43%
✓ 48.26%

✓ 42.72%
✓ 49.82%

Table 3: Comparison between ours and reward supervised
learning.
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Figure 5: Influence of Object-aware Feedback Generation.

of our object-aware feedback generation model (see Section 4.3),
which enriches the diversity of user feedback, augments the data in
the training set, and ultimately improves the model performance.

5.3 Object Description Model Evaluation
We assess the object-aware feedback generation model using widely
adopted metrics such as BLEU-1 and ROUGE-L [12], to evaluate
the fluency of the generated sentences. Additionally, to demon-
strate that the model could produce high-quality sentences, we
compare the similarity scores, CLIP-S, of the images and generated
sentences. Our generation model consists of the two cross-attention
modules, called Double CrossAttn in Table 4. We compare it with
the surely transformer module without cross-attentionmodules pre-
viously, shown in the first row of the table. Without cross-attention
modules before, it joints the embedings of 𝑑 , 𝑜 and 𝑙𝑚 together,
leading to an increased sequence length. Consequently, Double
CrossAttn achieves comparable results to Transformer, while also
requiring less time for sentence generation due to shorter sequence
length. Specifically, Double CrossAttn has an average generation
time of 95.5𝑚𝑠 per sentence, compared to Transformer’s average of
218.8𝑚𝑠 . To demonstrate the significance of the information from
the masked descriptions 𝑙𝑚 , we train a Single CrossAttn module
without integrating the modality of 𝑙𝑚 . The experimental results
validate that the information from 𝑙𝑚 cannot be disregarded. The
BLEU-1 and ROUGE-L scores of Single CrossAttn are much lower
than those of Double CrossAttn, indicating that the sentences gen-
erated by Single CrossAttn are less fluent as than those generated
by Double CrossAttn. Meanwhile, the CLIP-S of Double CrossAttn
surpasses the score of Single CrossAttn by its 22%. This implies that
the sentences generated by Single CrossAttn are unable to pass the
filter. We additionally involve a temperature parameter(T), which
increases the probability to generate different words. Finally, the
performance of Double CrossAttn(T) surpasses Double CrossAttn
in terms of BLEU-1 and ROUGE-L scores, though it achieves slightly
lower scores for the CLIP-S.
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能推荐一个适合小朋
友居住的房间吗？
Can you recommend a 
room suitable for a kid 
to live in?

Round	0

I like to place some 
cute dolls.

我想再放置一些可爱
的玩偶。

Round	1

房间是给女孩子住的，
应该是小公主的风格。
The room is for a girl 
and should have a 
princess-style decor.

Round	2

It would be great if 
there is a piano in the 
room.

最好还能在房间里摆
一架钢琴。

Round3
Figure 6: Real-world examples of interactions with our IIDRS.

Module BLEU-1 ROUGE-L CLIP-S

Transformer 0.4396 0.2423 27.76
Single CrossAttn 0.2721 0.0905 22.75
Double CrossAttn 0.4317 0.2506 27.85
Double CrossAttn(T) 0.4405 0.2544 27.67

Table 4: Performance Evaluation for Object Description.

5.4 User Study
To demonstrate the effectiveness of our system in interacting with
humans, we recruited 20 individuals with diverse backgrounds to
test our system. Each user communicated with three models: Decor-
RCGN, DecorRCFN, and CLIP-greedy, without being informed
which model they were interacting with during the entire pro-
cess. We recorded each user’s level of satisfaction after each round
of interaction. Once a user was satisfied with the recommended
image and decided to stop further recommendations, the model
received a reward of 3 in both the current and subsequent rounds.

5.4.1 Case Study. An example interaction with our IIDRS is shown
in Figure 6. The user cannot exactly describe their whole prefer-
ences at the beginning. For instance, they just ask for a room but
don’t require the piano at first round. As the number of rounds
increases, the interior decoration cases provided by the agent guide
the user to offer more specific feedback, which is also the reason
why multi-round interactive recommendation systems outperform
single-round ones. In Figure 6, our agent effectively satisfies both
current and historical user needs.

5.4.2 Experiments Evaluation. We compare DecorRCFN and Decor-
RCGN by evaluating the differences in user satisfaction between
them and CLIP-greedy, calculated by subtracting the user satisfac-
tion levels of CLIP-greedy from those of DecorRCFN and Decor-
RCGN. Figure 7 displays the results of the experiments. At first
round, thesemodel exhibit similar performance due to no significant
difference in their policies. As the number of rounds increases, the
difference in user satisfaction levels with the two models compared
to CLIP-greedy increases in general, which indicates that Decor-
RCFN and DecorRCGN can better extract user preferences from
history interaction. Moreover, the performance of DecorRCFN out-
performs DecorRCGN by an increasingly large margin. The users
explain that DecorRCGN tend to recommend the similar images as
the previous round, which affects user satisfaction and gets lower
rewards than DecorRCFN. They also comment that DecorRCGN
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Figure 7: Differences in user satisfaction levels with different
models compared to CLIP-greedy.

has the best memory of user feedback, which could be explained by
a fine-grained comparison with the history feedback and images.

6 CONCLUSION
In this paper, we proposed an Interactive Interior Design Recom-
mendation System (IIDRS) based on reinforcement learning to mine
user preferences in personalized interior design recommendation.
We also proposed a Decoration Recommendation Coarse-to-Fine
Policy Network (DecorRCFN) to enhance decision-making the
agent’s ability in large action spaces. Finally, we introduced an
object-aware feedback generation model to augment the training
process and optimize policy network training. Our experiments
demonstrated the superiority of our method in terms of recommen-
dation accuracy and real-world user satisfaction. We anticipate this
work will have a positive impact on personalized interior decoration
design by introducing an interactive approach to recommendation.
We also acknowledge that current study may not meet users’ re-
quirements when their desired interior design cases do not exist in
our dataset. In future work, we will explore developing generative
decoration recommendation model that can create more personal-
ized and feasible interior design cases based on user preference.
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