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ABSTRACT
Unsupervised pre-training has shown great success in skeleton-
based action understanding recently. Existing works typically train
separate modality-specific models (i.e., joint, bone, and motion),
then integrate the multi-modal information for action understand-
ing by a late-fusion strategy. Although these approaches have
achieved significant performance, they suffer from the complex
yet redundant multi-stream model designs, each of which is also
limited to the fixed input skeleton modality. To alleviate these is-
sues, in this paper, we propose a Unified Multimodal Unsupervised
Representation Learning framework, called UmURL, which exploits
an efficient early-fusion strategy to jointly encode the multi-modal
features in a single-streammanner. Specifically, instead of designing
separate modality-specific optimization processes for uni-modal
unsupervised learning, we feed different modality inputs into the
same stream with an early-fusion strategy to learn their multi-
modal features for reducing model complexity. To ensure that the
fused multi-modal features do not exhibit modality bias, i.e., being
dominated by a certain modality input, we further propose both
intra- and inter-modal consistency learning to guarantee that the
multi-modal features contain the complete semantics of each modal
via feature decomposition and distinct alignment. In this manner,
our framework is able to learn the unified representations of uni-
modal or multi-modal skeleton input, which is flexible to different
kinds of modality input for robust action understanding in prac-
tical cases. Extensive experiments conducted on three large-scale
datasets, i.e.,NTU-60, NTU-120, and PKU-MMD II, demonstrate that
UmURL is highly efficient, possessing the approximate complexity
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with the uni-modal methods, while achieving new state-of-the-art
performance across various downstream task scenarios in skeleton-
based action representation learning. Our source code is available
at https://github.com/HuiGuanLab/UmURL.
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1 INTRODUCTION
Human action understanding [9, 12, 19, 27, 28, 34, 44, 46, 50] is
one of the fundamental and important tasks within the realm
of multimedia, which demonstrates extensive applicability across
diverse domains, including human-computer interaction [17, 21–
24, 31, 53, 54, 56, 62], intelligent surveillance, and sports analysis,
etc. Recently, skeleton-based action understanding [6, 36, 51, 59]
that represents the human major joints with 3D coordinates has
garnered considerable research interest, on account of its light-
weight, appearance-robust, and privacy-preserving advantages in
comparison to RGB videos [15, 39]. Despite their achieved impres-
sive performance, these approaches rely on a large amount of la-
beled training data that are time-consuming and arduous to acquire.
To address this limitation, unsupervised representation learning
[45, 55, 60, 61] from unlabeled data has been introduced into the
skeleton-based action understanding task.

Early unsupervised learning attempts for skeleton-based action
understanding were primarily focused on devising pretext tasks
for generating the supervision signals, such as skeleton reconstruc-
tion [16, 61], motion prediction [5], and skeleton colorization [52].
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Figure 1: (a) In the context of unsupervised skeleton-based
action understanding, previous methods require numerous
modality-specificmodelswith a late fusion strategy formulti-
modal comprehension. (b) Different from them, our model
supports inputs from multiple modalities in a single yet
unified multi-modal model, reducing the model complexity.

Due to the complex pipeline of hand-craft pretext tasks and limited
performance, these methods have been out of fashion gradually.
Recent unsupervised approaches [18, 29, 45, 58] tend to employ
advanced contrastive learning techniques [2, 3, 7, 11, 49, 64], and
achieve strong generalization capabilities to varying downstream
tasks. Although great efforts have been devoted to skeleton-based
action understanding, existing methods are typically designed for
a specific modality of skeletons. As skeletons can be readily rep-
resented as multiple modalities, such as joint, motion, and bone,
uni-modal methods based on a specific modality are suboptimal.
One simple strategy for extending uni-modal methods to multi-
modal ones is late fusion [10, 63], as illustrated in Figure 1(a). Given
multiple pre-trained modal-specific models, their prediction results
are ensembled via late fusion. Despite these methods achieving
strong performance, they still suffer from two indispensable prob-
lems: (1) Complicated and redundant design. They require training
separate models for encoding each modality, leading to a significant
increase in computational overheads on pre-training and down-
stream tasks. (2) Inflexible inference. Since their modality-aware
features are dis-unified (that is, different modalities are separately
encoded from fixed models), they require to prepare appropriate
models for matching the input modalities in the inference stage.

Considering the above issues, we propose to learn a unifiedmulti-
modal representation by jointly learning features of uni-modal and
multi-modal inputs, as shown in Figure 1(b). Such a single-stream
encoder significantly reduces the model complexity of previous
unimodal-ensemble frameworks. Moreover, this unified represen-
tation learner is flexible to the input formats of different modali-
ties, and is able to effectively produce representative features via
a modality-agnostic encoder. It is worth noting that for the multi-
modal input learning, one can directly utilize an early fusion strat-
egy [38, 47] before the feature encoding. Unfortunately, relying

solely on this straightforward modification may not be appropriate
for unsupervised learning due to partial feature domination, which
could potentially lead to performance degradation. We attribute the
cause to the gap between pre-training and downstream objectives.
That is, there will be such a suboptimal scenario that a certain
modality is easier to learn according to the unsupervised objective
during pre-training, but it does not possess informative enough
features for downstream tasks, which eventually leads to the model
being biased towards one modality and does not adequately exploit
other available modal information.

To this end, in this paper, we propose a novel Unified Multi-
modal Unsupervised Representation Learning (UmURL) framework,
which efficiently encodes unified uni-modal or multi-modal fea-
tures through a modality-agnostic single-stream for skeleton-based
action understanding. Specifically, we build a simple yet effective
early-fusion pipeline that exploits single-stream to handle the multi-
modal inputs. To guarantee that the extracted multi-modal features
contain the complete semantics of each modal, we further decom-
pose the features into each uni-modal domain for both intra- and
inter-modal semantic consistency learning. In this way, the learned
multi-modal representations are unified with its contained individ-
ual modality features, sharing the same intra-modal semantics while
complementing inter-modal contexts for robust action recognition.
Thanks to this unified multi-modal representation, our framework
is also flexible to different kinds of modality inputs.

In summary, this paper makes the following contributions:
• We propose a novel and practical multi-modal unsupervised
framework, i.e., UmURL, for skeleton-based action under-
standing. This framework learns the unified representations
of uni-modal or multi-modal skeleton inputs, which is ef-
ficient and flexible to different kinds of modality input for
robust action understanding.

• To effectively realize the above proposal, we propose to guar-
antee that the unified multi-modal representations contain
the complete semantics of its individual modality features.
In particular, we decompose the unified representations into
each uni-modal domain for both intra- and inter-modal se-
mantic consistency learning.

• Extensive experiments on three datasets verify the effective-
ness and transferability of our proposed framework. With
a much more efficient multi-modal network than previous
multi-modal solutions, we achieve new state-of-the-art per-
formance in multiple downstream tasks.

2 RELATEDWORK
2.1 Uni-modal USARL Methods
Uni-modal USARL methods typically utilize a specific modality
(e.g., joint) as input, and focus on designing pretext tasks suitable
for skeleton data. In early works, skeleton reconstruction is a preva-
lent pretext task [16, 30, 40, 61]. For instance, Zhang et al. [61]
and Kundu et al. [16] respectively reconstruct the skeleton from
the latent features of original and corrupted skeletons. In [30],
Nie et al. disentangle the skeleton into pose-dependent and view-
dependent features, and then reconstruct the skeleton from the
disentangled features. Additionally, numerous innovative pretext
tasks have been also introduced. Su et al. [42] propose to colorize
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Figure 2: (a) A simple multi-modal baseline, which utilizes early fusion to learn the multi-modal features in a single stream.
(b) VC regularization is separately applied to all projected features to preventmodel collapse. (c) To learn unified representations,
we train a modality-agnostic encoder by aligning both intra-modal and inter-modal consistent semantics. Note that the encoder
in the simple baseline and the modality-agnostic encoder in UmURL are of the same structure, and their different names are
due to their different roles in the corresponding framework.

each joint of human skeletons based on their temporal and spatial
orders, and adopt the skeleton colorization prediction as the pretext
task. In [13], a multi-interval pose displacement prediction pretext
task is proposed for unsupervised learning.

Recently, we observe an increasing use of contrastive learn-
ing [11] as the pretext task due to its simple mechanism and promis-
ing performance [8, 32, 45]. The key idea of these contrastive meth-
ods is to learn the skeleton representations that are invariant to
transformations. Typically, they utilize data augmentation to gener-
ate multiple views of the input skeleton sequences and subsequently
train an encoder to minimize the distance between positive pairs
(i.e., views of the same skeleton sequence) and simultaneously max-
imize the distance between negative pairs (i.e., views of different
skeleton sequence) in the feature space. Rao et al. [32] is the first to
migrate contrastive learning from image representation learning to
unsupervised skeleton-based action representation learning. Since
then, a number of uni-modal works have concentrated on enhanc-
ing contrastive learning in the context of skeleton-based action
understanding [18, 41, 45, 57, 63]. Some works [4, 20, 42] combine
contrastive learning with other pretext tasks to learn discriminative
skeleton representations. [10, 58, 63] investigate data augmentation
strategies for skeleton data. Dong et al. [8] encode the skeleton
action as multiple representations and then performed hierarchical
contrast to generate more supervision. Su et al. [41] propose to
represent skeleton sequences in a probabilistic embedding space.
[18, 29, 57] exploit positive mining and knowledge exchange to al-
leviate irrational negative samples problem in contrastive learning.

2.2 Multi-modal USARL Methods
As skeletons can be represented as multiple modalities, such as
joint, motion, and bone, jointly utilizing multiple modalities for
representation are usually beneficial. One de facto multi-modal
solution is to first train multiple uni-modal models for all modalities,
and subsequently fuse them via late fusion. Almost all existing
works adopt such a solution to extend uni-modal methods to multi-
modal ones [10, 18, 29, 57, 63]. However, this solution is of high
computation complexity due to the fact that multiple uni-modal
models should be pre-trained and then utilized via late fusion for
downstream tasks. Our proposed method belongs to the multi-
modal USARL method. Instead of using a cumbersome late fusion
strategy, this work proposes an efficient multi-modal representation
learning framework. It fuses various modalities by early fusion and
obtains a unified representation at a lower cost while retaining
uni-modal encoding capability.

3 METHOD
In this section, we first introduce a simple yet powerful multi-modal
baseline model by extracting multi-modal features that thoroughly
integrate information across all modalities via an early fusion. Dif-
ferent from previous heavy late fusion methods, this baseline is
able to reduce the computational load associated with independent
uni-modal optimization and subsequent late decision fusion. Then,
to ensure that the extracted multi-modal features do not exhibit
modality bias, i.e., being dominated by a certain modality, we fur-
ther extend the baseline model with unified representation learning.
Specifically, considering that a well-learned multi-modal feature
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should contain the complete semantics of each contained modal-
ity, we decompose the extracted multi-modal feature into separate
uni-modal domains for distinct intra- and inter-modal semantic con-
sistency learning. By jointly learning uni-modal and multi-modal
unified representations, our framework is robust and flexible to
different kinds of modality inputs, achieving better performance.
In the following, we elaborate the simple multi-modal baseline and
our unified multi-modal unsupervised representation learning.

3.1 Simple Multi-modal Baseline
As shown in Figure 2(a), the simple baseline extracts the multi-
modal features with an efficient early-fusion strategy. Unlike previ-
ous works that separately train different backbones for individual
modality feature encoding and then interaction, our baseline solely
utilizes single-stream models for efficient multi-modal representa-
tion learning.

Multi-modal Input. Generally, an input skeleton sequence is
represented as 𝑥 ∈ R𝑇×𝐶×𝑉 , where𝑇 ,𝐶 , and𝑉 denote the number
of frames, channels, and joints. Other skeleton modalities like bone
and motion information can be additionally extracted through the
linear transformation over raw 3D coordinates [35, 36], to provide
complementary spatio-temporal information to the original joint
modality. Based on this, an input multi-modal action can be formally
represented as 𝑥𝑚 = {𝑥1, 𝑥2, ..., 𝑥𝑘 }, which contains information
from 𝑘 different modalities. Similar to prevalent unsupervised meth-
ods, our baseline is also designed to learn feature representations
that are invariant to data transformations without manually anno-
tated labels. To achieve this, we generate augmented views of the
corresponding modality by applying augmentations.

Modality-specific Embedding. Before fusing the multi-modal
inputs, we first map each heterogeneous modality data into the
embedding space of the same dimension. Concretely, given the
augmented input data of modality𝑚, we first flatten it with the
temporal dimension kept, and then employ a modality-specific
embedding module (MSEM) to embed the input into a space of
dimension 𝐷ℎ . After employing MSEM to all modalities, we obtain
ℎ𝑚 ∈ R𝑇×𝐷ℎ by:

ℎ𝑚 = 𝑀𝑆𝐸𝑀𝑚 (𝑡 (𝑥𝑚)), 𝑚 ∈ {1, 2, ..., 𝑘}, (1)

where𝑀𝑆𝐸𝑀𝑚 indicates the corresponding modality-specific em-
bedding module which is implemented by a multi-layer perception,
and 𝑡 denotes a random augmentation operation.

Multi-modal Fusion and Encoding. After embedding all in-
puts of different modalities into the uniform representations, we
fuse them at the early stage via a simple averaging operation fol-
lowed by a linear transformation. Formally, given 𝑘 modalities, the
fused representation is obtained as:

ℎ𝑢 = 𝐿𝑖𝑛𝑒𝑎𝑟 ( 1
𝑘

𝑘∑︁
𝑚=1

ℎ𝑚), 𝑚 ∈ {1, 2, ..., 𝑘}, (2)

where 𝐿𝑖𝑛𝑒𝑎𝑟 (·) is a learnable linear transformation. As multi-
modal fusion is not the focus our this work, we employ this fusion
for simplicity but it can be replaced by more advanced fusion ways.

To obtain the final multi-modal representation, a multi-modal
encoder is further employed over the fused representation. Formally,

the final multi-modal representation 𝑦𝑢 ∈ R𝐷ℎ is obtained as:

𝑦𝑢 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (ℎ𝑢 ), (3)

where 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 can be a sequence encoder layer, such as Trans-
former Layer. This mechanism of extracting multi-modal features
after early fusing modality-specific embeddings not only preserves
the unique semantics of each modality to a certain extent, but also
reduces model complexity compared to adopting a fully indepen-
dent encoding structure for all modalities.

Unsupervised Learning. To implement the baseline under the
unsupervised setting, a straightforward idea is using contrastive
learning that is commonly adopted in the existing skeleton repre-
sentation works [8, 32, 45]. However, contrastive learning tends
to be costly, requiring large batch sizes or memory banks [3, 11].
Instead of using contrastive learning, we utilize an information
maximization method VICREG proposed in [1] considering its
high computation efficiency and promising performance. VICREG
mainly consists of semantic-consistent regularization and Variance-
Covariance (VC) regularization.

Semantic-consistent Regularization. Suppose the feature of addi-
tional view of the multi-modal input is 𝑦𝑢′, we employ a projection
head 𝑔𝑢 to map the features of different augmented multi-modal
features to the same space, obtaining 𝑧𝑢 = 𝑔𝑢 (𝑦𝑢 ), 𝑧𝑢′ = 𝑔𝑢 (𝑦𝑢′).
By processing the data in batches of size 𝑁 , we obtain the projected
feature as 𝑍𝑢 ∈ R𝑁×𝐷 and 𝑍𝑢′ ∈ R𝑁×𝐷 . The semantic-consistent
regularization is employed to encourage the semantic consistency
between two views of multi-modal input. To this end, we minimize
the mean square error (MSE) loss over the projected features, and
the loss is defined as:

L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (𝑍𝑢 , 𝑍𝑢′) = 𝑀𝑆𝐸 (𝑍𝑢 , 𝑍𝑢′) = 1
𝑁

𝑁∑︁
𝑖=1

∥𝑧𝑢𝑖 − 𝑧𝑢′𝑖 ∥22 . (4)

where 𝑧𝑢
𝑖
, 𝑧𝑢′

𝑖
are the 𝑖-th vector in 𝑍𝑢 and 𝑍𝑢′.

VC Regularization. To preventmodel collapse, a VC regularization
consisting of a variance term and a covariance term is further
introduced. Given a batch of embeddings 𝑍 ∈ R𝑁×𝐷 , the variance
term forces the embedding vectors of samples within a batch to be
different. It is implemented by maintaining the variance of each
embedding dimension above a threshold, which is defined as:

𝑉 (𝑍 ) = 1
𝐷

𝐷∑︁
𝑗=1

max(0, 𝛾 −
√︃
𝑉𝑎𝑟 (𝑍:, 𝑗 ) + 𝜖), (5)

where 𝛾 is the variance threshold, 𝜖 is a small scalar preventing
numerical instabilities, and 𝑉𝑎𝑟 (𝑍:, 𝑗 ) indicates the variance of 𝑗-
th embedding dimension vector 𝑍:, 𝑗 . Additionally, the covariance
term is designed to decorrelate the variables of each embedding,
ensuring that each feature dimension encodes different information
by:

𝐶 (𝑍 ) = 1
𝐷

∑︁
𝑖≠𝑗

[𝐶𝑜𝑣 (𝑍 )]2𝑖, 𝑗 , (6)

where 𝐶𝑜𝑣 (𝑍 ) is the auto-covariance matrix of 𝑍 . By combining
the above two kinds of terms, as shown in Figure 2(b), the final 𝑉𝐶
regularization loss can be formulated as:

L𝑉𝐶 (𝑍 ) = 𝜇𝑉 (𝑍 ) +𝐶 (𝑍 ), (7)

where 𝜇 is a hyper-parameter to balance two terms.
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The 𝑉𝐶 regularization is separately applied to both projected
features 𝑍𝑢 and 𝑍𝑢′ of two views of the input. Finally, the total loss
function of the baseline for unsupervised learning is as follows:

L = 𝜆L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑍𝑢 , 𝑍𝑢′) + L𝑉𝐶 (𝑍𝑢 ) + L𝑉𝐶 (𝑍𝑢′) (8)

where 𝜆 is a hyper-parameter coefficient.

3.2 Unified Multi-modal Unsupervised
Representation Learning

Although the above simple baseline incorporates the semantics of
multi-modal input, it still suffers from the underlying modality bias
issues, i.e., the learned multi-modal features may be dominated by
a certain modality during the pre-training process (validated in Sec-
tion 4.3), leading to a worse multi-modal representation compared
to independent training and then fusion. To alleviate this issue,
we propose to learn the multi-modal representation that contains
the complete semantics of every modality-specific input. Our hy-
pothesis is that a good multi-modal representation should contain
comprehensive information of the input modalities. Concretely, we
propose a novel UmURL model as illustrated in Figure 2(c). Note
that the pipeline of obtaining the multi-modal representation 𝑦𝑢

in UmURL is the same as that in the baseline, and the main dif-
ference between the two methods is the way of representation
learning. In our UmURL, we first learn to decompose the multi-
modal features into different modality domains. Then, by extracting
the original uni-modal features as guidance via the same modality-
agnostic encoder, we introduce two consistency losses to guarantee
the intra-modal semantic as same as possible while aligning the
inter-modal semantic for representation learning.

Decomposing Multi-modal Features. In order to decompose
the multi-modal representation into different modality domains for
mining the independent semantics of each modality, we utilize 𝑘
modality-aware projectors that are expected to extract modality-
specific patterns. Formally, given the multi-modal representation
𝑦𝑢 , the decomposed modality-specific features are obtained as:

𝑧𝑢,𝑚 = 𝑔𝑚 (𝑦𝑢 ), 𝑚 ∈ {1, 2, ..., 𝑘}. (9)

where 𝑔𝑚 is the modality-aware projector for modality𝑚, which is
implemented by a multi-layer perception.

Extracting Original Uni-modal Features. To constrain the
decomposed feature learning, we also extract the original modality-
specific features as guidance. Different from previous works [18, 29]
that typically utilize modality-specific encoder, here we develop a
modality-agnostic encoder to extract the original modality-specific
features for all modalities. Note that the modality-agnostic encoder
is the same encoder for multi-model representation. Such a design
allows our model flexible to different kinds of modalities during
inference. Formally, given a skeleton sequence of modality𝑚, its
original modality-specific representation is obtained as:

𝑦𝑚 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑀𝑆𝐸𝑀𝑚 (𝑡 (𝑥𝑚))), 𝑚 ∈ {1, 2, ..., 𝑘}. (10)

where 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 denotes the modality-agnostic encoder, 𝑡 is the
random augmentation operation. Subsequently, tomake the original
and composed modality-agnostic feature comparable in the same
space, modality-aware projectors 𝑔𝑚 are also utilized, obtaining
the projected original uni-modal feature as 𝑧𝑚 = 𝑔𝑚 (𝑦𝑚). The
corresponding batch of these features are denoted as 𝑍𝑚 ∈ R𝑁×𝐷 .

Learning Unified Representations. To make the decomposed
multi-modal representation semantic-consistent with the original
features of individual modalities, we aim to learn uni-modal and
multi-modal unified representations in an unsupervised manner. To
achieve this goal, we propose a intra-modal consistency learn-
ing to encourage the decomposed modality-specific features and
the original uni-modal features consistent. A inter-modal consis-
tency learning is further introduced to learn more representative
uni-modal features which in turn provides better constraints for
intra-modal consistency learning.

Intra-modal Consistency Learning.As for intra-modal consistency
learning, we force the decomposed modality-agnostic features to
share the same semantics as the corresponding uni-modal features
by adding a regularization that penalizes inconsistency between
decomposed features and uni-modal features. Here, we use MSE
regularization defined in Eq. 4, and employ it on each modality. The
final loss is the summation of the MSE over all modalities:

L𝑖𝑛𝑡𝑟𝑎 =

𝑘∑︁
𝑚=1

𝑀𝑆𝐸 (𝑍𝑢,𝑚, 𝑍𝑚) . (11)

Inter-modal Consistency Learning. The baseline model in Sec.3.1
severely relies on joint multi-modal augmentation within two iden-
tical streams for representation learning. However, this process
not only suffers from the coarse alignment between complex multi-
modal features, but also fails to explore the complementary contexts
between the cross-modal features. To this end, we reformulate such
joint multi-modal contrastive process into a detailed cross-modal
one, which aligns more fine-grained semantics between different
uni-modal features for better capturing their action-specific con-
sistency and enhancing the action-aware representative features.
Therefore, given the uni-modal features 𝑍 𝑖 , 𝑍 𝑗 of different modali-
ties, we also utilize the MSE loss to minimize the pairwise distance
between different modalities of the same skeleton. The constraint
is employed between any two modalities, and the corresponding
loss is defined as:

L𝑖𝑛𝑡𝑒𝑟 =
∑︁
𝑖≠𝑗

𝑀𝑆𝐸 (𝑍 𝑖 , 𝑍 𝑗 ), 𝑖, 𝑗 ∈ {1, 2, ..., 𝑘}. (12)

Overall Optimization Losses. In this manner, we are able to
generate unified uni-modal or multi-modal features sharing the
representative information for downstream tasks. In addition to
the above two distinct consistency losses, we also employ the VC
regularization like Eq. 7 to prevent the model collapse for uni-modal
and decomposed individual feature learning as:

L𝑟𝑒𝑔 =

𝑘∑︁
𝑚=1

L𝑉𝐶 (𝑍𝑚) + L𝑉𝐶 (𝑍𝑢,𝑚), 𝑚 ∈ {1, 2, ..., 𝑘}. (13)

Overall, the total learning objectives of the model are as follows:

L = 𝜆(L𝑖𝑛𝑡𝑟𝑎 + L𝑖𝑛𝑡𝑒𝑟 ) + L𝑟𝑒𝑔 (14)

where 𝜆 denotes the hyper-parameter coefficient.
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Table 1: Comparisons to the state-of-the-art methods for skeleton-based action recognition downstream task on NTU-60,
NTU-120 and PKU-MMD II. Our proposed UmURL achieves the best balance between model performance and computational
complexity. J: Joint, M: Motion, B: Bone.

Method Publication Modality FLOPs/G
NTU-60 NTU-120 PKU-MMD II

x-sub x-view x-sub x-setup x-sub
ISC [45] ACM MM’21 J 5.76 76.3 85.2 67.1 67.9 36.0
AimCLR [10] AAAI’22 J 1.15 74.3 79.7 63.4 63.4 -
PTSL [63] AAAI’23 J 1.15 77.3 81.8 66.2 67.7 49.3
CrosSCLR [18] CVPR’21 J 5.76 77.3 85.1 67.1 68.6 41.9
GL-Transformer [13] ECCV’22 J 118.62 76.3 83.8 66.0 68.7 -
CPM [57] ECCV’22 J 2.22 78.7 84.9 68.7 69.6 48.3
CMD [29] ECCV’22 J 5.76 79.8 86.9 70.3 71.5 43.0
UmURL This work J 1.74 82.3 89.8 73.5 74.3 52.1
3s-HiCLR [58] AAAI’23 J+M+B 7.08 78.8 83.1 67.3 69.9 -
3s-AimCLR [10] AAAI’22 J+M+B 3.45 78.9 83.8 68.2 68.8 39.5
3s-PSTL [63] AAAI’23 J+M+B 3.45 79.1 83.8 69.2 70.3 52.3
3s-CrosSCLR [18] CVPR’21 J+M+B 17.28 82.1 89.2 71.6 73.4 51.0
3s-CPM [57] ECCV’22 J+M+B 6.66 83.2 87.0 73.0 74.0 51.5
3s-CMD [29] ECCV’22 J+M+B 17.28 84.1 90.9 74.7 76.1 52.6
UmURL This work J+M+B 2.54 84.2 90.9 75.2 76.3 54.0
3s-UmURL This work J+M+B 5.22 84.4 91.4 75.9 77.2 54.3

4 EXPERIMENTS
4.1 Experimental setup
4.1.1 Datasets. Following the previous works [18, 29, 45], we eval-
uate our method on three skeleton-based action datasets, i.e., NTU-
60 [33], NTU-120 [25], and PKU-MMD II [26].

4.1.2 Performance Metric. Following the previous works [29, 45],
we adopt the top-1 accuracy as the performance metric for all
downstream tasks.

4.2 Comparison to the State-of-the-art
In this section, we compare our approachwith state-of-the-art meth-
ods in the context of two downstream tasks: skeleton-based action
recognition and skeleton-based action retrieval. It is worth noting
that after our model has been trained, it can be selectively employed
using a single modality or multiple modalities during inference for
downstream tasks. By contrast, previous works should train multi-
ple models using a specific modality if multiple modalities are used
for downstream tasks.

Skeleton-based Action Recognition. Following the standard
practice from previous works [18, 29, 45], we train a linear classi-
fier on top of the frozen encoder pre-trained with our proposed
method. Table 1 summarizes the results on NTU-60, NTU-120, and
PKU-MMD II datasets, where the results are split into two groups
according to the modality used during the inference. Besides the
model performance, for each model we also compute the compu-
tational complexity in terms of FLOPs it takes to encode given a
skeleton sequence.

In the first group of using the joint modality during inference,
our proposed method outperforms all competitors with significant
margins. We attribute it to the fact that our model utilizes multi-
ple modalities during training, which helps one modality absorb
information from other modalities. Among the competitors, CrosS-
CLR [18] and CMD [29] also utilize multiple modalities during
training, but our model performs better and shows much lower
FLOPs. In the second group, all models utilize the joint, motion,
and bone modalities for training and inference. In this scenario,
the competitors first train three models using a specific modal-
ity individually, and then fuse the results from the three models.
Comparing the results in the first group, all the compared methods
achieve clear performance gains but at the cost of higher computa-
tional complexity (The computational complexities of multi-modal
variants are three times higher than the uni-modal counterparts).
By contrast, our proposed method with a unified multi-modal repre-
sentation learning framework has the best balance between model
performance and computational complexity. Additionally, we also
report the results of our model using three-stream networks by late
fusion, our model achieves further performance gain.

Skeleton-based Action Retrieval. In this experiment, the ac-
tion representations obtained by pre-training unsupervised models
are directly employed for retrieval without fine-tuning. Given an
action query, the nearest neighbor in the representation space is
retrieved using cosine similarity. Table 2 shows a comparison of var-
ious methods on the NTU-60 and NTU-120 datasets. With the joint
modality as input for inference, our proposed UmURL performs
better than the previous works. Moreover, our method achieves a
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Table 2: Comparisons to the state-of-the-art methods for
skeleton-based action retrieval on NTU-60 and NTU-120.

Method Modality
NTU-60 NTU-120

x-sub x-view x-sub x-setup

LongT GAN [61] J 39.1 48.1 31.5 35.5
P&C [40] J 50.7 76.3 39.5 41.8
AimCLR [10] J 62.0 71.5 - -
ISC [45] J 62.5 82.6 50.6 52.3
HiCLR [58] J 67.3 75.3 - -
HiCo [8] J 68.3 84.8 56.6 59.1
CMD [29] J 70.6 85.4 58.3 60.9
UmURL (This work) J 71.3 88.3 58.5 60.9
UmURL (This work) J+M+B 72.0 88.9 59.5 62.2

x-sub x-view

82

84

86

88

90

92

T
op

-1
 A

cc
ur

ac
y

82.0

88.8

84.2

90.9Baseline
Ours

(a) action recognition

x-sub x-view65

70

75

80

85

90

T
op

-1
 A

cc
ur

ac
y

66.7

83.4

72.0

88.9Baseline
Ours

(b) action retrieval

Figure 3: Comparison to the simple baseline of multi-modal
unsupervised representation learning in the context of
skeleton-based (a) action recognition and (b) action retrieval
downstream tasks.

clear performance improvement when all three modalities are uti-
lized. The results further demonstrate that the action representation
obtained by our method is more discriminative.

4.3 Comparison to the Simple Baseline
To further verify the effectiveness of our framework, we further
compare it to the simple baseline described in Section 3.1. The com-
parisons are conducted on NTU-60 in the context of the skeleton-
based action recognition and action retrieval downstream tasks.

Results. Recall that the simple baseline is the direct implemen-
tation of multi-modal unsupervised representation learning, which
can be roughly regarded as a special case of our proposed frame-
work without our modality decomposition, intra-modal consistency
learning and inter-modal consistency learning modules. As illus-
trated in Figure 3, our proposed framework consistently outper-
forms the simple baseline with clear margins on both downstream
tasks. It further verifies the effectiveness of our proposed modules.
Additionally, we also visualize their learned action representations
via t-SNE [48]. Compared to the dots in Figure 4(a), dots of the
same colors (e.g., blue and yellow dots) in Figure 4(b) are more clus-
tered, and dots of different colors are more separated. The results
demonstrate that our proposed framework allows it to learn more
discriminative multi-modal representation.

(a) Baseline (b) Ours

Figure 4: t-SNE visualization of the learned multi-modal ac-
tion representations obtained by (a) simple baseline and (b)
our proposed UmURL on NTU-60. 10 classes from the testing
set are randomly selected for visualization. Dots with the
same color indicate actions belonging to the same class.
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Figure 5: Modality contribution to the final multi-modal rep-
resentation. For the baseline, the joint modality is more dom-
inant in the final multi-modal representation, while each
modality contributes more balanced in our UmURL.

Analysis. To further investigate our unified multi-modal repre-
sentation learning framework, we try to analyze how much each
modality contributes to the final multi-modal representation. We
measure the modality contribution via the dependency between
the obtained representation and the corresponding modality input,
which can be computed by the distance correlation proposed by [43].
Note that, the higher correlation indicates more contribution to the
final multi-modal representation. As shown in Figure 5, we provide
the contribution results of both the simple multi-modal baseline and
our UmURL framework. For the baseline model, the joint modality
is more dominant in the final multi-modal representation since it
is easier than other modalities to learn during the unsupervised
training. However, this will miss complementary information from
other modalities, thus does not possess informative enough features
for downstream tasks. Instead, our UmURL framework introduces
two consistency constraints to learn the unified representations of
uni-modal and multi-modal input, achieving balanced contribution
among different modalities during the feature learning.

4.4 Ablation Study
In this section, we study the effectiveness of intra-modal and inter-
modal consistency learning. As the intra-modal consistency learn-
ing module is employed on multiple modalities, we also explore its
influence on individual modalities. The experiments are conducted
on NTU-60 in the context of action recognition using unified multi-
modal representation, and the results are shown in Table 3. The



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Shengkai Sun et al.

Table 3: The ablation study on intra-modal and inter-modal
consistency learning.

Intra-modal
Inter-modal x-sub x-view

Joint Bone Motion
- - ✓ - 78.9 84.3
- ✓ - - 82.4 89.4
✓ - - - 82.8 89.8
✓ ✓ ✓ - 83.9 90.6
✓ ✓ ✓ ✓ 84.2 90.9

Table 4: Comparisons to the state-of-the-art methods with
transfer learning.

Method Modality
Transfer to PKU-MMD II

NTU-60 NTU-120
LongT GAN [61] J 44.8 -
M2L [20] J 45.8 -
ISC [45] J 45.9 -
CrosSCLR [18] J 54.0 52.8
HiCo [8] J 56.3 55.4
CMD [29] J 56.0 57.0
UmURL (This work) J 58.2 57.6
UmURL (This work) J+M+B 59.7 58.5

model with the intra-modal consistency learning module on three
modalities outperforms the counterparts on a specific modality,
which demonstrates the benefit of using the intra-modal consis-
tency learning module on each modality. Besides, integrating the
inter-modal consistency learning module achieves a further per-
formance gain. The results not only verify the effectiveness of the
inter-modal consistency learning module but also demonstrate the
complementary between the intra-modal and inter-modal modules.

4.5 The Potential for Other Downstream Tasks
We further evaluate the learned representation for other down-
stream tasks, including skeleton-based action recognition in the
scenario of semi-supervised learning and transfer learning.

Semi-supervised Skeleton-based Action Recognition. Fol-
lowing the previous works [5, 45], we report the results of using 1%
and 5% randomly sampled training data with labels for fine-tuning.
Note that the skeleton encoder is firstly pre-trained by our pro-
posed unified multi-modal representation learning using unlabeled
data, and fine-tuned with an extra classifier using labeled data. Ta-
ble 5 summarizes the semi-supervised results on NTU-60. With the
single modality of joint or multiple modalities for inference, our
proposed method consistently outperforms the previous works by
a clear margin. The results demonstrate the potential of our method
for semi-supervised action recognition.

Skeleton-based Action Recognition with Transfer Learn-
ing. We evaluate the generalizability of the learned representation
by transferring knowledge from a source dataset to a target dataset.

Table 5: Comparisons to the state-of-the-art methods with
semi-supervised learning on NTU-60 dataset.

Method Modality
x-sub x-view

1% 5% 1% 5%
ASSL [37] J - 57.3 - 63.6
ISC [45] J 35.7 59.6 38.1 65.7
MCC [42] J - 47.4 - 53.3
Hi-TRS [4] J 39.1 63.3 42.9 68.3
GL-Transformer [13] J - 64.5 - 68.5
Colorization [52] J 48.3 65.7 52.5 70.3
CrosSCLR [18] J 48.6 67.7 49.8 70.6
HiCo [8] J 54.4 - 54.8 -
CPM [57] J 56.7 - 57.5 -
CMD [29] J 50.6 71.0 53.0 75.3
UmURL (This work) J 58.1 72.5 58.3 76.8
3s-AimCLR [10] J+M+B 54.8 - 54.3 -
3s-CMD [29] J+M+B 55.6 74.3 55.5 77.2
UmURL (This work) J+M+B 59.6 74.6 60.3 78.6

Concretely, a model is initially pre-trained on a source dataset
using unsupervised learning, and subsequently fine-tuned on a
target dataset. We use the same setting as previous methods [8, 45],
where NTU-60 and NTU-120 are chosen as source datasets, and
PKU-MMD II is selected as the target dataset. The evaluation was
conducted under the x-sub protocol, and the corresponding results
are shown in Table 4. Our proposed method outperforms competi-
tors by a significant margin, demonstrating the good transferability
of our learned representation. The results suggest that our pro-
posed framework can effectively learn skeleton representations
that generalize to new datasets, which is crucial for real-world
applications.

5 CONCLUSION
In this paper, we present a novel unified multi-modal representation
learning framework, i.e., UmURL, for skeleton-based action under-
standing. Compared to the conventional multi-modal approaches
via the late-fusion strategy, our proposed UmURL requires less
computational overheads on pre-training and downstream tasks,
and is more flexible to the input modalities during inference. With
a much more efficient multi-modal network than previous multi-
modal solutions, we achieve new state-of-the-art performance in
multiple downstream tasks, including skeleton-based action recog-
nition and retrieval. We believe that our proposed framework offers
an effective alternative to conventional multi-modal approaches in
unsupervised skeleton-based representation learning.
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Appendix

This appendix contains the following contents which are not
included in the paper due to space limits:

• More results including the actual running time comparison
(Section A.1) and visualization of learned representation
(Section A.2).

• Additional ablation studies including modality selection, fu-
sion ways, and architecture designs (Section B).

• Implementation details including the descriptions of used
datasets, model structure and training details (Section C).

A ADDITIONAL RESULTS
A.1 Actual running time comparison
Besides the theoretical analysis in terms of FLOPs, we also compare
our proposed UmURL to the recent state-of-the-art method 3s-
CMD [29] in terms of the actual running time consumption during
the pre-training and downstream inference. For a fair comparison,
the two models have been pre-trained with 450 epochs. The models
are trained and evaluated under x-sub protocol on NTU-120. All
results are obtained in the same environment using one RTX 3090
GPU. As demonstrated in Table 6, our proposed UmURL runs sig-
nificantly faster than 3s-CMD [29] when using the same multiple
modalities. Besides, our proposed model achieves better accuracy.
The results demonstrate both efficiency and effectiveness of our
method.

Table 6: Actual running time comparison with 3s-CMD [29]
that also uses multiple modalities. Our proposed model is
more efficient during both the pre-training and inference
stages, and also performs better.

Methods Pre-training Inference Accuracy
3s-CMD 71h 57m 66s 74.7
UmURL 12h 23m 14s 75.2

(a) Baseline (b) Ours

Figure 6: t-SNE visualization of the multi-modal action rep-
resentations obtained under x-sub protocol on NTU-60 by (a)
simple baseline and (b) our proposed UmURL.

A.2 Additional Visualization Results
In addition to the visualization presented under the x-view protocol
in Section 4.3, we extend our visualization of the learned action
representation using t-SNE [48] under the x-sub protocol on NTU-
60. Similarly, we randomly select 10 classes from the testing set for

visualization. Dots of identical color represent actions belonging
to the same class. As shown in Figure 6, dots corresponding to
our proposed UmURL (e.g., purple dots) appear more clustered.
These results further prove that our proposed method is capable
of learning a more discriminative multi-modal representation than
the baseline.

B ADDITIONAL ABLATION STUDIES
In this section, all experiments are conducted on NTU-60 in the
context of action recognition using our proposed unified multi-
modal representation.

B.1 Effects of modality selection.
We evaluate the performance of the unified multi-modal representa-
tion obtained via pre-training with different selections of skeleton
modalities. It is worth noting that the joint modality is consistently
preserved as a fundamental modality, given its better performance
relative to other modalities. For the uni-modal baseline, we utilize
the same optimizationmethod as in the simple multi-modal baseline
but with inputs from a single modality only. Table 7 summarizes
the results, we can find that using additional modalities enhances
the performance of our proposed UmURL.

Table 7: Performance of UmURL with different modality
selection on NUT-60. Jointly using threemodalities performs
the best.

Modality x-sub x-view
Joint 81.7 88.9
Joint+Motion 83.7 90.3
Joint+Bone 83.3 90.4
Joint+Motion+Bone 84.2 90.9

B.2 Effects of different fusion ways.
We investigate various fusion ways for different modality embed-
dings before encoding including weighted sum with learned scalar
weights, averaging, averaging followed by a linear transforma-
tion, and concatenation followed by a linear transformation. Three
modalities are jointly used in this experiment. As shown in Table 8,
the fusion operation of averaging followed by linear transformation
slightly performs better than the others. The results demonstrate
that our proposed UmURL is not very sensitive to fusion ways.

Table 8: Performance of UmURL using different fusion ways
on NUT-60. Our UmURL is not very sensitive to fusion ways.

Fusion x-sub x-view
Weighted sum 83.9 90.3
Averaging 84.0 90.6
Averaging+linear 84.2 90.9
Concatenation+linear 84.3 90.7
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B.3 Effects of different architecture designs.
To preserve the unique semantics and extract modality-specific pat-
terns, we utilize independent modules of embedding and projector
for each modality. We also experiment with replacing the indepen-
dent module with a shared one. As shown in Table 9, both shared
embeddings and projector designs lead to performance degrada-
tion. The results verify the effectiveness of our modality-specific
architecture design.

Table 9: Performance of UmURL with different architecture
designs on NUT-60. Compared to shared ones, modality-
specific (MS) embeddings and projectors are beneficial.

MS embedding MS projector x-sub x-view
- ✓ 83.2 90.1
✓ - 83.4 90.2
✓ ✓ 84.2 90.9

C IMPLEMENTATION DETAILS
In this section, we describe the implementation details. The pro-
posed model is implemented using PyTorch.

C.1 Datasets
NTU-60 [33] is a large-scale action recognition dataset, which con-
tains 56,880 action samples collected from 40 subjects, with a total
of 60 categories. There are two recommended standard evaluation
protocols: 1) x-sub: the data are split according to the subjects,
where samples from half of the subjects are used as training data,
and the rest subjects are used for testing. 2) x-view: the data are split
according to camera views, where samples captured by cameras 2
and 3 are used for training, and samples captured by camera 1 are
used for testing.

NTU-120 [25] is an extended version of NTU-60, containing
120 action categories and 114,480 samples. Action samples of 106

subjects are captured using 32 different setups according to the
camera distances and background. There are also two recommended
standard evaluation protocols: 1) x-sub: similar to NTU-60, samples
from 53 subjects are used as training data and the rest 53 subjects
are used as testing data. 2) x-setup: samples having even setup IDs
are used for training, and samples having odd setup IDs are used
for testing.

PKU-MMD II [26] is a popular benchmark for skeleton-based
human action understanding. It contains 41 action categories, and
each category is performed by one or two subjects, with 5,339
skeleton samples for training and 1,613 for testing. PKU-MMD II is
challenging due to its larger view variation. Following prior works,
we evaluate our method with the PKU-MMD II under recommended
x-sub protocol.

C.2 Model Structure.
We use the transformer encoder to process multimodal information.
Following [8, 59], we simultaneously model skeleton sequences
in both spatial and temporal dimensions, utilizing a single-layer
encoder with 1024 hidden units for each dimension. The spatial
input is obtained by directly reshaping the original skeleton se-
quence. The final representation is produced by concatenating the
features from both dimensions. The projector is composed of two
fully-connected layers with batch normalization and ReLU, and a
third linear layer with the output size of 4096. The model’s inputs
are temporally downsampled to 64 frames.

C.3 Training Details.
For the optimizer, we employ the Adam algorithm [14] with a
weight decay of 1e-5. The mini-batch size is set to 512. Following the
pre-training scheme in [29], the model is trained for 450 and 1000
epochs for NTU-60/120 and PKU-MMD II datasets, respectively. The
initial learning rate is set to 5e-4, and it is reduced to 5e-5 at epoch
350 and 800 for NTU-60/120 and PKU-MMD II respectively. We
adopt the same data augmentation strategies employed in [29, 45]
for a fair comparison. The 𝛾 is set to 1 following [1]. For other
hyper-parameters, the 𝜆 and 𝜇 are set to 5 and 5, respectively.
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