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ABSTRACT
Multimodal contrastive learning aims to train a general-purpose
feature extractor, such as CLIP, on vast amounts of raw, unlabeled
paired image-text data. This can greatly benefit various complex
downstream tasks, including cross-modal image-text retrieval and
image classification. Despite its promising prospect, the security
issue of cross-modal pre-trained encoder has not been fully explored
yet, especially when the pre-trained encoder is publicly available
for commercial use.

In this work, we propose AdvCLIP, the first attack framework
for generating downstream-agnostic adversarial examples based
on cross-modal pre-trained encoders. AdvCLIP aims to construct
a universal adversarial patch for a set of natural images that can
fool all the downstream tasks inheriting the victim cross-modal
pre-trained encoder. To address the challenges of heterogeneity
between different modalities and unknown downstream tasks, we
first build a topological graph structure to capture the relevant
positions between target samples and their neighbors. Then, we
design a topology-deviation based generative adversarial network
to generate a universal adversarial patch. By adding the patch to im-
ages, we minimize their embeddings similarity to different modality
and perturb the sample distribution in the feature space, achieving
unviersal non-targeted attacks. Our results demonstrate the excel-
lent attack performance of AdvCLIP on two types of downstream
tasks across eight datasets. We also tailor three popular defenses to
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mitigate AdvCLIP, highlighting the need for new defense mecha-
nisms to defend cross-modal pre-trained encoders. Our codes are
available at: https://github.com/CGCL-codes/AdvCLIP.
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1 INTRODUCTION
With recent advancements in deep learning,multimodal pre-training
has emerged as a promising area of research for various downstream
tasks. Multimodal contrastive learning [39, 53] is a novel machine
learning paradigm to overcome the restrictions of labeled data.
It uses large-scale, noisy, and unprocessed multimodal data pairs
sourced from the web to train a cross-modal pre-trained encoder,
such as CLIP [39], with powerful feature extraction capabilities.
By fine-tuning these pre-trained encoders with a small amount of
labeled data, complex and diverse downstream tasks can be per-
formed [27, 54]. This pre-training approach provides a solution for
resource-constrained users to benefit from large-scale models by
using their powerful zero-shot capabilities directly or fine-tuning
a linear layer for various downstream tasks with less data and
computational resources. Driven by this promising prospect, many
service providers have unveiled their pre-trained encoders such
as CLIP [39], ALBEF [25], and GPT [4], or have deployed them as
commercial services, like ChatGPT.

Meanwhile, it is well-known that machine learning models are
susceptible to various adversarial attacks [15, 33, 52], which will
make pre-trained encoders fragile as well. With pre-trained en-
coders are widely used, the risks associated with them are often
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Figure 1: Illustration of attackers using a cross-modal pre-
trained encoder to attack different downstream tasks

inherited by downstream tasks. Recent works [9, 20, 21, 29, 30, 56]
paid attention to the privacy and robustness concerns of unimodal
pre-trained encoders, however, the security threat of more widely
used cross-modal pre-trained encoders (e.g., Vision-language Pre-
trained (VLP) encoders [23, 39]) remains unexplored. Although a
recent study [55] tried to conduct adversarial attacks against down-
stream tasks of VLP encoders, it relied on unrealistic white-box
assumptions to generate sample-specific adversarial examples. In
the literature, the difficulty of cross-modal attacks, caused by the
heterogeneity between different modalities, has created an illusory
sense of security for cross-modal pre-trained encoders. It tends
to become a common belief that it is impossible to realize cross-
modal attacks without the knowledge of the pre-training dataset,
the downstream dataset, task type, or even the defense strategy that
the downstream model is taking. To the best of our knowledge, im-
plementing adversarial attacks in practical multimodal pre-training
scenarios remains a challenging and unsolved problem.

In this paper, we propose AdvCLIP, the first attack framework
for generating downstream-agnostic adversarial examples, to break
the existing illusion of security in cross-modal pre-trained encoders.
Given the limited knowledge of attackers and the feasibility of at-
tack implementation, the goal is to achieve universal non-targeted
attacks based on images for downstream tasks. There are two
types of universal adversarial attacks: perturbation-based and patch-
based methods. The former requires adding perturbations to the
image globally, the latter is limited to a small area of the image and is
more easily applicable to the physical world. Therefore, we mainly
focus on adversarial patch attacks. The most daunting challenge in
this work is to effectively tackle the modality gap between image
and text, while simultaneously bridging the attack gap between
cross-modal pre-trained encoders and downstream tasks.

Based on the intuition of maximizing the distance between the
target image features and their corresponding benign image and
text features, we first construct a topological graph structure to cap-
ture the similarity between samples. Then, we fool the pre-trained
encoders by destroying the mapping relationship between different
modalities of a single sample and the topological relations between
multiple samples, respectively. To achieve attack transferability
from the pre-trained encoder to the downstream task, we make
the adversarial examples far from the original class rather than
simply crossing the decision boundary. As a result, we design a

topology-deviation based generative adversarial network to gener-
ate a universal adversarial patch to achieve high attack success rate
attacks for downstream tasks with a fixed random noise as input.
Our main contributions are summarized as follows:

• We propose AdvCLIP, the first attack framework to construct
downstream-agnostic adversarial examples in multimodal
contrastive learning. We reveal that the cross-modal pre-
trained encoder incurs severe security risks for the down-
stream tasks.

• We design a topology-deviation based generative adversarial
network, which adds a universal adversarial patch to the
target image, to decrease the similarity between different
modal embeddings and disrupt their topological relation-
ships, achieving non-targeted adversarial attacks.

• Our extensive experiments on two types of downstream
tasks over eight datasets show that our AdvCLIP addresses
the modality gap and transferability between the pre-trained
encoders and downstream tasks.

• We tailor three popular defenses to mitigate AdvCLIP. The
results further prove the attack ability of AdvCLIP and high-
light the needs of new defense mechanism to defend pre-
trained encoders.

2 RELATEDWORK
2.1 Vision-Language Pre-trained Models
Multimodal contrastive learning is a training paradigm that aims to
pre-train encoders on large-scale unlabeled training data to obtain
general-purpose representations for application to downstream
tasks. The success of multimodal contrastive learning has moti-
vated the development of numerous VLP models [11, 13, 26, 39] for
building multimodal models capable of learning vision-language se-
mantic alignments and solving complex cross-modal tasks [54]. Ex-
isting VLPmodels can be broadly categorized into two groups: cross-
encoder based and embedding-based methods. Cross-encoder based
methods [6, 26, 31] employ a Transformer-based cross-attention
mechanism to compute the similarity between data from differ-
ent modalities. In contrast, embedding-based methods [13, 39, 46]
encode data from different modalities separately to generate high-
dimensional visual and textual representations and measure cross-
modal similarity by computing feature distances between data from
different modalities. Recently, the embedding-based CLIP [39] has
demonstrated exceptional performance on various downstream
tasks. In this paper, we focus on the security of CLIP.

2.2 Universal Adversarial Attack
Universal adversarial perturbation (UAP) [33] was proposed to de-
ceive a target model by applying a single adversarial noise to all
input images. Universal image-based adversarial attacks come in
two forms: perturbations [10, 16–18, 28, 33, 34] and patches [3, 19,
22, 47]. Perturbation-based methods fool models by adding visually
imperceptible noise globally to the image. In contrast, patch-based
methods require precise control over each pixel of the image, re-
sulting in visible adversarial patches that are limited to a small
region of the image. On the other hand, text-based adversarial at-
tacks require a different approach due to the discrete nature of text.
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Consequently, universal text-based attacks focus on generating im-
perceptible triggers and linguistic idioms to create adversarial exam-
ples [2, 44, 49]. Unfortunately, the current UAP methods are mostly
designed for unimodal classification tasks and are insufficient for at-
tacking cross-modal tasks, let alone when the attacker’s knowledge
about downstream tasks is limited. As patch-based image adversar-
ial examples are more applicable to real-world scenarios, this paper
focuses on universal adversarial patch. Additionally, researchers
have proposed different defenses against adversarial examples, such
as data pre-processing [5], adversarial training [32, 43, 48], and
pruning [50, 58].

2.3 Adversarial Attacks on Pre-trained Encoders
Recently, an increasing number of works [12, 36, 57] begin to in-
vestigate the robustness of pre-trained encoders. PAP [1] produced
a pre-trained perturbation by lifting the feature activations of low-
level layers against image pre-trained encoders. At the same time,
some works made trivial attempts to explore the vulnerability of
cross-modal pre-trained encoders. One recent study [57] examined
the robustness of a CLIP-based image-text retrieval system. Fur-
thermore, Co-Attack [55] took a step by considering the robustness
of downstream tasks corresponding to cross-modal pre-trained en-
coders. It proposed a cooperative loss function to avoid conflicts
caused by simultaneous attacks on both image and text modalities.
However, it only considered simple white-box scenarios where the
attacker has downstream knowledge to generate sample-specific ad-
versarial examples. As a result, insufficient research on cross-modal
pre-training safety tends to create a false sense of security in the
field. Our work aims to achieve effective ignorant attacks against
downstream tasks and break the illusion of security in cross-modal
pre-trained encoders.

3 METHODOLOGY
3.1 Threat Model
We assume a quasi-black-box attack model, where the attacker has
access to VLP encoders through purchasing or downloading from
publicly available websites, but lacks knowledge of the pre-training
datasets and downstream tasks. As the attacker does not possess
specific target information of downstream tasks, their objective is
to conduct non-targeted adversarial attacks that disable or reduce
the accuracy of downstream tasks. To achieve this, the attacker
leverages the pre-trained encoder to design a downstream-agnostic
universal adversarial patch that is applicable to various types of
input images from different datasets. Then the adversarial examples
can mislead all the downstream tasks that inherit the victim pre-
trained encoder, such as image-text retrieval, image classification,
etc. We assume that the downstream task undertaker (called user
hereinafter) is able to fine-tune the linear layer for their cause.
Given the complexity of CLIP training and its powerful zero-shot
performance, we believe that users do not need to fine-tune CLIP
directly, as doing so would negate the benefits of choosing it in the
first place. We also consider a more stringent scenario, in which
users employ common defense mechanisms such as adversarial
training to improve the robustness of downstream models.

3.2 Problem Formulation
LetD = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 denote a cross-modal dataset with N instances.
Here, 𝑥𝑖 =

{
(𝑥𝑣
𝑖
, 𝑥𝑡
𝑖
)
}
, where 𝑥𝑣

𝑖
and 𝑥𝑡

𝑖
represent two data modal-

ities, such as image-text pairs, and they both belong to the same
label 𝑦𝑖 . Let 𝐿 = {𝑦𝑖 }𝐶𝑖=1 represent the label dataset from D, where
𝐶 is the number of labels and 𝐶 < 𝑁 . Given an input 𝑥𝑖 ∈ D𝑎

to a cross-modal pre-trained encoder𝑀𝜃 (·) (i.e., CLIP [39]) which
consists of an image encoder 𝐸𝑣 (·) and a text encoder 𝐸𝑡 (·), that
returns an image feature vector 𝑣𝑣 and a text feature vector 𝑣𝑡
respectively, where 𝜃 denotes the parameter of the cross-modal pre-
trained encoder. The attacker utilizes a surrogate datasetD𝑎 that is
distinct from both the pre-training datasetD𝑝 and the downstream
dataset D𝑑 to generate a universal adversarial noise against the
pre-trained encoder. Moreover, the universal adversarial noise 𝛿
should be suffciently small, and modeled through an upper-bound
𝜖 on the 𝑙𝑝 -norm. This problem can be formulated as:

𝑀𝜃 (𝑥𝑖 + 𝛿) ≠ 𝑀𝜃 (𝑥𝑖 ) , 𝑠 .𝑡 . ∥𝛿 ∥𝑝 ≤ 𝜖 (1)

With the help of the strong feature extraction ability of cross-
modal pre-trained encoders, we can just fine-tune a linear layer us-
ing output feature vectors of different modalities to achieve complex
downstream tasks. In this paper, we mainly consider cross-modal
image-text retrieval and unimodal image classification tasks. For
the cross-modal retrieval task, the cross-modal retrieval head 𝑐𝜃 ′ (·)
completes the image-text retrieval task based on the similarity be-
tween 𝑣𝑣 and 𝑣𝑡 , where 𝜃

′
denotes the parameter of the retrieval

head. The attacker’s goal is to implement a non-targeted attack that
fools the downstream cross-modal retrieval head 𝑐𝜃 ′ (·) by applying
a universal adversarial noise 𝛿 to the downstream sample 𝑥 ∈ D𝑑 .
Therefore, the attacker’s goal can be formalized as:

𝑐𝜃 ′ (𝐸𝑣 (𝑥
𝑣
𝑖 +𝛿), 𝐸𝑡 (𝑥

𝑡
𝑖 )) ≠ 𝑐𝜃 ′ (𝐸𝑣 (𝑥

𝑣
𝑖 ), 𝐸𝑡 (𝑥

𝑡
𝑖 )), 𝑠 .𝑡 . ∥𝛿 ∥𝑝 ≤ 𝜖 (2)

Similarly, the objective of attackers against a downstream image
classification task can be expressed as:

𝑓𝜃 ′′ (𝐸𝑣 (𝑥
𝑣
𝑖 + 𝛿)) ≠ 𝑓𝜃 ′′ (𝐸𝑣 (𝑥

𝑣
𝑖 )), 𝑠 .𝑡 . ∥𝛿 ∥𝑝 ≤ 𝜖 (3)

where 𝑓𝜃 ′′ (·) is a classifier, 𝜃
′′
is the parameter of the classifier.

3.3 Intuition Behind AdvCLIP
Due to the limitations of the attacker’s knowledge and the complex-
ity of cross-modal tasks, achieving effective attacks on unknown
downstream tasks has to address the following challenges:

Challenge I: Modality gap between image and text. Tradi-
tional adversarial attacks are designed for unimodal classification
tasks. However, the VLP encoder involves multiple modalities and
its output is a high-dimensional feature embedding rather than a
label, directly applying traditional adversarial attack methods is
impractical. As attackers aim to launch non-targeted adversarial
attacks on downstream tasks, a natural idea is to disrupt the similar-
ity matching process by maximizing the feature distance between
the adversarial and corresponding clean embeddings of different
modalities. However, it is a challenging problem to understand and
utilize the high-dimensional feature vectors to produce adversarial
examples. As shown in Fig. 2, simply maximizing the distance be-
tween embeddings (Vanilla) may not work due to the complexity
of the high-dimensional feature space and the heterogeneity of
multimodal data. Even if the image adversarial example leaves its
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Figure 3: Transferability gap between cross-modal pre-
trained encoders and downstream tasks

original category in the image feature space and is classified as a
cat, yet it will still be retrieved to match the textual information of
the original category of dogs.

In this paper, on the basis of leaving the original position in the
feature space, we consider destroying the nearest neighbor rela-
tionship of the samples to better reinforce the attack by making
the ordered samples in the feature space disordered. Specifically,
we first construct topology for both adversarial and benign embed-
dings separately to measure the corresponding sample correlations.
Topology is based on the neighborhood relation graph constructed
by the similarity between samples in the representation space. The
process of measuring topological similarity can be formalized as:

L𝑡𝑝 = E(𝑥,𝑦) ∈D𝑎
(𝐶𝐸 (G𝑛𝑜𝑟 ,G𝑎𝑑𝑣)) (4)

where G𝑛𝑜𝑟 and G𝑎𝑑𝑣 stand for the neighbourhood relation graph
constructed by the inter-sample similarity for clean samples and
adversarial examples, respectively. 𝐶𝐸 (·) is the cross-entropy loss
to measure the similarity of two graphs.

We define the edge weights of the neighborhood graph as the
probability that two different samples are neighbors, and the de-
viation of the topological structure is achieved by warping the
probability distributions of two graphs. Then, we model the condi-
tional probability distribution using an affinity measure based on
cosine similarity to construct the adjacency graph, and remove the
nearest neighbor points to prevent isolated subgraphs formed by
data points with excessively high local density, thereby ensuring
the local connectivity of the manifold and better preserving the
global structure. The process of constructing the adjacency graph
can be represented as:

G =

𝑝𝑖 | 𝑗
����𝑝𝑖 | 𝑗 = (

2 −
(
𝑑𝑖 𝑗 − 𝜌 𝑗

) )∑𝑁
𝑘=1,𝑘≠𝑗

(
2 −

(
𝑑 𝑗𝑘 − 𝜌 𝑗

)) , 0 < 𝑖, 𝑗 ≤ 𝑁

 (5)

where 𝑝𝑖 | 𝑗 is the conditional probability that the 𝑖𝑡ℎ natural sample
is the neighbor of the 𝑗𝑡ℎ natural sample in the feature space of
G, 𝜌 𝑗 represents the cosine distance from the 𝑗𝑡ℎ data point to its
nearest neighbor, 𝑑𝑖 𝑗 denotes the cosine distance between the cor-
responding embeddings of the two samples. By deviating from the
two dimensions of the sample itself and the nearest neighbor rela-
tionship, we destroy the similarity mapping relationship between
the sample and its counterpart to achieve an effective attack.

Challenge II: Transferability gap between cross-modal
pre-trained encoders and downstream models. As illustrated
in Fig. 3, after fine-tuning the cross-modal pre-trained encoder to
the downstream model, the boundary of the feature space in the
model may change, which could make existing attacks ineffective.
Therefore, we aim to deviate adversarial examples from the direc-
tion most likely to cross their original category boundaries within
the given perturbation budget. To address this challenge, we are
motivated to make adversarial examples deviate from the direction
that is most likely to leave their original category boundaries under
the same perturbation budget. Inspired by the fact that generative
adversarial networks can generate samples with similar salient fea-
tures [14], we design a generative adversarial network to generate
a universal adversarial noise with strong commonality, such that
the adversarial examples are far from the original category rather
than only just crossing the decision boundary of that category. In
this way, even if the users fine-tune the pre-trained encoder to
the downstream model, the adversarial examples still cannot be
recognized properly.

3.4 Topology-deviation based Generative Attack
Framework

In this section, we present AdvCLIP, a novel generative attack
against cross-modal pre-trained encoders. The framework of Adv-
CLIP is depicted in Fig. 4. It consists of an adversarial generator
𝐺 , a discriminator 𝐷 , and a victim cross-modal encoder𝑀 which
consists of an image encoder 𝐸𝑣 and a text encoder 𝐸𝑡 . Given the
image-text pairs (𝑥𝑣

𝑖
, 𝑥𝑡
𝑖
) to the cross-modal pre-trained encoder,

the image encoder 𝐸𝑣 and text encoder 𝐸𝑡 output the corresponding
feature vectors. We design a topology-deviation based generative at-
tack framework, which utilizes cross-modal pre-trained encoders to
generate universal adversarial patches applicable to images, thereby
deceiving downstream tasks.
Adversarial Generator. By feeding a fixed noise 𝑧 into the ad-
versarial generator, we obtain a universal adversarial patch 𝐺 (𝑧)
and paste it onto an image of the surrogate dataset D𝑎 to get an
adversarial example 𝑥𝑣

𝑖
. The above process of making adversarial

examples can be formalized as:

𝑥𝑣
𝑖
= 𝑥𝑣𝑖 ⊙ (1 −𝑚) +𝐺 (𝑧) ⊙𝑚 (6)

where ⊙ denotes the element-wise product,𝑚 is a binary matrix
that contains the position information of the patch.
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Figure 4: The framework of our attack

The objective function of the adversarial generator 𝐺 is:

min
𝜃𝐺

L𝐺 =
∑︁

(𝑥𝑖 ,𝑦𝑖 ) ∈D𝑎

(
𝛼L𝑎𝑑𝑣 + 𝛽L𝑡𝑝𝑑 + L𝑞 + L𝑔𝑎𝑛

)
(7)

where L𝑎𝑑𝑣 is the adversarial loss function, L𝑡𝑝𝑑 is the topology-
deviation loss function, L𝑞 is the quality loss function, L𝑔𝑎𝑛 is the
GAN loss function, and 𝛼 , 𝛽 are pre-defined hyper-parameters.

The adversarial loss L𝑎𝑑𝑣 is used to deviate the feature position
of the target sample, by adding a patch to an image 𝑥𝑣

𝑖
so that the

feature vector 𝐸𝑣 (𝑥𝑣𝑖 ) of the adversarial example 𝑥𝑣
𝑖
is simultane-

ously far away from the original image feature vector 𝐸𝑣 (𝑥𝑣𝑖 ) and
the clean text feature vector 𝐸𝑡 (𝑥𝑡𝑖 ). Thus L𝑎𝑑𝑣 is expressed as:

L𝑎𝑑𝑣 = L𝑎𝑣 + 𝜆L𝑎𝑡 (8)

where L𝑎𝑣 and L𝑎𝑡 denote the image-image semantic feature devi-
ation loss and the image-text semantic deviation loss, respectively.
We adopt InfoNCE [37] loss to measure the similarity between the
vectors output by encoders. Specifically, we first treat the vector of
benign image 𝑥𝑣

𝑖
and adversarial image 𝑥𝑣

𝑖
as negative pairs, pulling

away their feature distance. It can be expressed as:

L𝑎𝑣 = 𝑙𝑜𝑔


𝑒𝑥𝑝

(
𝑆𝑖𝑚

(
𝐸𝑣 (𝑥𝑣𝑖 ), 𝐸𝑣 (𝑥

𝑣
𝑖
)
)/

𝜏)∑𝐾
𝑗=0𝑒𝑥𝑝

(
𝑆𝑖𝑚

(
𝐸𝑣 (𝑥𝑣𝑖 ), 𝐸𝑣 (𝑥

𝑣
𝑗
)
/
𝜏)
)  (9)

where 𝑆𝑖𝑚 (·) represents the cosine distance function, 𝜏 denotes a
temperature parameter. Then we treat the vectors of adversarial
image samples 𝑥𝑣

𝑖
and benign text samples 𝑥𝑡

𝑖
as negative pairs

similarly and increase their feature distances. So we have:

L𝑎𝑡 = 𝑙𝑜𝑔


𝑒𝑥𝑝

(
𝑆𝑖𝑚

(
𝐸𝑣 (𝑥𝑣𝑖 ), 𝐸𝑡 (𝑥

𝑡
𝑖
)
)/

𝜏)∑𝐾
𝑗=0𝑒𝑥𝑝

(
𝑆𝑖𝑚

(
𝐸𝑣 (𝑥𝑣𝑖 ), 𝐸𝑡 (𝑥

𝑡
𝑗
)
/
𝜏)
)  (10)

The topology-deviation loss L𝑎𝑑𝑣 is designed to corrupt the
topological similarity between the adversarial examples and their
corresponding normal samples, i.e., the neighbourhood relation
graph constructed based on the similarity between samples in the
representation space. Similarly, we deviate both the image feature
vectors 𝐸𝑣 (𝑥𝑣𝑖 ) of the adversarial examples and the image feature

vectors 𝐸𝑣 (𝑥𝑣𝑖 ) and text feature vectors 𝐸𝑡 (𝑥𝑡𝑖 ) of the normal sam-
ples. Our goal is to maximize the topological distance between
them, which can be represented as:

L𝑡𝑝𝑑 = −(L𝑡𝑝 (𝐸𝑣 (𝑥𝑣𝑖 ), 𝐸𝑣 (𝑥
𝑣
𝑖 )) + 𝜆L𝑡𝑝 (𝐸𝑣 (𝑥𝑣𝑖 ), 𝐸𝑡 (𝑥

𝑡
𝑖 ))) (11)

To achieve better stealthiness, we use L𝑞 to control the magni-
tude of the adversarial noises output by the generator and crop 𝛿
after each optimisation to ensure it meets the constraints 𝜀. For-
mally, we have:

L𝑞 =




𝑥𝑣𝑖 − 𝑥𝑣𝑖





2

(12)

The GAN loss L𝑔𝑎𝑛 encourages adversarial examples to be more
visually natural. That is, an normal image and an adversarial exam-
ple with adversarial patch tend to be consistent on the discriminator.
Thus the GAN loss L𝑔𝑎𝑛 can be expressed as:

L𝑔𝑎𝑛 = log
(
1 − 𝐷 (𝑥𝑣

𝑖
)
)

(13)

Discriminator. The main function of discriminator is to identify
the authenticity of fake examples generated by the adversarial
generator. By playing games with the generator, we ensure that the
generated fake adversarial examples are visually indistinguishable
from the real ones. The objective loss function of 𝐷 is:

min
𝜃𝐷

LD =
∑︁

(𝑥𝑖 ,𝑦𝑖 ) ∈D𝑎

−(log
(
𝐷 (𝑥𝑣𝑖 )

)
+ log

(
1 − 𝐷 (𝑥𝑣

𝑖
)
)
) (14)

4 EXPERIMENTS
4.1 Experimental Setting
Victim Pre-trained Encoders.We choose CLIP [39] as the victim
encoder for our experiments and obtain all pre-trained encoders
from its publicly available repository. We evaluate the vulnerabil-
ity of CLIP to adversarial attacks across a range of architectures,
including ResNet50, ResNet101, ViT-L/14, ViT-B/16, and ViT-B/32.
Downstream Datasets. We evaluate the effectiveness of our at-
tacks on two distinct downstream tasks: image-text retrieval and im-
age classification. To carry out the image-text retrieval task, we se-
lect four widely used cross-modal datasets, namely Wikipedia [40],
Pascal-Sentence [41], NUS-WIDE [7], and XmediaNet [38]. For the
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Table 1: The cross-modal attack performance (%) of AdvCLIP under different settings. D1 - D4 denote the settings where the
downstream datasets are NUS-WIDE, Pascal-Sentence, Wikipedia, and XmediaNet, respectively.

Surrogate Dataset ResNet50 ResNet101 ViT-B/16 ViT-B/32 ViT-L/14

𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 AVG 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 AVG 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 AVG 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 AVG 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 AVG

NUS-WIDE

D1 45.20 17.00 31.10 36.40 4.20 20.30 67.25 57.55 62.40 43.50 8.15 25.82 45.50 5.25 25.38
D2 67.00 58.50 62.75 22.50 37.00 29.75 66.00 65.50 65.75 52.00 43.00 47.50 31.00 19.50 25.25
D3 45.24 43.73 44.48 30.09 18.40 24.25 54.76 62.34 58.55 27.49 28.57 28.03 32.25 16.45 24.35
D4 57.10 47.94 52.52 59.45 35.89 47.67 80.05 63.15 71.60 65.45 42.41 53.93 54.07 11.95 33.01

Pascal

D1 23.25 8.15 15.70 25.90 2.55 14.22 62.65 60.00 61.33 32.70 5.45 19.07 37.75 4.25 21.00
D2 36.00 26.00 31.00 31.00 22.00 26.50 67.50 63.00 65.25 49.50 43.50 46.50 53.50 56.00 54.75
D3 13.86 17.32 15.59 13.63 9.52 11.57 51.08 55.20 53.14 26.63 18.39 22.51 37.01 21.42 29.21
D4 30.29 18.26 24.27 49.54 18.42 33.98 80.40 62.46 71.43 63.06 32.46 47.76 79.27 49.24 64.25

Wikipedia

D1 32.00 7.25 19.62 33.80 0.60 17.20 63.55 53.15 58.35 23.45 13.90 18.68 51.45 38.25 44.85
D2 25.50 40.50 33.00 8.00 13.50 10.75 67.50 64.50 66.00 51.00 52.50 51.75 53.50 48.50 51.00
D3 25.11 21.00 23.05 16.45 9.96 13.21 55.84 62.99 59.41 36.15 27.27 31.71 53.46 32.03 42.74
D4 34.50 29.86 32.18 47.06 20.07 33.56 80.01 63.33 71.67 56.89 33.29 45.09 82.06 56.20 69.13

XmediaNet

D1 43.20 11.30 27.25 8.66 4.33 6.50 46.53 23.16 34.84 40.05 38.52 39.28 37.66 17.96 27.81
D2 59.00 62.50 60.75 36.90 7.05 21.98 58.05 5.25 31.65 45.55 3.35 24.45 33.80 9.15 21.48
D3 42.64 41.78 42.21 27.50 14.00 20.75 59.50 54.00 56.75 57.50 42.50 50.00 45.50 30.50 38.00
D4 53.76 49.03 51.40 61.66 27.46 44.56 77.84 34.90 56.37 67.32 44.06 55.69 78.58 32.73 55.66

Table 2: The unimodal attack performance (%) of AdvCLIP under different settings.V1 -V5 denote the settings where the victim
models are ResNet50, ResNet101, ViT-B/16, ViT-B/32, and ViT-L/14, respectively.

Surrogate Victim CIFAR10 GTSRB ImageNet NUS-WIDE Pascal STL10 Wikipedia XmediaNet

FR ASR FR ASR FR ASR FR ASR FR ASR FR ASR FR ASR FR ASR

NUS-WIDE

V1 89.73 65.01 90.36 67.86 94.01 75.40 76.81 56.98 78.12 50.78 71.10 63.24 81.67 45.87 91.14 78.85
V2 78.55 59.57 86.75 62.35 60.41 44.23 49.80 29.59 64.45 35.55 17.80 11.60 66.07 31.50 59.33 48.47
V3 98.00 83.49 95.85 80.30 99.73 88.80 97.37 73.06 98.50 72.00 98.04 95.56 96.00 59.68 99.96 89.78
V4 87.91 73.65 91.25 68.79 96.21 77.52 68.51 49.02 91.41 61.33 78.85 70.83 77.96 41.27 91.53 79.24
V5 43.95 34.73 90.77 71.06 89.87 74.51 55.76 36.91 63.67 34.38 52.71 48.45 81.72 37.47 80.84 70.24
AVG 79.63 63.29 91.00 70.07 88.05 72.09 69.65 49.11 79.23 50.81 63.70 57.94 80.68 43.16 84.56 73.32

XmediaNet

V1 86.37 61.87 96.74 74.67 87.68 72.25 75.44 52.73 80.08 50.78 71.80 68.90 65.54 34.15 90.39 80.00
V2 90.33 67.39 73.25 63.76 55.67 49.50 80.91 56.01 86.72 62.11 37.01 35.98 60.24 30.92 62.05 56.88
V3 55.03 41.34 74.89 65.51 74.08 67.39 83.20 57.67 50.00 30.08 21.76 20.93 73.49 38.48 89.74 83.96
V4 83.82 69.98 91.69 81.98 95.41 88.62 87.65 62.40 89.45 59.77 78.45 77.54 90.09 57.14 98.30 92.09
V5 60.10 52.48 91.22 81.76 91.57 84.66 77.64 53.13 79.30 51.56 49.91 49.05 70.03 37.67 90.02 83.98
AVG 75.13 58.61 85.56 73.54 80.88 72.48 80.97 56.39 77.11 50.86 51.79 50.48 71.88 39.67 86.10 79.38

image classification task, we additionally choose STL10 [8], GT-
SRB [45], CIFAR10 [24], and ImageNet [42] image datasets. Note
that our approach is to generate image adversarial patches using
the cross-modal datasets.
Evaluation Metrics. In the cross-modal retrieval task, We use the
standard evaluation metric, mean average precision (MAP) [59], to
evaluate the accuracy of models, which we report separately for
two sub-tasks: text retrieval with image queries (I2T) and image
retrieval with text queries (T2I). To measure the performance of our
attacks, following [51], we use the attack success rate (ASR), which
is calculated as the difference between the MAP values of normal
samples and adversarial examples, with 𝐴𝑆𝑅𝑖 and 𝐴𝑆𝑅𝑡 used for
image-text retrieval and text-image retrieval, respectively. For the
classification task, we evaluate our attacks using three metrics:
clean accuracy (CA), attack success rate (ASR), and fooling rate (FR).
CAmeasures normal accuracy, ASR is calculated as described above,
and FR is the percentage of misclassified examples compared to the

total number of test examples. Higher ASR and FR values indicate
better attack effectiveness.

4.2 Attack Performance
Implementation Details. In order to evaluate the effectiveness
of AdvCLIP in scenarios where the downstream task is unknown,
we conduct experiments on two distinct tasks: image-text retrieval
and image classification. Following [19, 33], we set the perturbation
upper bound (the noise percentage of each sample) 𝜖 of adversarial
patch to 0.03.We choose the bottom right corner of the image, which
is not easily visible, to apply the patch. We set the hyper-parameters
𝛼 = 10, 𝛽 = 5, 𝜆 = 1 and the training epoch to 20 with batch
size of 16. We use four cross-modal datasets as attacker surrogate
datasets to train generative adversarial networks to generate a
universal adversarial patch, which are then used to attack different
downstream tasks. The generator and discriminator network are
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Figure 5: Adversarial examples generated by AdvCLIP based
on XmediaNet

trained by Adam optimizer with the initial learning rate 0.0002.
Examples of generated adversarial patches are shown in Fig. 5.

For the image-text retrieval task, we comprehensively evaluate
the attack performance of AdvCLIP on four downstream cross-
modal datasets (NUS-WIDE, Pascal-Sentence, Wikipedia, and Xme-
diaNe). We evaluate the performance of AdvCLIP in two subtasks
of image-text retrieval using 𝐴𝑆𝑅𝑖 and 𝐴𝑆𝑅𝑡 , respectively. For the
image classification task, in addition to using images from the
above cross-modal dataset, we also use four commonly used image
datasets (CIFAR10, STL10, GTSRB, and ImageNet) to train the clas-
sification model. We use 𝐴𝑆𝑅 and 𝐹𝑅 to evaluate AdvCLIP’s ability
in the classification task.
Analysis. Our results in the image-text retrieval downstream task
demonstrate a significant security threat posed by cross-modal
pre-trained encoders. Firstly, Tab. 1 shows that different types of
backbones have varying vulnerability to adversarial patches under
the same attack settings, with the Transformer architecture being
more susceptible to successful attacks than ResNet. Secondly, the
surrogate dataset has a significant effect on downstream attack suc-
cess. Datasets such as NUS-WIDE and XmediaNet, which contain a
larger number of samples, tend to result in higher attack success
rates. Thirdly, the attack performance may not be optimal when the
surrogate dataset is consistent with the downstream dataset. For
attackers, creating a better surrogate dataset is an essential factor
in achieving success in unknown downstream tasks. As shown
in Tab. 2, we achieve impressive performance in the classic image
classification task. The average FR value of the output results of the
downstream classification model is as high as 70%, and the average
accuracy drop of the model is also over 55%.

4.3 Ablation Study
In this section, we explore the effect of different modules, surrogate
datasets, attack strengths, and batch sizes on AdvCLIP. For our ex-
periments, we select CLIP based on ResNet50 as the victim encoder
and use the NUS-WIDE dataset as the attacker surrogate dataset to
launch attacks on image-text retrieval tasks.
The Effect ofL𝑎𝑑𝑣 &L𝑡𝑝𝑑 .We first analyze the effect ofL𝑎𝑑𝑣 and
L𝑡𝑝𝑑 on our scheme, respectively. As shown in Fig. 6 (a-b), “None”
indicates the removal of both, while “Adv_only” and “Tp_only” indi-
cate the removal of L𝑎𝑑𝑣 and L𝑡𝑝𝑑 , respectively. Our results show
that using L𝑎𝑑𝑣 alone is not enough to push away the feature posi-
tion of the sample itself, and the ability to attack the downstream
task is poor. However, by simultaneously disrupting the sample’s
relative position in the feature space, ideal results can be achieved,
as indicated by the "Our" results.
The Effect of 𝜖.We study the effect of different perturbation upper
bound on the attack performance of AdvCLIP. From Fig. 6(c-d), we

Table 3: Attack performance (%) of comparison study of down-
stream cross-modal attacks

Method
ResNet50 ViT-B/16

Pascal Wikipedia Pascal Wikipedia

𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡

UAP [33] 8.00 5.00 4.12 0.22 * 20.00 0.21 12.56
UPGD [10] 2.00 * 1.52 2.39 1.00 4.00 * 6.50
FFF [34] 2.00 2.00 2.39 1.30 * 2.00 0.21 6.28
SSP [35] 2.50 3.00 8.23 4.98 4.50 2.00 * 6.50

PAP-ugs [1] 1.00 0.50 5.63 0.87 2.50 * 1.08 5.85
Co-Attack [55] - - - - 14.50 5.00 9.30 8.23
Adv-Patch [3] 30.00 20.50 9.10 10.61 15.00 16.00 27.05 19.70

Ours 67.00 58.50 45.24 43.73 66.00 65.50 54.76 62.34

can see that CLIP has different sensitivities to different perturbation
budgets. A higher attack success rate can be achieved with a smaller
patch size when 𝜖 is 0.03.
The Effect of Batch Size.We examine the effect of different batch
sizes from 4 to 128 on AdvCLIP, the results are shown in Fig. 6(e-f).
To balance both attack performance and computational efficiency,
we set the batch size to 16 as the default setting.

4.4 Comparison Study
Implementation Details. In this section, we compare AdvCLIP
with state-of-the-art (SOTA) universal adversarial attacks. Prior
researches have not focused enough on downstream tasks for VLP
encoders. The work most relevant to ours is Co-Attack [55], which
generates sample-specific adversarial examples in a white-box set-
ting. To facilitate comparison, we randomly select an adversarial
perturbation generated by Co-Attack for the images for testing.
Furthermore, to demonstrate the superiority of our approach, we
also consider adversarial attacks against unimodal image encoders,
including PAP [1] against image pre-trained models and classic uni-
versal adversarial perturbation schemes (e.g., UAP [33], UPGD [10],
FFF [34], SSP [35], and Adv-Patch [3]). To conduct a comprehensive
comparison with SOTA schemes under the paradigm of cross-modal
pre-trained encoders to downstream tasks, we select two represen-
tative architectures, ResNet50 and ViT-B/16, of CLIP and evaluate
them on image-text retrieval downstream tasks.
Analysis. From Tab. 3, we can see that AdvCLIP outperforms
existing SOTA methods by a large margin on two downstream
datasets. Note that Co-Attack needs to use [CLS] in Transformer
in the optimization process, so it cannot be used directly to attack
CLIP based on ResNet50 (“-"). The negative experimental values
(“*") indicate that the attack does not work at all. There are three
reasons for this: firstly, CLIP’s robustness originates from its pre-
training on a vast dataset of 400 million image-text pairs. Secondly,
our quasi-black-box threat model limits the attacker’s knowledge,
making it difficult to attack CLIP’s downstream model. As observed
in Tab. 3, existing attacks hardly affect CLIP-based models. Lastly,
unsuccessful perturbations unintentionally align input samples
with CLIP’s training set, improving overall accuracy and resulting
in negative ASR values for the attack.

5 DEFENSE
In this section, we tailor three downstream defenses for adaptively
mitigating AdvCLIP. For users utilizing cross-modal pre-trained
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Figure 6: The attack performance under different settings. (a) - (f) examine the effects of different modules, attack strengths,
and batch sizes on AdvCLIP, respectively. (g) - (j) investigate the effect of defense methods on AdvCLIP, respectively.

encoders, they can preprocess input data, conduct adversarial train-
ing on downstream models, or prune parameters to defend against
adversarial attacks, while mataining normal model accuracy.

5.1 Corruption
Corruption is an effective and simple countermeasure for purifying
adversarial examples at the pre-processing phase [5]. To combat ad-
versarial examples, we introduce different levels of Gaussian noise
to corrupt input images. As shown in Fig. 6(g-h), while matain-
ing that the clean samples maintain normal accuracy, the retrieval
accuracy of the model decreases significantly with the degree of cor-
ruption, and the performance of AdvCLIP is slightly affected. These
results indicate that AdvCLIP can effectively resist the corruption-
based pre-processing defense.

5.2 Pruning
Pruning [58] is widely used for downstream models to inherit pre-
trained encoders by removing redundant parameters in neural net-
works, reducing model size and computational complexity. While
pruning the parameters, the required dependencies of the adver-
sarial examples designed for the pre-trained encoder structure and
parameters are broken to effectively defend against the adversarial
attack. We perform parameter pruning on CLIP based on ResNet50
and evaluate the effectiveness of our attack using NUS-WIDE as
surrogate dataset on two downstream cross-modal datasets. The
results in Fig. 6(i-j) show that pruning parameters is difficult to
effectively resist CLIP while mataining normal model accuracy.

5.3 Adversarial Training
Adversarial training [15] commonly mixes adversarial examples
with original data to enhance model robustness and generalization,
making it more resistant to adversarial attacks. We consider a more
stringent scenario where defenders conduct adversarial training
on downstream tasks. Following [15], we enhance the robustness
of the model during training of downstream tasks by adding noise

Table 4: Attack performance (%) on models that have under-
gone adversarial training

Dataset
RN50 RN101 ViT-B/16 ViT-B/32

𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡 𝐴𝑆𝑅𝑖 𝐴𝑆𝑅𝑡

NUS-WIDE 46.75 14.95 31.75 10.70 60.65 56.30 37.90 4.20
Pascal 54.50 60.00 25.00 44.50 77.00 75.50 66.50 40.00

Wikipedia 40.91 37.45 32.04 25.33 58.44 64.93 47.84 16.45
XmediaNet 69.02 46.37 63.15 35.16 79.84 63.24 71.88 40.33

to the samples and incorporating them in the training process. For
the experiment, we use NUS-WIDE as the surrogate dataset for
evaluation on four downstream datasets. As shown in Tab. 4, our
method is still able to successfully attack downstream tasks that
have been enhanced by adversarial training.

6 CONCLUSION
In this paper, we propose the first attack framework to construct
downstream-agnostic adversarial examples based cross-modal pre-
trained encoders in multimodal contrastive learning. We design a
topology-deviation based generative adversarial network that gen-
erates a universal adversarial patch to fool downstream tasks under
strict constraints on attacker’s knowledge. We verify the excellent
attack performance of AdvCLIP on two types of downstream tasks
over five backbones of CLIP on eight datasets. We tailor three pop-
ular defenses to mitigate AdvCLIP. The results further prove the
attack ability of AdvCLIP and highlight the needs of new defense
mechanism to defend pre-trained encoders.
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