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ABSTRACT
Federated learning (FL) is a nascent distributed learning paradigm

to train a shared global model without violating users’ privacy.

FL has been shown to be vulnerable to various Byzantine attacks,

where malicious participants could independently or collusively

upload well-crafted updates to deteriorate the performance of the

global model. However, existing defenses could only mitigate part

of Byzantine attacks, without providing an all-sided shield for FL.

It is difficult to simply combine them as they rely on totally contra-

dictory assumptions.

In this paper, we propose FPD, a four-pronged defense against
both non-colluding and colluding Byzantine attacks. Our main idea

is to utilize absolute similarity to filter updates rather than relative

similarity used in existingI works. To this end, we first propose a

reliable client selection strategy to prevent the majority of threats

in the bud. Then we design a simple but effective score-based de-

tection method to mitigate colluding attacks. Third, we construct

an enhanced spectral-based outlier detector to accurately discard

abnormal updates when the training data is not independent and
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identically distributed (non-IID). Finally, we design update denois-

ing to rectify the direction of the slightly noisy but harmful updates.

The four sequentially combined modules can effectively recon-

cile the contradiction in addressing non-colluding and colluding

Byzantine attacks. Extensive experiments over three benchmark

image classification datasets against four state-of-the-art Byzan-

tine attacks demonstrate that FPD drastically outperforms existing

defenses in IID and non-IID scenarios (with 30% improvement on

model accuracy).
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1 INTRODUCTION
Federated learning (FL) [14, 19] emerges as a new distributed ma-

chine learning paradigm recently, where the training data and the

learning process are fully controlled by the clients, thus alleviat-

ing the privacy concern. However, due to its decentralized nature,

FL is found to be highly vulnerable to Byzantine attacks, where

malicious participants contribute poisoned updates to damage the

global model. Generally, Byzantine attacks can be categorized into
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non-colluding attacks [22, 28] where attackers upload malicious

updates independently, and colluding attacks [2, 5, 8, 20, 27, 32]

where attackers share information (e.g., training data, and model

updates) to each other and collusively design well-crafted updates.

In particular, colluding attackers tend to upload similar or totally

identical updates to avoid being treated as outliers [17].

To defend against these two kinds of attacks, massive defensive

schemes have been proposed in recent years. For the non-colluding

attacks, existing defenses, such as Krum [3], FABA [25],Median [29],

FedInv [34], AFA [16], manage to remove or circumvent the out-

liers based on the intuition that benign updates are much similar

to each other due to the same optimization objective, while the

malicious ones can be considered as outliers. To resist colluding

attacks, existing works like FoolsGold [9], LOF [24], and Contra [1]

propose to punish the relatively similar updates by distributing

smaller weights in the aggregation stage. Unfortunately, these de-

fenses (or simply combining them) cannot mitigate non-colluding

and colluding attacks simultaneously, since the intuitions behind

them are almost opposite arguing whether the malicious updates

are similar to each other.

Recent studies like LFR [8], Zeno [28], FLTrust [4], DiverseFL [18]

attempt to defend against both attacks simultaneously. Instead of

relying on the distribution of the updates, they turn to an auxiliary

dataset to validate the performance (e.g., loss or accuracy) of each
update [8, 28], or construct a reliable update as a reference [4, 18].

These performance-based defenses hold that malicious updates in-

evitably degrade model performance in a degree. Although perform-

ing much better in non-colluding and part of colluding scenarios,

these defenses fail to work when malicious updates are slightly

noised but harmful (e.g., LIE attack [2]), especially when the data is

not independent and identically distributed (non-IID). Moreover, the

assumption of possessing an auxiliary dataset will violate users’ pri-

vacy as they usually require that the auxiliary dataset has the same

distribution as the clients’ local training datasets. In summary, an

effective defense providing an all-sided shield for FL is still missing

yet.

To tackle these issues, we propose FPD, a four-pronged defense
against both non-colluding and colluding Byzantine attacks. Our

main observation is that the contradictory intuitions behind the

existing two kinds of schemes arise because both of them rely on

the relative similarity between updates due to the lack of a gold

standard to evaluate each update in FL. In light of this, we propose

to construct an artificial gold standard, which is an empirically

determined threshold, to form absolute similarity that can be used

to detect colluding attacks. Meanwhile, non-colluding attacks can

still be detected based on relative similarity. In this way, the con-

tradictory of solely exploiting relative similarity can be reconciled

naturally. Specifically, we propose two defense modules relying on

absolute similarity and relative similarity to defend against collud-

ing attacks and non-colluding attacks, respectively. In addition, we

design a reliable client selection strategy to prevent the majority

of threats and the update denoising method to rectify the update

directions, in order to further alleviate the impact of colluding

attacks.

In summary, we offer the following contributions:

• We propose a new FL defense scheme FPD, which is effective

in defending against non-colluding and colluding Byzantine

attacks simultaneously.

• Wepropose two novel auxiliary defensemodules (i.e., reliable
client selection and update denoising) to further enhance

the defense ability.

• We demonstrate the advantage of FPD via extensive exper-

iments on three benchmark datasets against four state-of-

the-art attacks. Compared with five distinguished defenses,

our scheme achieves the best performance in both IID and

non-IID scenarios.

2 BACKGROUND
2.1 Federated Learning
We consider a general FL system, consisting of a central server and

𝐾 clients. Each client 𝑘 ∈ [𝐾] has a dataset 𝐷𝑘 , the size of which is

denoted as |𝐷𝑘 | = 𝑛𝑘 . It is worth noting that each local dataset may

be subject to a different distribution, that is, the clients’ data may be

distributed in a non-IID way. The clients aim to collaboratively train

a shared global model 𝒘 . Apparently, the problem can be solved

via minimizing the empirical loss, i.e., argmin𝒘 𝑓 (𝐷,𝒘), where
𝐷 =

⋃𝐾
𝑘=1

𝐷𝑘 and 𝑓 (𝐷,𝒘) is a loss function (e.g., mean absolute

error, cross-entropy). However, the optimization requires all the

clients to share their raw data to a central server, which would

result in a serious threat to client’s privacy. Instead, FL obtains𝒘
by optimizing argmin𝒘

∑𝑘
𝑘=1

𝑓 (𝐷𝑘 ,𝒘). Specifically, the FL system

iteratively performs the following three steps until the global model

converges:

• Step I: In the 𝑡-th iteration, the central server broadcasts a

global model𝒘𝒕 to the clients;

• Step II: After receiving 𝒘𝒕 , each client 𝑘 trains a new lo-

cal model𝒘𝒌
𝒕 over 𝐷𝑘 by solving the optimization problem

argmin𝒘𝒌
𝒕
𝑓 (𝐷𝑘 ,𝒘𝒌

𝒕 ) and then uploads the local model up-

date 𝒈𝒌𝒕 := 𝒘𝒌
𝒕 −𝒘𝒕 to the server;

• Step III: The server aggregates all the local updates accord-
ing to client’s proportional dataset size as follow:

𝒘𝒕+1 ← 𝒘𝒕 +
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝒈𝒌𝒕 ,where 𝑛 =

𝐾∑︁
𝑘=1

𝑛𝑘 . (1)

3 THREAT MODEL
3.1 Attack Model
Following previous studies [2, 9, 34], we consider a strong attack

model where an adversary controls 𝑓 out of the total 𝐾 participants.

The adversary can arbitrarily manipulate the data and the updates

of the controlled clients. The goal of the adversary is to upload

well-crafted malicious updates via the controlled clients to damage

the global model accuracy. The controlled clients can collude with

each other, and the adversary may possess the knowledge (e.g., the
local updates) of other uncontrolled clients so as to initiate stronger

attacks.
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3.2 Defense Model
To design a practical defense, we cast away the following unrealistic

assumptions that existing defenses rely on.

• Training dataset sizes. Recently proposed defense [34]

assumes that the training dataset sizes of all the clients are

known by the central server so that a fair weight distribution

mechanism can be built. However, clients can arbitrarily

report the sizes due to the distributed nature [21, 24].

• Number of attackers.Many defenses [3, 20, 25, 34] assume

that the central server knows the number of attackers so as

to determine how many updates should be removed. Nev-

ertheless, the clients in FL are dynamically changing and

cannot be determined in advance.

• Auxiliary dataset. Many defenses [4, 8, 13, 18, 28] rely

on an auxiliary dataset whose distribution is the same as

that of the clients, to evaluate the performance of the local

updates. However, this assumption undoubtedly violates

users’ privacy.

On the contrary, our defense makes minimum assumptions. The

only information the central server holds is the local updates up-

loaded by the clients. The goal of our defense is to achieve the

competitive model accuracy in both non-colluding and colluding

scenarios.

4 FPD: A FOUR-PRONGED DEFENSE AGAINST
BYZANTINE ATTACKS

4.1 Motivation and Overview of FPD
After reviewing state-of-the-art defenses, we find that none of them

can fully protect FL. Specifically, the colluding oriented defenses

cannot defend against non-colluding attacks, and vice versa. Simply

combining these two kinds of defenses seems promising, but they

rely on totally contradictory assumptions. The former assumes that

malicious updates are relatively similar, while the latter consid-

ers benign updates are more compact. Since all of these defenses

employ relative similarity as a metric to filter out outliers, a combi-

nation of them inevitably leads to the rejection of benign updates

in either colluding scenario or non-colluding scenario. Although

the performance based defenses try to handle both of these two at-

tacks, they are unable to detect malicious updates which are slightly

perturbed but maintain toxicity.

To reconcile such a dilemma, we propose using absolute simi-

larity to filter out extremely similar updates, and then employ an

outlier detector based on relative similarity to discard abnormal up-

dates. Furthermore, we propose two auxiliary defense modules (i.e.,
the client selection and the update denoising) to further restrain

the attack space of the poisoned updates, thus making it easier to

filter out colluding and non-colluding poisoned updates. As shown

in Fig. 1, our proposed FPD consists of the following four steps.

• Step I: Reliable Client Selection. Instead of randomly

selecting a subset of clients to participate in each iteration,

the central server selects the reliable clients who are more

likely to contribute high quality updates according to the

historical performance of each participant.

• Step II: Mitigating Colluding Attacks. The central server
detects and rejects the updates that are excessively similar

in the direction space once receiving all the local updates

from the currently selected clients.

• Step III: Mitigating Non-Colluding Attacks. The central
server detects and rejects the outliers via a spectral-based

outlier detector.

• Step IV: Update Denoising. The central server applies an
autoencoder to reconstruct the malicious updates that are

too similar to benign ones to detect.

Remark 1. Step I ensures that most of the malicious clients cannot
participant in FL at all, in other words, only a limited number of
compromised clients have a chance to poison the global model. Step II
prohibits the adversary from designing excessively similar malicious
updates, enhancing the difficulty of launching a covert attack. Step III
guarantees that any update far from the overall distribution would
be discarded. Step IV is designed to rectify the direction of the slightly
noised but harmful updates. Note that Steps I and IV are directly
dependent on the detection capacity of the Steps II and III, which
inform the server whether an update is benign or malicious.

4.2 Reliable Client Selection
Client selection is widely studied in the FL community, through

which the researchers aim to reduce the communication over-

head [6], solve the data heterogeneity challenge [33], and deal

with the resource constrained FL scenarios [31]. However, it is

rarely considered in the Byzantine-robust FL field. To the best of

our knowledge, there are only two related defenses. In AFA [16],

the authors propose a blocking mechanism to forbid the clients

to participate in the subsequent iterations once they have shared

sufficient bad updates. Recently, Wan et al. [23] proposed MAB-RFL,

which applies a Beta distribution to estimate the probability of each

client providing a benign update in the current iteration. However,

both the defenses only focus on the overall performance of each

client without taking their recent behaviors into account. Therefore,

the attackers, in the early stages, can pretend to be benign clients

by uploading well-trained updates to earn trust from the central

server, and thus they will be constantly selected even though their

latest updates are malicious.

Based on the above observation, we propose a new client se-

lection strategy which considers both the overall and the recent

performance of each client such that:

(i) The client who has uploaded too many malicious updates is

selected with a low probability even though it has performed well

in the recent iterations;

(ii) The client who has contributed substantial benign updates

while performing badly in the recent iterations is also selected with

a low probability;

(iii) Only the client who persistently shares benign updates is

selected with a high probability.

Formally, in the client selection stage, the central server selects

each client 𝑘 with the probability:

𝑝𝑘 ∼

Beta(𝛼 + 𝐵𝑂

𝑘
, 𝛽 +𝑀𝑂

𝑘
), if

𝐵𝑂
𝑘

𝐵𝑂
𝑘
+𝑀𝑂

𝑘

<
𝐵𝑅
𝑘

𝐵𝑅
𝑘
+𝑀𝑅

𝑘

Beta(𝛼 + 𝐵𝑅
𝑘
, 𝛽 +𝑀𝑅

𝑘
), else

(2)
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Select 𝑔𝑡
1 with probability 𝑝1

①Reliable Client Selection

𝑝𝑘 ∼
Beta 𝛼 + 𝐵𝑘

𝑂, 𝛽 + 𝑀𝑘
𝑂 , if

𝐵𝑘
𝑂

𝐵𝑘
𝑂 +𝑀𝑘

𝑂 <
𝐵𝑘
𝑅

𝐵𝑘
𝑅 +𝑀𝑘

𝑅

Beta 𝛼 + 𝐵𝑘
𝑅 , 𝛽 + 𝑀𝑘

𝑅 , else

②Mitigating Colluding Attacks

𝑐𝑠𝑡
1 = 0

𝑐𝑠𝑡
3 > 0

𝑐𝑠𝑡
4 = 0

𝑐𝑠𝑡
𝐾 = 0

𝑐𝑠𝑡
2 = 0

×

⋯ ⋯

③Mitigating Non-Colluding Attacks ④Update Denoising

Reject

𝑔𝑡
1

𝑔𝑡
2

𝑔𝑡
3

𝑔𝑡
4

𝑔𝑡
𝐾

Compute the probability to select client k Compute cosine similarity between
any two pairs, than calculate a
colluding score 𝑐𝑠𝑡

𝑘 = σ𝑗∈𝑆𝑡
𝕀 cos 𝒈𝑡

𝑘, 𝒈𝒕
𝑗

> 𝛾𝑡

Compute the 
reconstruction error:
𝑒𝑟𝑟𝑡

𝑘 for each client

⋯

Reject 𝑔𝑡
1 with probability 1-𝑝1

⋯

Cluster
𝐶𝑙 with larger 
outlier scores 

Cluster
𝐶s with small 
outlier scores 

Apply k-means on 
𝜏{𝑘∈𝑆𝑡} to divide 

client set 𝑆𝑡

Compute outlier 
score : 𝜏𝑘 for 
each client 

client set 𝑆𝑡

If cos 𝒎𝒍,𝒎𝒔 > 𝛿 ,all client can pass this
Detection step. Otherwise, only clients in
Cluster 𝐶s can pass it.

client set 

Apply k-means 
on 𝑒𝑟𝑟𝑡

𝑘

Group with larger 
reconstruction error

Group with smaller 
reconstruction error

reconstruct by 
the autoencoder

Finally Accepted

Select 𝑔𝑡
2 with probability 𝑝2

Reject 𝑔𝑡
2 with probability 1-𝑝2

Select 𝑔𝑡
3 with probability 𝑝3

Reject 𝑔𝑡
3 with probability 1-𝑝3

Select 𝑔𝑡
K with probability 𝑝𝐾

Reject 𝑔𝑡
𝐾 with probability 1-𝑝𝐾

Select 𝑔𝑡
4 with probability 𝑝4

Reject 𝑔𝑡
4 with probability 1-𝑝4

𝒎𝒍 =
1

𝐶𝑙
෍

𝑘∈𝐶𝑙

𝒎𝒕
𝒌 𝒎𝑠 =

1

𝐶𝑠
෍

𝑘∈𝐶𝑠

𝒎𝒕
𝒌

Figure 1: The workflow of our proposed FPD

where 𝛼 and 𝛽 are prior parameters. 𝐵𝑂
𝑘
and𝑀𝑂

𝑘
denote the overall

frequencies that the local updates from client 𝑘 are identified as be-

nign and malicious respectively. Analogously, 𝐵𝑅
𝑘
and𝑀𝑅

𝑘
indicate

the recent frequencies. In this paper, we define the "recent" as the

latest 10 iterations a specific client is selected.

Note that the central server possesses limited information about

a client’s identity (i.e., benign or malicious) in the early iterations,

thus it nearly makes a random choice, which deteriorates the con-

vergence rate. As a remedy to this concern, we propose a bootstrap

trick, by allowing all the clients to participate in the training in the

first 10 iterations so as to fully understand their identities.

4.3 Mitigating Colluding Attacks
Recently, colluding attacks have aroused extensive attention for its

effectiveness in designing covert but powerful Byzantine attacks.

For example, LIE attack [2] adds well-crafted noise, which is tiny

enough to circumvent the defense while huge enough to degrade

the global model accuracy, to a benign update. IPM attack [27]

reverses the direction of a benign update in order to maximize the

attack effect. Wan et al. [24] proposed free-riding attack, where

attackers train local models on small amounts of data but declare

large training set sizes so as to dominate the global model. Fang et
al. [8], and Shejwalkar et al. [20] proposed optimization based

attacks respectively. Albeit different in implementation, all the

attacks are based on a core idea, that is, the attackers should collude

with each other to make the malicious updates as similar as possible

or even totally identical. Colluding attack indeed poses a great threat

to existing defenses as verified by our experiments. The difficulty

in defending against colluding attack lies in the following facts:

(i) Benign updates are inevitably got punished [1, 9, 24];

(ii) It is hard to reconcile colluding attack and non-colluding

attack.

To address these two challenges, we first propose a simple yet

effective solution to mitigate colluding attacks by constructing

absolute similarity. Specifically, we calculate a colluding score for

each selected client 𝑘 as follow:

𝑐𝑠𝑘𝑡 =
∑︁
𝑗∈𝑆𝑡
I(cos(𝒈𝒌𝒕 ,𝒈

𝒋
𝒕 ) > 𝛾𝑡 ), (3)

where I(·) is the indicator function, cos(·, ·) indicates the cosine
similarity, 𝑆𝑡 is the selected client set in iteration 𝑡 , 𝛾𝑡 ∈ [−1, 1]
denotes the tolerable cosine similarity threshold. As demonstrated

in [1, 9, 23], the benign updates will not be extremely similar to

each other in the direction space even in an IID scenario, thus it

is easy to set the threshold 𝛾𝑡 (in our experiments we set 𝛾𝑡 = 0.8)

to filter out colluding attackers without affecting benign clients.

Specifically, any client 𝑘 with a positive colluding score 𝑐𝑠𝑘𝑡 will be

regarded as malicious and rejected in this stage.

4.4 Mitigating Non-Colluding Attacks
In the scenario of non-colluding attacks, where malicious updates

are quite different from each other in direction as well as magnitude,

attackers can easily circumvent the detection of colluding attacks,

which motivates the need of an additional abnormal detection step

based on relative similarity. To this end, we borrow the idea from

[7], where a spectral-based outlier detector is proposed. At a high

level, the algorithm first computes the top singular vector of a

matrix composed of all the involved vectors. Then any vector whose

projection onto the singular vector (i.e., the outlier score) is too
large will be removed (by assuming the number of outliers is known

in advance). Despite its good performance on several datasets with

theoretical guarantee, it does not readily apply to our case due to

the following challenges:

• Challenge I. As demonstrated in the original paper, the

method performs badly in non-IID scenario, which is the

most representative feature in FL.

• Challenge II. The method is highly sensitive to the magni-

tudes of the involved vectors even in the IID scenario.

• Challenge III. The method requires the number of outliers.

Unfortunately, FL is a dynamic distributed network where
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honest and malicious clients can join in and drop out arbi-

trarily.

To address Challenge I, we introducemomentum,which is shown

to be effective to reduce the variance between updates [10, 15]. In

this way, an IID-like distribution can be built. Formally, we compute

the momentum vector as:

𝒎𝒌
𝒕 = 𝒈𝒌𝒕 + 𝜆

𝑡−𝑡𝑘𝒎𝒌
𝒕𝒌
, (4)

where 𝑡𝑘 is the latest selected iteration for client 𝑘 , 𝜆 ∈ (0, 1)
indicates the importance of historical information. Initially, we set

𝒎𝒌
𝒕𝒌

= 0. Note that the iteration interval for a client being selected

twice may be quite large, making the historical information that

lies in the momentum vector 𝒎𝒌
𝒕𝒌

obsolete. Thus we multiply it

by a smaller discount factor 𝜆𝑡−𝑡𝑘 , rather than using 𝜆 as existing

works did.

To address Challenge II, we further normalize the momentum

vector into an unit one:

𝒎𝒌
𝒕 =

𝒎𝒕
𝑘

| |𝒎𝒌
𝒕 | |

. (5)

In this way, the outlier-detector will focus on the direction only,

without being affected by the magnitude. Moreover, Eq. (5) also

ensures that a single malicious update has a limited impact on the

aggregation result, and a benign update with a small magnitude

can contribute more information.

To address Challenge III, we apply the 𝑘-means algorithm to

divide the normalized momentum vectors into two groups based

on the outlier scores obtained by the outlier-detector due to its

simpleness and effectiveness. Instead of simply treating the group

with smaller outlier scores as being benign, we take the similarity

between the two groups into consideration. Specifically, if the two

groups are much similar (i.e., the cosine similarity exceeds a thresh-

old 𝛿), it is very likely that all the updates are benign. In such a case,

both groups will be kept for aggregation; otherwise, the group with

larger outlier scores will be removed.

A detailed description for detecting non-colluding attack is sum-

marized in Algorithm 1.

4.5 Update Denoising
Recent studies [2, 8, 20] show that attackers can upload well-crafted

updates (by adding tiny noises to a benign update) that are ex-

tremely similar to benign ones to circumvent the defenses as well

as maintain the attack effect. Distinguishing them from benign

updates is really challenging. Therefore, instead of detecting and re-

moving them, we denoise and utilize the slightly disturbed updates

to facilitate the convergence. Specifically, we turn to an autoencoder

to denoise the normalized momentum vectors that successfully get

through the preceding detection steps, then the ones with large

reconstruction errors will be reconstructed while the remaining

vectors keep unchanged. Formally, the reconstruction error of client

𝑘 in iteration 𝑡 is given by:

𝑒𝑟𝑟𝑘𝑡 = | |𝒎𝒌
𝒕 − 𝑎𝑒 (𝒎

𝒌
𝒕 ) | |

2, (6)

where 𝑎𝑒 (·) represents the autoencoder. Then, we utilize the 𝑘-

means algorithm to divide the normalized momentum vectors into

two groups based on the reconstruction errors. The group with

Algorithm 1 Mitigating Non-Colluding Attacks

Input: Current iteration 𝑡 , left clients 𝑆𝑡 , latest selected iterations

{𝑡𝑘 , 𝑘 ∈ 𝑆𝑡 }, local updates {𝒈𝒌𝒕 , 𝑘 ∈ 𝑆𝑡 }, momentum vectors

{𝒎𝒌
𝒕𝒌
, 𝑘 ∈ 𝑆𝑡 }, acceptable difference between clusters 𝛿 ,

importance of historical information 𝜆

Output: Set of removed clients 𝑅

1: Compute the normalized momentum vectors {𝒎𝒌
𝒕 , 𝑘 ∈ 𝑆𝑡 }

through Eq. (4) and Eq. (5).

2: Let 𝝁 = 1

|𝑆𝑡 |
∑
𝑘∈𝑆𝑡𝒎

𝒌
𝒕 .

3: Let 𝑮 = [𝒎𝒌
𝒕 − 𝝁]𝑘∈𝑆𝑡 be the matrix of centered vectors.

4: Let 𝒗 be the top right singular vector of 𝑮 .

5: Compute outlier scores defined as 𝜏𝑘 = ((𝒎𝒌
𝒕 − 𝝁) · 𝒗)

2
.

6: Apply k-means on 𝜏{𝑘∈𝑆𝑡 } to divide 𝑆𝑡 into two clusters 𝐶𝑙
with larger outlier scores and 𝐶𝑠 with smaller outlier scores.

7: Compute the mean vector of each cluster:

𝒎𝒍 =
1

|𝐶𝑙 |
∑
𝑘∈𝐶𝑙

𝒎𝒌
𝒕 ;

𝒎𝒔 =
1

|𝐶𝑠 |
∑
𝑘∈𝐶𝑠

𝒎𝒌
𝒕 .

8: if 𝑐𝑜𝑠 (𝒎𝒍 ,𝒎𝒔 ) > 𝛿 then
9: Let the removed set 𝑅 = ∅.

10: else
11: Let the removed set 𝑅 = 𝐶𝑙 .

12: end if
13: return 𝑅

larger reconstruction errors will be denoised by the autoencoder,

and the other group remains unchanged.

Note that training such an autoencoder does not require any raw

data shared by participants, thus users’ privacy is well protected. In-

stead, we use the historical reliable normalized momentum vectors

(derived from local updates) as the training samples. Moreover, the

dimension of the momentum vector 𝒎𝒌
𝒕 (the same with that of the

model weights) is generally quite large, making it time-consuming

to train the autoencoder. Hence we only consider the weights be-

tween the last two layers, which are decisive for the classification

results [30].

5 EXPERIMENTS
5.1 Experimental Setup
Datasets, models, and codes. Our experiments are conducted on

three benchmark image classification datasets: MNIST [12], Fashion-

MNIST [26], and CIFAR-10 [11], as most of existing works did [1,

15, 23]. The model structures are consistent with those in [23]. Our

codes are available at https://github.com/CGCL-codes/FPD.

Data distribution. We follow existing works [4, 34] to simulate

non-IID data distribution. Roughly, the non-IID degree 𝑞 ∈ [0, 1] is
related to the proportion of the training data with a single specific

label 𝑙 ∈ [𝐿] (𝐿 is the total kinds of the labels). A larger 𝑞 indicates

a higher non-IID degree, and 𝑞 = 1

𝐿
corresponds to the IID case. In

our experiments, we set 𝑞 = 0.5 by default, which is the highest

non-IID setting existing works considered. Moreover, the training

set sizes vary among clients. For MNIST and Fashion-MNIST, they
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Figure 2: Model accuracy under LIE attack
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Figure 3: Model accuracy under IPM attack

are evenly sampled from [10, 500]. For CIFAR-10, they are randomly

chosen from [1000, 1500].
Evaluated attacks.We consider two colluding attacks, i.e., little
is enough (LIE) attack [2], and inner product manipulation (IPM)

attack [27], as well as two non-colluding attacks, i.e., label flipping
(LF) attack [22], and sign flipping (SF) attack [24]. Note that our

defense is not limited to these attacks.

It is noteworthy that all the parameter settings strictly follow

the recommendations stated in the original papers, as it ensures

the optimal attack effectiveness.

Evaluated defenses.We compare FPD with five state-of-the-art

defenses, ie, Krum [3], FABA [25], Median [29], FLTrust [4], and

LFR [8]. Besides, we also implement FedAvg [14] in non-adversarial

case as a comparison (i.e., Baseline).
It is worth noting that these defenses rely on additional as-

sumptions, which enhance their defense effectiveness. For example,

Krum, FABA, and LFR require prior knowledge of the number of

attackers to determine the number of updates to be discarded, while

FLTrust and LFR depend on a clean dataset to assess the trustworthi-

ness of updates. In contrast, our proposed FPD does not introduce

any unrealistic assumptions, making it a more desirable defense

for deployment in realistic scenarios with limited knowledge (e.g.,
just local updates).

Performance metric and parameter settings. We use accuracy
(i.e., the ratio of correctly predicted samples over all the testing

samples) to evaluate the performance of each defense. For a fair

comparison, all the experimental results are based on the mean

of three repeated experiments. We set the number of total clients

𝐾 = 50. The number of compromised clients 𝑓 = 15 by default. Each

client performs 𝐸 = 3 epochs of local training for faster convergence.

The prior parameters 𝛼 = 𝛽 = 1. The total iterations 𝑇 = 100. The

tolerable cosine similarity 𝛾𝑡 = 0.8. The importance of historical

information 𝜆 = 0.1. For MNIST and Fashion-MNIST, the acceptable

difference between clusters 𝛿 = −0.1. For CIFAR-10, 𝛿 = 0.

5.2 Experimental Results
Defense against LIE attack. In Fig. 2, we give the accuracy curves

of the defenses under LIE attack on three different datasets. It is

clear that the results vary across datasets. Specifically, on MNIST,

Krum fail to defense. FPD, FLTrust, LFR, and Median achieve the

similar accuracy with the Baseline. FABA performs slightly worse

than the four defenses, with the accuracy gap of about 4%. On

Fashion-MNIST, FPD and LFR perform best and are slightly superior

to FLTrust, FABA, and Median. Krum still provides no protection.

On the more complicated dataset CIFAR-10, the only defense that

can effectively resist LIE attack is FPD. The other five defenses

perform significantly worse than the Baseline with an accuracy gap

of 20% ∼ 65%.

Defense against IPM attack. As shown in Fig. 3, under IPM

attack, FPD outperforms all the competitors on the three datasets

with a minor gap to Baseline. Specifically, FABA and Krum are

uncompetitive, because their accuracies hover at 10% in all scenarios.

FLTrust and LFR, which perform as well as FPD on Fashion-MNIST

and MNIST, cannot defend against IPM attack on CIFAR-10. To

be specific, FLTrust fluctuates sharply, and LFR converges slowly.

Although Median performs much better than FABA and Krum, its
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Figure 4: Model accuracy under LF attack
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Figure 5: Model accuracy under SF attack

accuracy is not satisfactory, especially on CIFAR-10 and Fashion-

MNIST.

Defense against LF attack. Fig. 4 presents the impact of LF attack

on the defenses. In general, this attack is not as strong as the fore-

going attacks (i.e., LIE attack and IPM attack). Specifically, FPD and

LFR can perfectly shield against the attack. FLTrust and FABA can

also achieve similar performance in terms of accuracy, however,

they are not steady. For example, the accuracy curves of FLTrust

fluctuate on all datasets (noticeably on CIFAR-10 and MNIST), and

FABA suffers a drop in accuracy on CIFAR-10. Krum provides quite

limited protection with lowest accuracy.

Defense against SF attack. Fig. 5 shows the accuracy of the de-

fenses under SF attack. We observe that FPD and LFR achieve the

same global model accuracy, which comes near to Baseline. FLTrust

is slightly inferior to the above two and incurs some fluctuation

in accuracy. Median performs well on Fashion-MNIST and MNIST,

however, its accuracy is about 10% lower than that of FPD and LFR

on CIFAR-10. FABA can partially defend against SF attack on the

most fundamental MNIST dataset, nevertheless, it performs badly

on CIFAR-10 and Fashion-MNIST. Krum performs worst all the

time. Worse still, its accuracy on CIFAR-10 is 10%, which means

that Krum is dispensable.

Impact of the percentage of compromised clients. Table 1

shows the impact of the percentage of compromised clients under

LIE attack on CIFAR-10 with the non-IID degree𝑞 = 0.5.We observe

that as the percentage of attackers increases, the accuracy of all

the defenses decreases. However, the degree of decreased accuracy

varies from different defenses. Krum performs the worst. When

there are 10% attackers, its accuracy is only 43.13%, which is 32.38%

Table 1: Impact of the percentage of compromised clients

Attackers Accuracy (%)
Krum FABA Median FLTrust LFR FPD Baseline

10% 43.13 70.43 67.78 71.97 72.69 74.81

75.51

20% 10.00 63.44 59.68 68.07 57.60 74.54
30% 10.00 36.50 50.47 56.20 45.01 73.43
40% 10.00 10.00 10.00 48.73 10.00 72.51
44% 10.00 10.00 10.00 48.06 10.00 72.02
48% 10.00 10.00 10.00 46.42 10.00 71.61

lower than the Baseline. When attackers account for 20% or more,

Krum fails to converge (with the accuracy of 10%). FABA, Median,

and LFR perform better than Krum, the accuracy gap between them

and the Baseline is no more than 8% in the case of 10% attackers.

However, the gap widens significantly as the number of attackers

increases to 30%. When attackers account for more than 30%, the

three defenses fail to converge. FLTrust outperforms the above four

defenses. When there are no more than 20% attackers, FLTrust is

not heavily affected, with the accuracy of about 8% lower than

the Baseline. We also notice that FLTrust possesses the accuracy

of 46.42% even in the case of 48% attackers, which is drastically

higher (i.e., 36.42%) than that of the above four defenses. However,

it is about 30% lower than that of the Baseline, which means that

FLTrust fails to offer a satisfactory global model in high-percentage

attackers scenarios. In contrast, the proposed FPD achieves the

best performance all the time. More importantly, it is highly stable.

Specifically, its accuracy drops from 74.81% to 71.61% as the fraction

of attackers increases from 10% to 48%.
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Table 2: Impact of the non-IID degree

Non-IID
Degree

Accuracy (%)
Krum FABA Median FLTrust LFR FPD Baseline

0.1 10.00 48.48 56.93 71.88 75.52 75.15 76.91

0.3 10.00 47.29 55.45 71.33 75.51 75.00 75.89

0.5 10.00 36.50 50.47 56.20 45.01 73.43 75.51

0.7 10.00 10.00 10.00 47.49 33.54 71.55 71.85

0.9 10.00 10.00 10.00 28.31 10.00 60.31 61.79

0.95 10.00 10.00 10.00 23.58 10.00 53.61 54.41

Table 3: Ablation study on CIFAR-10 with 30% attackers

Combination Accuracy (%)
LIE IPM LF SF

A+B+C+D 73.43 73.96 74.26 73.42

B+C+D 72.86 72.52 72.38 70.05

A+C+D 68.58 71.71 73.89 73.34

A+B+D 72.30 72.43 63.76 67.96

A+B+C 71.42 72.57 71.89 71.41

Impact of the non-IID degree. Table 2 shows the impact of the

non-IID degree under LIE attack on CIFAR-10 with 30% compro-

mised clients. We observe that as the non-IID degree 𝑞 varies from

0.1 (i.e., the IID case) to 0.95 (i.e., the extremely non-IID case), all the

schemes (including Baseline) achieve a lower and lower accuracy

gradually. However, the accuracy of FPD is invariably comparable

with that of Baseline (with the accuracy gap of 0.30% ∼ 2.08%).

FLTrust and LFR perform well when 𝑞 = 0.1 and 𝑞 = 0.3. However,

when 𝑞 ≥ 0.5, their accuracy drops dramatically, which indicates

that FLTrust and LFR do not apply to non-IID scenario. Krum, FABA,

and Median cannot obtain a high-quality global model even in IID

setting (i.e., 𝑞 = 0.1) due to the remarkable attack effect of LIE

attack.

Ablation study on the absence of modules. We perform an

ablation study to understand the empirical effects of different mod-

ules in Table 3, where 𝐴, 𝐵,𝐶, 𝐷 indicate reliable client selection,
mitigating colluding attacks, mitigating non-colluding attacks, and
update denoising respectively. It can be seen that without module

𝐴 the global model accuracy decreases 0.57% ∼ 3.37%, and with-

out module 𝐷 the global model accuracy decreases 1.39% ∼ 3.01%,

which indicates that the two modules can slightly improve off-the-

shelf defenses. Without module 𝐵, the global model accuracy under

LIE attack drops 4.85%, which means that module 𝐵 is effective

to defend against colluding attacks. Without module 𝐶 , the com-

bination cannot achieve a desirable global model accuracy under

non-colluding attacks (i.e., LF and SF attacks), demonstrating the

necessity of module 𝐶 .

Performance under mixed attack. Previous experiments have

demonstrated that FPD exhibits superior defense performance against

individual colluding attacks or non-colluding attacks. As a result,

one may naturely wonder whether FPD can withstand mixed at-
tacks (MA) as well, i.e., a group of attackers deploy colluding attacks
while the remaining deploy non-colluding attacks. To this end, we

conduct MA (half of attackers deploy LIE and the other half deploy

LF) and compare it with LIE and LF, the results are shown in Tab. 4.

Surprisingly, MA is not stronger than LIE, and sometimes even

Table 4: Performance under MA on CIFAR-10 with 30% at-
tackers

Attack Accuracy (%)
Krum FABA Median FLTrust LFR FPD

LIE 10.00 36.50 50.47 56.20 45.10 73.43

LF 43.60 60.55 63.66 69.29 72.62 73.14

MA 48.97 65.32 64.82 62.44 59.13 73.46

weaker than LF. Specifically, our FPD performs consistently well

under the three attacks with the highest accuracy, demonstrating

its superiority in eliminating malicious updates. For FLTrust and

LFR, MA is somewhat effective, but its impact is intermediate be-

tween that of pure LIE and LF. This is because both defenses are

effective in defending against LF, but are weak in identifying LIE

attackers. As for Krum, FABA, and Median, MA has the slightest

effect on accuracy, we speculate that MA makes malicious updates

more dispersed, thus making it easier for these similarity-based

defenses to identify benign updates.

6 LIMITATIONS
Although our proposed FPD performs best, there are still some

limitations.

Suboptimal performance when attackers dominate. Our de-
fense suffers from an accuracy degrade when attackers dominate.

Because the server lacks a gold standard, the server can only assume

that the majority is reliable as did in existing defenses [23, 25, 29].

Though some works (e.g., FLTrust) work in such an extreme case,

they make a stronger assumption, i.e., the server owns a clean

dataset, which obviously violates the privacy requirements of FL.

Lack of theoretical analysis. In the literature of security studies

in federated learning, it is difficult to provide a theoretical security

analysis [23, 34], and our scheme is also heuristic. It is a challenging

and promising topic and we leave it to our future work.

7 CONCLUSION
This paper proposed FPD, a four-pronged defense against Byzantine

attacks. Specifically, FPD first performs reliable client selection

to encourage participants to share high-quality updates. Next, a

similarity-based filter is employed to prohibit the adversary from

designing excessively similar malicious updates, enhancing the

difficulty of launching a covert attack. Then, FPD utilizes a spectral-

based outlier detector to remove the updates far from the overall

distribution. Finally, an autoencoder is used to denoise the slightly

noisy but harmful updates. Extensive experiments demonstrate that

FPD is superior to existing defenses.
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