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Figure 1: We propose Control3D, a new model that can control text-to-3d generation with an additional hand-drawn sketch.

ABSTRACT
Recent remarkable advances in large-scale text-to-image diffusion
models have inspired a significant breakthrough in text-to-3D gener-
ation, pursuing 3D content creation solely from a given text prompt.
However, existing text-to-3D techniques lack a crucial ability in the
creative process: interactively control and shape the synthetic 3D
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contents according to users’ desired specifications (e.g., sketch). To
alleviate this issue, we present the first attempt for text-to-3D gen-
eration conditioning on the additional hand-drawn sketch, namely
Control3D, which enhances controllability for users. In particular, a
2D conditioned diffusion model (ControlNet) is remoulded to guide
the learning of 3D scene parameterized as NeRF, encouraging each
view of 3D scene aligned with the given text prompt and hand-
drawn sketch. Moreover, we exploit a pre-trained differentiable
photo-to-sketch model to directly estimate the sketch of the ren-
dered image over synthetic 3D scene. Such estimated sketch along
with each sampled view is further enforced to be geometrically
consistent with the given sketch, pursuing better controllable text-
to-3D generation. Through extensive experiments, we demonstrate
that our proposal can generate accurate and faithful 3D scenes that
align closely with the input text prompts and sketches.
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1 INTRODUCTION
3D content creation has significantly impacted the multimedia field
by enabling the construction of immersive and engaging digital
worlds. The applications from video games and animated films to
virtual reality present vast massive opportunities for 3D profes-
sionals to deliver compelling experiences that captivate audiences.
The conventional process of 3D content creation is commonly time-
consuming, necessitating the expertise of professional designers
with significant experience in 3D software tools. As such, there is a
strong urge to automate this creative process, not only for enhanc-
ing the efficiency of 3D designers with domain expertise but also
for democratizing 3D content creation for novices.

Recent advancements in 3D-specific generative adversarial net-
works (GANs) [2, 3, 10, 19, 26, 29] have reduced the technical bar-
riers to creating 3D content. However, constructing such GAN
models requires cost-expensive large-scale 3D data collection and
meticulous pre-processing. Therefore, these models are typically
confined to a pre-defined single object category, which severely
restricts the diversity of synthetic 3D content and their practical
applicability. In contrast, more recent text-to-3D generation works
[20, 23, 31, 42] demonstrated their remarkable ability to create 3D
scenes solely based on human-written text prompts, yielding vari-
ous impressive 3D assets. Such automatic 3D content creation from
input text prompts alone can greatly emancipate ordinary users
from the need to acquire all the skills required for creating 3D assets.
Nevertheless, simplifying the 3D generation interface as a text-only
format may impede users’ ability to fully articulate their desired
specifications (e.g., visual prompts like sketch). Accordingly, it is
crucial to explore more robust interfaces that offer comprehensive
control signals for 3D content creation.

In this work, we propose Control3D, the first attempt that en-
hances users’ controllability by upgrading text-to-3D generation
with additional hand-drawn sketch conditions. The incorporation
of sketching aligns with human’s innate ability in drawing and
painting, offering a more intuitive and natural way for users to
interactively control 3D content creation. To achieve this, we draw
inspiration from recent works [31, 42] which leverage large-scale
pre-trained text-to-image diffusion models to optimize a Neural Ra-
diance Field (NeRF) by applying score distillation sampling (SDS).
SDS estimates the optimization direction of NeRF such that the
distributions of rendered images derived from the 3D model are
pushed to a higher density probability region determined by the
input text prompt. Consequently, the generated 3D scenes are se-
mantically aligned with the input text prompts. Herein, we take

one step further by extending the typical text-driven SDS with
more conditions of sketch. In particular, we propose to integrate
the optimization of NeRF with an image-conditioned text-to-image
diffusion model (ControlNet [46]), which triggers the control of
diffusion models with additional sketch conditions. Although this
way simply guides text-to-3D generation with the control signals
of sketches, we observe that such implicit control process is insuf-
ficient to produce high-quality 3D scene that precisely maintains
the same geometric structure of given sketch.

To alleviate this issue, we further design a novel sketch con-
sistency loss that explicitly encourages the geometric consistency
between synthetic 3D scene and given sketch. Technically, in each
training step, we utilize a pre-trained differentiable photo-to-sketch
model [17] to estimate the sketch of the rendered image. We then
employ the sketch consistency loss to match the embeddings be-
tween the estimated sketch and the given input sketch. This design
encourages NeRF model to generate outputs that adhere to the
sketch-specified geometry from arbitrary poses.

We conduct thorough experiments to verify the effectiveness
of our proposed method. Experimental results show that our pro-
posed Control3D is capable of generating realistic 3D scenes with
remarkable likeness to the given sketch while also respecting the
contexts present in the input text prompt. In sum, we have made
the following contributions:

• We propose Control3D, a new framework to create realistic
3D scene conditioned on a text prompt and a visual prompt
(sketch image). To the best of our knowledge, this is the
first attempt to control text-to-3D generation with a human-
drawn sketch.

• We additionally introduce a novel sketch consistency loss
that explicitly enforces the synthetic 3D scene to precisely
preserve the same geometric structure as in the given sketch.

• We perform extensive experiments to demonstrate that our
controllable text-to-3D generation results not only have plau-
sible appearances and shapes, but also faithfully conform to
the given prompt and sketch.

2 RELATEDWORK
Diffusion models. Diffusion models [12, 13, 27, 38] have emerged
as the new trend of generative models for generating diverse, high-
quality content. Especially, they have recently been used to form
state-of-the-art text-to-image (T2I) models (such as DALL-E2 [33]
and Imagen [36]) with the help of large-scale datasets. These mod-
els can generate high-quality images of objects and scenes that are
aligned with a natural language text prompt given by the user. In or-
der to reduce the computation resources and improve the inference
speed, Latent Diffusion Model (LDM) was further proposed [34].
Motivated by the success of these models, many works attempt
to control pre-trained T2I diffusion models to support additional
input conditions. Textual Inversion [9] and DreamBooth [35] are
proposed to personalize the contents in the generated images using
a small set of images with the same subjects. Recent work Con-
trolNet [46] proposes to control large image diffusion model (i.e.,
Stable Diffusion) by additional condition inputs like edge maps, seg-
mentation maps, sketches, etc. Despite the advances in controllable
2D T2I generation, using text prompts and additional condition
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images to describe and control 3D generation remains an open and
challenging problem in the multimedia field.

Text-to-3D generation. Recently, significant advancements
have been made in multimedia content generation [6, 7, 12, 14, 30,
31, 33, 36, 47]. In between, with recent notable advancements in
T2I generation and NeRF based 3D reconstruction, there has been a
growing interest in text-to-3D generation. While large-scale paired
text-image data is available for T2I generation, paired text-3D data
is currently unavailable on a similar scale. To liberate the need
for training data, DreamField [14] and CLIP-Mesh [25] leverage
cross-modal knowledge from a pre-trained image-text model (i.e.,
CLIP model) to optimize underlying 3D representations (NeRFs and
Meshes). However, these models tend to produce less photorealis-
tic 3D results. More recently, sparked by the success of diffusion
models in 2D image generation, DreamFusion [31] and SJC [42] uti-
lize pre-trained T2I diffusion models for text-to-3D generation and
demonstrates impressive results. Following work Magic3D [20] fur-
ther improves the generation quality with a coarse-to-fine strategy
that leverages both low- and high-resolution diffusion priors.

Existing methods [14, 31] can generate 3D assets matching the
input text prompt. However, they are unable to control the 3D
generation process with additional freehand interfaces. In this paper,
we instead tackle a novel and challenging problem, which is to
control the text-to-3D generation process with a hand-drawn sketch.
Latent-NeRF [23] is perhaps the most related work that uses a 3D
mesh as an additional constraint to guide the generation process.
However, the 3D mesh is too complex and difficult for ordinary
users to design and produce. In contrast, our proposed control
signal, presented in the form of a sketch, is more intuitive and user-
friendly, making it a more accessible method for users to interact
with and control the 3D generation.

Sketch-based visual synthesis. Using a sketching interface
to guide computers to generate content can be traced back to Ivan
Sutherland’s SketchPad [39]. This tradition has continued in the
area of sketch-based visual synthesis. One common approach is
using GANs to learn the mapping between sketches and images.
SketchyGAN [5] presents an edge-preserving data augmentation
technique to train a GAN that can synthesize plausible images from
sketches. ContextualGAN [21] proposes to learn the joint distribu-
tion of sketch and image for faithful sketch-to-image generation.
Recent works [41, 46] involve pre-trained T2I models in sketch-
based visual synthesis. Given a sketch and a text prompt, these
models use the sketch to control the diffusion model, producing
results that align with the text prompt and follow the spatial layout
of the sketch. In this work, we go one step further and make the
first attempt that demonstrates sketch controlling in the realm of
text-to-3D generation. We notice a related work Sketch2Mesh [11]
that focuses on 3D generation from sketches. However, our work
targets creating realistic 3D scenes conditioned on a text prompt
plus a visual prompt (sketch image), which is more challenging.

NeRF with Regularizations. Recently, Neural Radiance Fields
(NeRF) [24] has received significant attention due to its powerful
representation ability for 3D scenes. Although NeRF achieves state-
of-the-art performance in view synthesis, its ability to reconstruct
scenes from a sparse set of input views is significantly limited. The
performance drops severely when only a few input views are avail-
able. Various external regularizations have been proposed to address

this problem [8, 15, 16, 28, 43]. Specifically, DietNeRF [15] intro-
duces semantic consistency constraints that align input and novel
views. InfoNeRF [16] proposes a ray entropy minimization regular-
ization to implicitly regularize the density field, while DS-NeRF [8]
explicitly incorporates additional depth supervision. RegNeRF [28]
introduces a normalizing flow & depth smoothness regularization,
and SinNeRF [43] proposesmultiple semantic and geometry regular-
izations in a semi-supervised perspective. These advancements are
highly significant in the development of NeRF and provide valuable
insights for the field of view synthesis. However, the aforemen-
tioned regularizations often rely on ground truth views of the 3D
scene, while our Control3D focuses on a more challenging setting
that only has a text prompt and sketch as input. In order to pursue
better controllable text-to- 3D generation, we design a novel sketch
consistency loss to regularize the NeRF optimization.

3 METHOD
In this section, we elaborate our proposed Control3D, which lever-
ages a hand-drawn sketch to guide text-to-3D generation. Our
approach provides an intuitive and user-friendly control for text-
to-3D generation. We start by briefly reviewing the background of
Neural Radiance Fields and diffusion models. We then continue to
introduce our method and how we apply the image-conditioned
2D diffusion model and novel sketch consistency loss functions
to enable controllable text-to-3D generation. Figure 2 depicts an
overview of our Control3D model.

3.1 Background
Neural Radiance Fields. Neural Radiance Fields (NeRF) [24] pro-
vides a compact and convenient representation for 3D scenes, which
achieves impressive results on novel view synthesis. A typical NeRF
can be parameterized as a function 𝐹𝜃 : (p, d) → (c, 𝜎), which maps
a 3D location p ∈ R3 and viewing direction d ∈ S2 into a volume
density 𝜎 ∈ [0,∞) and color value c ∈ [0, 1]3. To compute the color
of a single pixel, NeRF integrates color along rays cast from the
observer according to volume rendering [22]:

𝐶 (r) =
∫ 𝑘𝑓

𝑘𝑛

𝑊 (𝑘)𝜎 (r(𝑘))c(r(𝑘), d)d𝑘, (1)

where the ray r(𝑘) = o + 𝑘d originating at the camera center o
through the pixel along direction d, and the accumulated transmit-
tance𝑊 (𝑘) = exp(−

∫ 𝑘

𝑘𝑛
𝜎 (r(𝑠)𝑑𝑠) weights the radiance by the ray

travels from the image plane at 𝑘𝑛 to 𝑘 unobstructed. To approxi-
mate the integral, NeRF employs a hierarchical sampling algorithm
to select points within near and far bound 𝑘𝑛 and 𝑘𝑓 along each ray.
Since all processes are fully differentiable, NeRF training loss is for-
mulated as a pixel-wise photometric reconstruction error between
rendered pixel color and the ground truth color L(𝐶 (r),𝐶 (r)). To
render an image, a collection of rays are sampled corresponding to
all the pixels in that image, and the resulting color values 𝐶 (r) are
arranged into a 2D image.

Diffusion Models. Diffusion models (DMs) are generative mod-
els that can generate samples from a Gaussian distribution to match
target data distribution by a gradual denoising process [12]. In the
forward diffusion process 𝑞(·), Diffusion models gradually add
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Figure 2: An overview of Control3D. Given a text prompt and a hand-drawn sketch as input, our method can generate plausible
3D content that faithfully matches the input conditions. Similar to Dreamfusion [31] and SJC [42], we first use Neural Radiance
Field (NeRF) to represent the 3D scene. In each iteration, we render an image from a random viewpoint. The image is perturbed
into a noisy sample to input into ControlNet [46]. The input sketch image and text prompt are also input into ControlNet
as conditions. Then conditioned score sampling distillation loss L𝐶−𝑆𝐷𝑆 is calculated and the NeRF model is updated with it
to closely align with the text prompt and sketch. Additionally, we utilize a photo-to-sketch model (sketch estimator) [17] to
estimate the sketch of the rendered image. Then we compute L𝑠𝑘𝑒𝑡𝑐ℎ to ensure NeRF maximally maintains the geometry cues
of the input sketch by constraining the estimated sketch’s CLIP [32] embedding to be similar to the input sketch’s.
Gaussian noises to a ground truth image 𝑥0 according to a prede-
termined schedule 𝛽1, 𝛽2, ..., 𝛽𝑇 :

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I), (2)

where 𝑥𝑡 is a noised ample with noise level 𝑡 . The reverse process
consists of denoising steps that progressively remove noise by
modeling a neural network 𝜖𝜙 with parameters 𝜙 that predicts the
noise 𝜖 contained in a noisy image 𝑥𝑡 at step 𝑡 . The loss function
for training the diffusion model is formulated as follows:

L𝑑𝑖 𝑓 𝑓 (𝜙, 𝑥) = E𝑡,𝜖 [𝑤 (𝑡) ∥ 𝜖𝜙 (𝑥𝑡 , 𝑡) − 𝜖 ∥2
2], (3)

where t uniformly sampled from {1, ...,𝑇 } and 𝑤 (𝑡) is a weight-
ing function that depends on the timestep 𝑡 . Then 𝑥𝑡−1 can be
reconstructed from 𝑥𝑡 by removing the predicted noise:

𝑥𝑡−1 =
1

√
𝛼𝑡

(𝑥𝑡 −
1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜙 (𝑥𝑡 , 𝑡)) + 𝜂𝑡𝜖, (4)

where 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
𝑡∏

𝑠=1
𝛼𝑠 and 𝜂2

𝑡 = 𝛽𝑡 , 𝜖 ∼ N(0, I).
A T2I diffusion model builds upon the above theory and receives

a text prompt as an additional condition. Given a text prompt 𝑦, a
text encoder first maps it into text embedding. Then the text embed-
ding is injected into the diffusion model via attention mechanism
widely adopted in Vision Transformers [18, 44, 45]. Formally, the
T2I diffusion model can be denoted as 𝜖𝜙 (𝑥𝑡 , 𝑡, 𝑦).

3.2 Control3D
In pursuit of facilitating controllable text-to-3D generation, our
method takes hand-drawn sketches as an additional condition to
guide text-to-3D generation. In this section, we first describe how
we integrate text-to-3D generation with a 2D conditioned diffusion
model (ControlNet) in the process of text-to-3D generation, then

describe our proposed sketch consistency loss for pursuing better
controllable text-to-3D generation.

Text-to-3D Generation with Score distillation Sampling. A
recent pioneering practice (Dreamfusion [31]) designs Score dis-
tillation sampling (SDS), which enables utilizing a pre-trained T2I
diffusion model to optimize a NeRF model solely based on a text
prompt 𝑦. Formally, let the NeRF model parameterized by 𝜃 and
𝑔𝜃 (𝜋) be a differentiable volumetric renderer that can produce an
image 𝑥 at a given camera pose 𝜋 , i.e., 𝑥 = 𝑔𝜃 (𝜋). The SDS loss
provides the gradient direction to update NeRF parameters 𝜃 :

∇𝜃L𝑆𝐷𝑆 (𝜙, 𝑥) = E𝑡,𝜖 [𝑤 (𝑡) (𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦) − 𝜖) 𝜕𝑥
𝜕𝜃

] . (5)

The SDS loss perturbs the rendered image 𝑥 (i.e., one view of the
NeRF’s output) into a noisy sample 𝑥𝑡 at arbitrary timestep 𝑡 as
described in the forward diffusion process. Then, 𝑥𝑡 and the input
text 𝑦 are taken as inputs of diffusion model to predict the noise
𝜖𝜙 (𝑧𝑡 , 𝑡, 𝑦), which should be the same as the added noise 𝜖 . Intu-
itively, by doing so, SDS loss pushes the rendered images towards
the higher-density regions under the text-conditioned diffusion
prior, i.e., to be realistic and resemble the given input text prompt.

Sketch-controlled Text-to-3D Generation. Given a sketch
image 𝐼𝑠 and a text prompt 𝑦, our goal is to generate a realistic 3D
scene that not only follows the sketch outline but also respects the
contexts present in the input text prompt. To achieve this goal, we
remould the standard SDS based text-to-3D pipeline by exploiting
an image conditioned diffusion model (ControlNet [46]) to trigger
sketch-controlled text-to-3D. ControlNet is an end-to-end neural
network architecture that controls a large-scale pre-trained image
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diffusion model (Stable Diffusion) to learn task-specific input condi-
tions. Specifically, herein we use ControlNet-scribble1 as our diffu-
sion prior model, which is trained on large-scale sketch-image-text
pairs and can enable sketch-guided text-to-image generation. As
ControlNet-scribble has two conditions, sketch 𝐼𝑠 and text prompt
𝑦, the noise is estimated as follows:

𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦, 𝐼𝑠 ) =𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦, 𝜆 ∗ 𝐼𝑠 )
+ 𝑠 ∗ (𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦, 𝜆 ∗ 𝐼𝑠 ) − 𝜖𝜙 (𝑥𝑡 ; 𝑡)), (6)

where 𝑠 is the scale of classifier-free guidance [13] and 𝜆 ∈ [0, 1]
is a hyper-parameter that determines the control degree of the
conditioned sketch image 𝐼𝑠 . Note that when 𝜆 = 0, the ControlNet-
scribble is degraded as a Stable Diffusionmodel, which will generate
images only from the text prompt while ignoring the sketch condi-
tion. In this way, our proposed method elegantly incorporates the
input sketch image and text prompt in a unified fashion. Similar to
Eq. 5, we update the NeRF model by the following gradient:

∇𝜃L𝐶−𝑆𝐷𝑆 (𝜙, 𝑥) = E𝑡,𝜖 [𝑤 (𝑡) (𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦, 𝐼𝑠 ) − 𝜖) 𝜕𝑥
𝜕𝜃

], (7)

where 𝜙 is the parameters of the pre-trained ControlNet-scribble.
Intuitively, previous SDS-based text-to-3D generation (Eq. 5)

ensures rendered views of the 3D scene lie in a higher probabil-
ity density region conditioned on a single text prompt under the
diffusion prior. However, our conditioned SDS (Eq. 7) encourages
the rendered images also align with the input sketch, where the
probability density region is further narrowed down by the sketch
condition. As a result, we can obtain a 3D scene that aligns closely
with the input text prompt and sketch. Following [31, 42], our dif-
fusion loss also employed with view-dependent prompting (e.g.,
adding “front view”, “side view”, or “back view” with respect to the
camera position to the main prompt). We set 𝜆 = 1 for the sketch
image corresponded view and 𝜆 = 0 for other views to avoid the
learned 3D scene being overfitted to the viewpoint of the input
sketch image. Nevertheless, through our experiments, we found
that implicitly controlling 3D generation solely using 2D diffusion
prior commonly fails to ensure the generated 3D scene precisely
aligns with the geometry cues of the input sketch.

Sketch Consistency Loss. To mitigate the aforementioned is-
sues, we propose a novel sketch consistency loss to encourage the
geometry described by the input sketch to be highly preserved
in the 3D generation. One intuitive way to achieve this goal is to
leverage the input sketch image to directly constrain NeRF ren-
dered images. Nevertheless, the target NeRF rendered images are
photo-realistic and thus have a huge domain/style gap with the
input sketch image. Thus, it is not trivial to directly encourage the
similarity between rendered images and input sketch image. In con-
trast, we propose to utilize an off-the-shelf photo-to-sketch model
𝐺 [17] to estimate the sketch of the rendered images. By doing so,
we can compare the estimated sketch with the input sketch, thereby
easily encouraging the synthetic results geometrically consistent
with input sketches.

Next, a natural solution to compare the ground-truth input
sketch with the estimated sketch is to use traditional mean squared
error loss. However, such pixel-wise comparison might be mis-
leading. This is because the comparison is only accurate when the

1https://huggingface.co/lllyasviel/sd-controlnet-scribble

estimated sketch is perfectly aligned with the original sketch im-
age’s pose, which is often not accessible. Instead, an alternative way
is to generally compare the semantic-level representation of the
input sketch and estimated sketches captured from different view-
points. To fulfill this goal, inspired by [15], we utilize a CLIP image
encoder 𝐸 [32] to extract normalized image embeddings of the esti-
mated sketch and input sketch. On the one hand, the CLIP image
encoder is trained on hundreds of millions of web images that allow
the network to understand sketch modality images [32, 37]. On the
other hand, it can capture consistent semantic-level representation
across varied viewpoints [15]. Then our sketch consistency loss
can be formulated by minimizing their cosine similarity:

L𝑠𝑘𝑒𝑡𝑐ℎ = −𝐸 (𝐺 (𝑥))𝑇 𝐸 (𝐼𝑠 ), (8)

where 𝑥 is a rendered image by the NeRF model from an arbitrary
viewpoint. Although there exists pixel-wise misalignment between
the estimated sketch and input sketch as they have different scales
and viewpoints, we observe that the sketch consistency loss is
robust to supervise the NeRF model to generate output that adheres
to the sketch-specified geometry from arbitrary poses.

Overall Training. Finally, the overall objective to train a NeRF
for our controllable text-to-3D generation is given by:

Ltotal = L𝐶−𝑆𝐷𝑆 + L𝑠𝑘𝑒𝑡𝑐ℎ . (9)

4 EXPERIMENTS
4.1 Implementation Details
We implement the proposed Control3D mainly based on the Score
Jacobian Chaining (SJC) [42] codebase. Following SJC, we use the
voxel radiance field [4] to implement the underlying NeRF. SJC uses
emptiness loss and center depth loss to regularize the NeRF learning.
Our method also leverages these regularizations. For more details
please refer to the original SJC [42]. Following [15], the image
encoder used in Eq. 8 is the pre-trained CLIP ViT B/32 [32]. We
resize the estimated sketch and input sketch to 224× 224 resolution
to match the input resolution of CLIP image encoder architecture.
All experiments of Control3D are conducted on a single NVIDIA
V100 GPU. We train the model for 10,000 iterations and the whole
training process takes approximately an hour for each scene.

4.2 Performance Comparison and Analysis
Visualization of Controllable Text-to-3D Generation via our
Control3D. Here we show the qualitative examples of our con-
trollable text-to-3D generation with sketch guidance in Figure 3.
For each scene, we show several different views. In general, our
Control3Dmanages to produce 3D scenes using simple hand-drawn
sketches plus corresponding text prompts. We clearly observe that
the synthetic 3D scenes faithfully respect both the semantic context
present in the input text prompt and the geometric structure speci-
fied in the input sketch. Note that the input hand-drawn sketch is
not required to be too strictly accurate or tight. Even when the con-
tour curve of the input sketches only roughly describes the shapes
of target 3D assets, our method can generate the corresponding
results that basically align with the coarse geometry defined by the
hand-drawn sketch (see the first row in Figure 3.
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a small cactus planted in a flowerpot

a peacock themed dress

a peacock themed dress

a ocean themed dress

an expensive office chair

a blue bird, highly detailed

a ocean themed dress

an imperial state crown of england

Figure 3: Visualization of 3D assets generated by our Control3D. Given a hand-drawn sketch and a text prompt, our Control3D
manages to generate plausible 3D contents which not only geometrically align with the input sketch but also faithfully
match the input text prompts. Note that we visualize two different views of each 3D scene, and each view is coupled with the
corresponding depth map.

In addition, as shown in the first two rows of Figure 3, given
a fixed sketch, our method has the ability to generate different
photo-realistic 3D scenes that conform to the corresponding text
prompts. For instance, Control3D can generate “peacock themed”
and “ocean themed” dresses that match the same input sketch by
using different text prompts. Meanwhile, we also present another
interesting case, by re-using the same text prompt and feeding dif-
ferent input sketches. As shown in the first two rows in Figure 3,
our method has the flexibility to demonstrate shape controls while
preserving the same text-driven appearances. For example, Con-
trol3D is able to generate a “full skirt” and a “midi skirt” with the
same appearance theme. The above observations demonstrate that
our Control3D may potentially enable many interesting 3D appli-
cations (such as recontextualization and reshaping), which would
otherwise require tedious manual effort to tackle using traditional
3D modeling techniques.

Qualitative Comparisons. To the best of our knowledge, our
work is the first attempt to perform controllable text-to-3D genera-
tion with hand-drawn sketches. Hence, in the absence of an existing
benchmark for comparison, we have to compare our method with
existing text-to-3D generation methods which are solely condi-
tioned on text prompts. Herein we compare our Control3D with
five typical baselines. 1) CLIP-Mesh [25], a zero-shot text-to-3D
generation method using a pre-trained image-text model (i.e., CLIP
[32]). 2) DreamField [14], which combines neural radiance fields
with CLIP to synthesis diverse 3D objects form text prompt. 3)
DreamFusion*: As primary DreamFusion [31] leverages image dif-
fusion priors from their private model Imagen [36], we capitalize

on the publicly available 2D diffusion model (Stable Diffusion) and
reimplement DreamFusion based on [40], namely DreamFusion*. 4)
Latent-NeRF [23], which learns a NeRF model on a latent feature
space instead of in RGB pixel space, using a score distillation sam-
pling loss in the latent space of Stable Diffusion. 5) Score Jacobian
Chaining (SJC) [42], is another score distillation sampling baesd
text-to-3D framework. It is worthy to note that the recent Magic3D
[20] has shown high-quality text-to-3D generation results, it is ex-
cluded from comparisons since it relies on a private diffusion model
eDiff-I [1] that is unavailable to the research community.

We depict the qualitative comparisons in Figure 4. As illustrated
in this figure, CLIP-Mesh and DreamField show somewhat inferior
capability of shape generation, making it difficult to generate plau-
sible 3D shapes. Taking the fifth row (Figure 4(d)) as an example,
when using the text prompt “an expensive office chair”, CLIP-Mesh
and DreamField generate chairs that are distorted and do not accu-
rately match real-world chairs’ structures. Although Dreamfusion*
can generate reasonable 3D shapes, it encounters challenges in
the generation of precise and realistic 3D textures, which conse-
quently lead to unrealistic visual appearances. For instance, given
the text prompt “an imperial state crown of england” and “blue bird,
highly detailed”, DreamFusion* can generate the accurate shapes of
“crown” and “bird”, but falls short in rendering fine texture details.
While NeRFs operate in image space, DreamFusion* encodes ren-
dered RGB images to a latent space in each and every training step
for applying score distillation sampling with the publicly available
Latent Diffusion Model (i.e., Stable Diffusion). Compare with the
original DreamFusion which performs score distillation sampling in
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Latent NeRFCLIP-Mesh DreamField SJC Control3D (Ours)Dreamfusion*

（b）
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Figure 4: Qualitative comparisons on text-to-3D generation. We compare our method with CLIP-Mesh [25], DreamField [14],
DreamFusion* [40], Latent-NeRF [23] and Score Jacobian Chaining (SJC) [42]. The prompts are (a) “a small cactus planted in a
flowerpot”; (b) “a cup made of blue and white porcelain”; (c) “a ripe strawberry”; (d) “a Chinese style dress”; (e) “an expensive
office chair”; (f) “an imperial state crown of england”; (g) “a blue bird, highly detailed”. For each visualization of our Control3D
(the last column), the sketch guidance used in the optimization process is also visualized in the upper right corner of the image.
Our Control3D shows better 3D results in terms of both geometry and texture in comparison to baselines.
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Text Only Control3D (Ours) Control3D (Ours)

（a）

（b）

Figure 5: Ablation studies of our Control3D. We demonstrate the effectiveness of each design in our Control3D for controllable
text-to-3D generation. The prompts are (a) “a small cactus planted in a flowerpot” and (b) “a cup made of blue and white
porcelain”. Text-only (L𝑆𝐷𝑆 ) is our baseline model SJC [42] that creates 3D scenes only conditioned on text prompts. L𝐶−𝑆𝐷𝑆 is
one variant of our Control3D that solely uses conditioned score sampling distillation loss. L𝐶−𝑆𝐷𝑆 + L𝑠𝑘𝑒𝑡𝑐ℎ is the full version
of Control3D that additionally leverages sketch consistency loss.

the standard RGB space by using their private RGB space diffusion
model, this degraded guidance in latent space of DreamFusion* is
somewhat insufficient and thus result in degenerated text-to-3D
solutions. Instead, Latent-NeRF formulates the NeRF in the latent
space, where the NeRF is optimized to render 2D feature maps in
Stable Diffusion’s latent space. These feature maps can easily be
transformed back to RGB space through Stable Diffusion’s image
decoder. In this way, Latent-NeRF produces more textual details
than DreamFusion*. However, Latent-NeRF’s results still frequently
suffer from blurry and diffuse issues.

In contrast, SJC and our Control3D generate much better 3D
structures than the aforementioned baselines. Furthermore, when
compared to SJC, our Control3D achieves higher 3D quality in
terms of both geometry and texture. On the one hand, the hand-
drawn sketch already depicts a well-drafted geometry and thus
guides the NeRF model to generate plausible 3D shapes through our
well-designed conditioned score sampling distillation and sketch
consistency losses. On the other hand, with the sketch guidance, the
text-conditioned probability density from the large-scale diffusion
model has been narrowed down to a more compact region, which
makes the underlying NeRF model easier to learn a high-fidelity
texture. Accordingly, Our Control3D manages to control text-to-
3D generation with a human-drawn sketch, while all the baseline
methods lack this ability.

User study.We additionally conducted a user study to quanti-
tatively evaluate Control3D against two diffusion based baseline
models (i.e., Latent-NeRF and SJC) by comparing each pair. We
invite 6 participants and show them two videos side by side in
each test case. The videos are rendered from a canonical view by
two different methods using the same text prompt. We then ask
participants to choose the better one by jointly considering the
following three aspects: (1) the alignment to the text prompt, (2)
the fidelity of the visual appearance and (3) the accuracy of the
geometry. According to all participants’ feedback, we measure the

Table 1: User Study. Users show a clear preference for Con-
trol3D over Latent-NeRF and SJC for text-to-3D generation.

Comparison User Preference Score
Control3D vs. Latent-NeRF 81.2%
Control3D vs. SJC 74.6%

user preference score of one method as the percentage of its gen-
erated results that are preferred. Table 1 shows the results of the
user study. In general, our Control3D significantly outperforms the
baseline methods with higher user preference rates.

Ablation study. To enable controllable text-to-3D generation
with a hand-drawn sketch, we design two loss terms: the condi-
tioned score sampling distillation loss (L𝐶−𝑆𝐷𝑆 ) in Eq. 7 and sketch
consistency loss (L𝑠𝑘𝑒𝑡𝑐ℎ) in Eq. 8. In this section, we investigate
the effectiveness of each design. We depict the results of each ab-
lated run in Figure 5. Text-only is the base model SJC [38] that
creates 3D scenes only adhering to the semantics of the input text
prompt. Instead, when L𝐶−𝑆𝐷𝑆 is employed, the generated 3D
scenes conform to both the input sketch and text prompt. This high-
lights the critical effectiveness ofL𝐶−𝑆𝐷𝑆 for text-to-3D generation
with sketch condition. However, when only L𝐶−𝑆𝐷𝑆 is applied, the
generated 3D shapes don’t precisely match the input sketch and
may be distorted in local region. By utilizing an additional sketch
consistency constraint L𝑠𝑘𝑒𝑡𝑐ℎ , the shape mismatch and artifact
issue is clearly alleviated. This demonstrates the advantage of our
designed sketch consistency loss in Eq. 8.

5 CONCLUSION
In this paper, we have proposed Control3D, the first attempt to
enhance user controllability in text-to-3d generation by incorporat-
ing hand-drawn sketch conditions. Specifically, a 2D conditioned
diffusion model (ControlNet) is remoduled to optimize a Neural
Radiance Field (NeRF), encouraging each view of the 3D scene to
align with the given text prompt and hand-drawn sketch. More-
over, we propose a novel sketch consistency loss that explicitly
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encourages the geometric consistency between synthetic 3D scene
and the given sketch. The extensive experiments demonstrate that
the proposed method can generate accurate and faithful 3D scenes
that closely align with the input text prompts and sketches. Our
Control3D provides a promising foundation for future research in
controllable text-to-3D generation, which will lead to more creative
and intuitive ways to generate 3D content.
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