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ABSTRACT
Video moment localization aims to retrieve the target segment of an
untrimmed video according to the natural language query. Weakly
supervisedmethods gains attention recently, as the precise temporal
location of the target segment is not always available. However, one
of the greatest challenges encountered by the weakly supervised
method is implied in the mismatch between the video and language
induced by the coarse temporal annotations. To refine the vision-
language alignment, recent works contrast the cross-modality sim-
ilarities driven by reconstructing masked queries between positive
and negative video proposals. However, the reconstruction may
be influenced by the latent spurious correlation between the un-
masked and the masked parts, which distorts the restoring process
and further degrades the efficacy of contrastive learning since the
masked words are not completely reconstructed from the cross-
modality knowledge. In this paper, we discover and mitigate this
spurious correlation through a novel proposed counterfactual cross-
modality reasoning method. Specifically, we first formulate query
reconstruction as an aggregated causal effect of cross-modality
and query knowledge. Then by introducing counterfactual cross-
modality knowledge into this aggregation, the spurious impact of
the unmasked part contributing to the reconstruction is explicitly
modeled. Finally, by suppressing the unimodal effect of masked
query, we can rectify the reconstructions of video proposals to
perform reasonable contrastive learning. Extensive experimental
evaluations demonstrate the effectiveness of our proposed method.
The code is available at https://github.com/sLdZ0306/CCR.

CCS CONCEPTS
• Information systems→ Video search.
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1 INTRODUCTION
The widespread use of the internet and mobile devices has led
to an unprecedented surge in multimedia content consumption,
especially videos, due to their stronger capacity for information
expression compared to other media forms. As a result, video un-
derstanding has become a crucial challenge in computer vision,
encompassing a vast range of research topics, such as video high-
light detection [12, 32] and temporal action localization [3, 9, 18].
While these tasks primarily focus on single video modality, video
moment localization [8, 13] is increasingly becoming a central re-
search topic in modeling the relationship between video and nat-
ural language, which is largely motivated by the requirements of
the cross-modality application scenarios. Concretely, given a natu-
ral language query, video moment localization aims at localizing
the start and end boundaries of the target video segment from an
untrimmed video according to the semantic contents of the query.
Fully supervised video moment localization methods have achieved
promising retrieval performance, which are trained with the ex-
act temporal labels (i.e. the start and end times of the target mo-
ment) provided in the given datasets. However, these fine-grained
temporal labels are not always accessible in many application sce-
narios, and manually annotating such labels are expensive and
time-consuming. Besides, the performance of a fully supervised
method heavily relies on the quality of the ground truth labels. Nev-
ertheless, it has been reported that there is a significant man-made
temporal bias existing in the distributions of the boundary labels
in the widely used benchmarks of video moment localization [15].

Weakly supervised methods are recently [37, 38, 40] proposed
to fix these issues, which are trained with the matched pairs of a
whole untrimmed video and its language query and do not require
the temporal labels during training anymore. Due to the lacking
of concrete temporal labels, there are no indications of the precise
semantic alignment between the query and its corresponding seg-
ment in the given video. Therefore, weakly supervised methods can
only learn the relationship between vision and language modalities
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Figure 1: A general query reconstruction based weakly super-
vised video moment localization framework. The reconstruc-
tion based on positive and negative proposals is contrasted to
learn the cross-modality alignment. However, the spurious
correlation between un-masked and masked words confuses
the contrastive learning process. e.g. the prediction for the
masked “indoor” can differ between positive and negative
proposals due to changes in the person’s location. In con-
trast, the word “glass” may still be correctly predicted even
if it does not appear in the negative proposal. This abnormal
correct prediction is due to a certain pattern learned from
the language rather than cross-modality knowledge, which
leads to an unreasonable contrast.

from a more coarse perspective, i.e. video-query pairs. Because
there is no fine-grained vision-language alignment provided in the
training process, the cross-modality interactions can be confused
by the latent mismatch caused by the coarse relationship. One way
to build the connection from such coarsely matched pairs is the
mask-reconstruction technique [20], which partially masks one
sample and learns to reconstruct the masked part from the other
sample. This methodology requires no fine-grained annotations
to find and model the corresponding information shared between
the two modalities. Concretely, recent state-of-the-art weakly su-
pervised video moment localization methods [40, 41] apply this
technique through learning a cross-modality fusion model to pre-
dict the masked query based on the video moment candidates, and
using the accuracy of the prediction as the measurement of the
similarity to apply contrastive learning.

As illustrated in Figure 1, one of the common end-to-end schemes
utilized by existing weakly supervised methods can be summarized
as follows: (1) Generating several candidate proposals from the
untrimmed video based on the cross-modality features, and extract-
ing their features; (2) By interacting the proposal features with
the masked query, the reconstructed query for each proposal is
obtained, while the reconstruction loss is taken as the proxy of
the alignment score between video proposal and query; These two

steps enable the model to discover the fine-grained cross-modality
alignment with no temporal labels; (3) Applying intra-sample con-
trastive learning between the reconstruction errors of the posi-
tive and negative proposals to train the model. By comparing the
reconstruction-driven alignment scores obtained by the positive
and negative proposals respectively, the model is forced to recog-
nize the difference between the well-aligned video segment and
the irrelevant ones with respect to the given query, and thus gen-
erates promising proposals as the final localization results during
inference. The core idea of these methods relies on that a larger
similarity between the video proposal and the query implies the
masked query can be reconstructed easier according to the video
proposal, and vice versa.

However, when training the cross-modality interaction module
on biased queries in the dataset, which illustrate certain patterns
of word combinations, the model learns the spurious correlations
implied by these combinations. For example, the non-uniform joint
distribution of the noun and predicate in queries reported in [33]
will make the model tend to predict the masked word based on
the combination of regular word pairs. As illustrated in Figure 1,
given a query “person stands in doorway holding a glass”, when
we mask the word “glass” and reconstruct it, the answer could be
predicted directly based on the language knowledge rather than
the cross-modality fusion model because of the highly statistic
correlation between the word “glass” and “holding” implying by
dataset. In other words, the difficulty of the query reconstruction is
significantly lower because the masked words can be approximately
reconstructed even if themismatching videomoment proposal is fed
into the cross-modality model. Thus, these spurious correlations
will distort the similarity measurement generated by the cross-
modality model, which is the fundamental of this paradigm to
correlate vision and language information in semantic space, and
further degrade the performance of contrastive learning.

We propose to discover and mitigate these spurious correlations
through Counterfactual Cross-modality Reasoning (CCR). Specifi-
cally, we disentangle the total causal effect on the reconstruction of
the masked query as an aggregation of two individual branches, the
main branch and the side branch, which model the vision-language
cross-modality knowledge and query language knowledge, respec-
tively. The main branch is applied to predict the original query
based on the interaction of the information embedded in both the
video and masked query, while the side branch is utilized to mea-
sure the contribution of the un-masked tokens in masked query
for the reconstruction. By applying a counterfactual cross-modality
knowledge in the aggregation of two branches, the unimodal impact
of the masked query is extracted. Because the reconstruction of the
masked query should be performed mainly by the cross-modality
interaction between the video and masked query, we weaken the
contribution of the uni-modal masked query in the reconstruction
by directly removing it from the final prediction.

We summarize our major contributions as follows: (1) We pro-
pose a novel method, counterfactual cross-modality reasoning, for
weakly supervised video moment localization, aimed at discovering
and mitigating potential spurious correlations between different
words in the query. (2) We formulate the query reconstruction
task in weakly supervised video moment localization from a causal
reasoning perspective, and disentangle the causal effect on the
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prediction into main-branch and side-branch, which encode the
cross-modality and query knowledge respectively. Through aggre-
gating a counterfactual cross-modality knowledge with the query,
the unimodal effect contributed by the masked query is explic-
itly modeled. By suppressing this spurious effect, the prediction of
the original query is rectified to rely more on the cross-modality
knowledge rather than the un-masked words in the query, and thus
the efficacy of contrastive learning is directly promoted. (3) We
evaluate the proposed CCR on ActivityNet Captions and Charades-
STA benchmark datasets. Experimental results show that our CCR
significantly outperforms the state-of-the-art baseline.

2 RELATEDWORK
Fully supervised video moment localization. Video moment
localization is formulated in a fully supervised setting in early stud-
ies [8, 16, 34–36], which is trained based on the exact temporal
boundaries of video moment corresponding to each query. Existing
methods can be divided into two categories, which utilize anchor-
based and anchor-free paradigms respectively, according towhether
they need anchors during training. Anchor-free methods [16, 35]
predict the probability of the temporal boundary for each frame
within the given video based on the cross-modality fusion feature
in a one-stage manner. While anchor-based methods [8, 34, 36]
firstly generate a set of video proposals, and then train an interac-
tion model to predict the similarities between these proposals and
the given query. In fully supervised setting, the proposal genera-
tion processing can be treated as an additional supervision signal
compared to anchor-free methods, and thus the performance of
anchor-based methods usually surpasses that of anchor-free meth-
ods. However, it is expensive and sometimes unreliable to manually
annotate the precise temporal boundary [15], which indeed restricts
the generalization performance of fully supervised methods.

Weakly supervised video moment localization. To increase
the scalability of video moment localization in real life practice,
weakly supervised methods [17] are introduced with no require-
ment of the boundary label. Because there is no precise temporal
location of the target moment, most of the existing weakly super-
vised methods follow anchor-based paradigm to train their models
based on the generated proposals. [5, 14, 17, 28] propose to generate
video proposals by utilizing sliding temporal windows strategies.
[20] firstly introduces the self-supervised reconstruction of the
masked query to connect the information between video and query
for weakly supervised video moment localization. The reconstruc-
tion loss is utilized as the similarity measurement between the
proposals and query, where the rationale lies in that the visual
content inside the matched video proposal should be more helpful
comparing to the mismatched ones. However, generating proposal
through a enumerate manner is unreasonable because they are ir-
relevant with neither video nor query semantic content. Besides, in
order to cover more potential video moment, they have to increase
the number of proposals, which cause huge computational cost.
Recent works propose to generate video proposals utilizing learn-
based methods. [40, 41] apply a multi-model transformer to fuse
the video and query, which outputs the parameters of a series of
temporal weights shaped like Gaussian distributions as the positive
proposals and the corresponding negative proposals obtained in
a heuristic method. After that, they feed the temporal proposals

along with masked query into the transformer to reconstruct the
masked words and apply contrastive learning to contrast between
the similarities between the positive and negative proposals. How-
ever, the central step, which is the reconstruction of the masked
query, can be turbulent because of the spurious correlation between
the masked words and the un-masked ones. To tackle this issue, we
propose Counterfactual Cross-modality Reasoning (CCR) to decou-
ple the causal effect on the prediction of the masked words into the
effect of cross-modality fusion knowledge and query knowledge,
which are indicated as the main-branch and side-branch respec-
tively, and thus mitigate the spurious correlation inside the query
by suppressing the contribution of the side-branch.

Causal reasoning inmulti-model learning. Causal reasoning
has shown its capability of resolving the ubiquitous biased training
set and spurious correlation issues in multi-model fields including
video corpus moment retrieval [33] and video question answering
[2]. [2, 23] try to reduce the unimodal biases in video question
answering through modeling the statistical regularities between
the question and the answer, which have similar key idea to our
CCR. However, our CCR is proposed to calibrate the cross-modality
contrastive learning process by rectifying the masked query recon-
struction, while [2, 23] are designed for de-biased answer making.
[38] designs a two-stage paradigm started with generating propos-
als through coarse contrastive learning between different video-
query pairs, and then develops three memory bank based heuristical
transformations to apply counterfactual contrastive learning on
the generated proposals within a mini-batch to tackle weakly su-
pervised video moment localization. Nevertheless, heuristically
replacing and perturbing the proposal features is not sufficient and
reliable for a reasonable counterfactual situation because it heav-
ily relies on the positive and negative proposals generated in the
first inter-sample based contrastive learning. By comparison, our
CCR is proposed to facilitate the alignment between fine-grained
intra-video proposals and the given query by erasing the spurious
correlation hidden in the masked query reconstruction process.
3 METHOD
3.1 Preliminary
Given a natural language query𝑊 and a video𝑉 , video moment lo-
calization task aims to localize a video moment𝑉 corresponding to
the semantic information of the query𝑊 . To localize this segment,
a prediction model 𝜼𝜽 (𝑉 |𝑉 ,𝑊 ) parameterized by 𝜽 is trained to
minimize the distance between 𝑉 and the ground truth segment 𝑉̃
according to the assessment metric such as intersection-over-union.

However, the ground truth 𝑉̃ is unavailable in the weakly su-
pervised setting. To refine the video-level annotated query to the
corresponding target segment level, video proposals are gener-
ated as the candidates to semantically match with the query. To
model the semantic alignment between the query and video pro-
posals, the query is partially masked, and the model is trained to
learn cross-modality fusion knowledge to reconstruct the original
query. This is an efficient methodology to build fine-grained align-
ment in weakly supervised settings [20]. Following the scheme
illustrated in Figure 1, we elaborate on the procedure of query
reconstruction-based weakly supervised video moment retrieval
as follows: (1) Given a video 𝑉 its corresponding query𝑊 , posi-
tive video proposals S𝑝 = {𝑆𝑝

𝑖
|𝑖 = 1, ..., 𝑁𝑝 } and negative video
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Main-branch

Side-branch

Figure 2: 𝑆 , 𝑊̄ , and 𝑊̂ indicate the proposal feature, masked
query, and reconstructed query, we omit the superscripts ∗ ∈
{𝑝, 𝑛} of 𝑆 in SCM; 𝐹 is the cross-modality fusion knowledge.
(a) Conventional query reconstruction SCM based on the
cross-modality fusion between video and masked query. (b)
Modified causal graph decouples the effect on reconstruction
into the main-branch and the side-branch, which encode the
cross-modal and the unimodal impact of the masked query
respectively. (c) Removing the spurious correlation between
the masked query and its reconstruction by introducing the
counterfactual cross-modality knowledge 𝐹𝑐 .

proposals S𝑛 = {𝑆𝑛
𝑗
| 𝑗 = 1, ..., 𝑁𝑛} are obtained by interacting

the video and query, where 𝑁𝑝 and 𝑁𝑛 are the numbers of pos-
itive and negative proposals, respectively. (2) For each proposal
𝑆
𝑝

𝑖
∈ S𝑝 and 𝑆𝑛

𝑗
∈ S𝑛 , model learns to reconstruct the original

query as 𝑊̂ 𝑝

𝑖
,𝑊̂ 𝑛

𝑗
based on the masked query 𝑊̄ respectively. (3)

Reconstruction losses 𝐿𝑝
𝑖
= 𝐿𝑜𝑠𝑠 (𝑊̂ 𝑝

𝑖
,𝑊 ) and 𝐿𝑛

𝑖
= 𝐿𝑜𝑠𝑠 (𝑊̂ 𝑛

𝑖
,𝑊 )

are utilized to indicate the similarities between the video proposals
and the query, where a lower loss implies a higher alignment de-
gree between the proposal and query, and vice versa. (4) Perform
contrastive learning between the reconstruction losses of positive
and negative proposals < S𝑝 ,S𝑛 > to train the model. (5) During
inference, S𝑛 is neglected, and the reconstruction loss 𝐿𝑝

𝑖
for each

𝑆
𝑝

𝑖
∈ S𝑝 is calculated. The proposal with the lowest 𝐿𝑝

𝑖
is output

as the final localization. From the scheme above we can find that,
query reconstruction is the core step that not only semantically
connects vision and language but also serves as the measurement
during evaluation. One of the key factors in establishing semantic
alignment between video proposals and queries is to use contrastive
learning to increase the discrepancy between the reconstruction
losses of positive and negative proposals. However, the spurious cor-
relation between the masked query and its reconstruction leads to
an invalid contrast between positive and negative video proposals,
which directly perturbs the cross-modality alignment.

3.2 Revisit Masked Query Reconstruction in
Causality View

To model and further mitigate this spurious correlation, we propose
to revisit the cross-modality fusion based query reconstruction task
from the perspective of the Structured Causal Model (SCM) [11].

Without loss of generality, we can simplify the notation of each
video proposal by omitting all subscripts and just denoting it as
𝑆 . We introduce the cross-modality knowledge as 𝐹 and formu-
late the Structured Causal Model (SCM) of the conventional query
reconstruction methodology in Figure 2 (a), as follows

𝑃 (𝑊̂ |𝐹 (𝑆,𝑊̄ )), (1)

where the cross-modality fusion knowledge is the only causal of
the query reconstruction, as the {𝑆,𝑊̄ } → 𝐹 → 𝑊̂ path indicated
in Figure 2 (a).

However, the SCM in Figure 2 (a) neglects the spurious cor-
relation between the masked query 𝑊̄ and the final prediction.
Therefore, from a perspective of causality, we modify the conven-
tional SCM by adding a causal connection from 𝑊̄ directly to 𝑊̂
to model this spurious correlation, as shown in Figure 2 (b). We
note that this causal effect is formulated individually from the exist-
ing cross-modality fusion knowledge 𝐹 because the original query
can be reconstructed only by the unimodal impact of the masked
query, which is induced by certain patterns learned by the model.
Based on the upgraded SCM, we can reformulate the masked query
reconstruction as the result of the aggregated effect of two branches

𝑃 (𝑊̂ |𝐹 (𝑆,𝑊̄ ),𝑊̄ ), (2)

where 𝐹 (𝑆,𝑊̄ ) and 𝑊̄ indicate the causal effects of main-branch
𝐹 → 𝑊̂ and side-branch 𝑊̄ → 𝑊̂ respectively. To explicitly model
the spurious correlation implying in the side-branch 𝑊̄ → 𝑊̂ ,
we cut off the potential impact from the main-branch 𝐹 → 𝑊̂

by applying a counterfactual cross-modality knowledge 𝐹𝑐 which
does not provide any useful information for establishing semantic
interaction between the video and query, and hence, does not assist
in the reconstruction of the original query. As illustrated in Figure
2 (c), by replacing the cross-modality effect 𝐹 (𝑆,𝑊̄ ) in Equation (2)
by 𝐹𝑐 (𝑆,𝑊̄ ), we obtain the counterfactual reconstruction as

𝑃 (𝑊̂ |𝐹𝑐 (𝑆,𝑊̄ ),𝑊̄ ), (3)

which is known as the total indirect effect in causality [24]. Follow-
ing this, we can finally eliminate the spurious correlation between
the masked query and original query reconstruction as

𝑃 (𝑊̂ |𝐹 (𝑆,𝑊̄ ),𝑊̄ ) − 𝑃 (𝑊̂ |𝐹𝑐 (𝑆,𝑊̄ ),𝑊̄ ), (4)

as shown in Figure 2 (c), where the effect on reconstruction is
attributed solely to the interaction 𝐹 between video proposal and
query. Therefore, our proposedmethodology can effectively capture
the true causal relationship between the reconstruction and cross-
modality knowledge.

It is important to note that reducing the spurious correlation
induced by masked query solely by reconstructing queries from
the video proposal is not feasible. This is due to the presence of
redundant visual content in video proposal, andmasked query plays
a crucial attentional role in establishing cross-modality alignments.

3.3 Counterfactual Cross-modality Reasoning
In this subsection, we present a detailed description of the proposed
Counterfactual Cross-modality Reasoning (CCR), as illustrated in
Figure 3. The central idea of CCR is to mitigate the spurious corre-
lation between the masked query and its reconstruction. To achieve
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Figure 3: Overview of our proposed Counterfactual Cross-modality Reasoning (CCR) scheme. The main-branches associated
with the positive and negative proposals, which are indicated in the blue connections, reconstruct the original query correctly
and abnormally correctly, respectively. The reason behind the abnormal reconstruction is the spurious correlation between
the masked query and its reconstruction. e.g. because of the biased distribution of the co-occurrence of words “open” and
“person”, the masked “window” can be easily reconstructed only based on the certain pattern of query even though “window” is
not correlated with the visual content in the negative proposal 𝑃 (𝑋 |𝑛𝑒𝑔. 𝑣𝑖𝑠𝑢𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑛𝑡). This spurious correlation between the
masked words “window” and the remaining ones, which is noted as the side-branch in the yellow connections, is modeled as
𝑃 (𝑋 |𝑞𝑢𝑒𝑟𝑦), and is aggregated with the counterfactual cross-modality knowledge to obtain the total effect of the masked query
𝑃 (𝑋 |𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓 𝑢𝑠𝑖𝑜𝑛, 𝑞𝑢𝑒𝑟𝑦). Finally, by suppressing this spurious correlation in both the reconstructions of positive and
negative proposals, a reasonable contrast can be applied between the rectified prediction 𝑃 (𝑋 |𝑝𝑜𝑠. 𝐶𝐶𝑅) and 𝑃 (𝑋 |𝑛𝑒𝑔. 𝐶𝐶𝑅).
this, we propose to decouple the total effect of masked query re-
construction as main-branch and side-branch respectively, and
reconstruct the original query by combining these two branches.
Given video proposal feature 𝑆 and masked query feature 𝑞, we
model the main-branch in Equation (1) as

𝑃 (𝑊̂ |𝐹 (𝑆,𝑊̄ )) : 𝜙𝑞 = 𝜋 (𝜒 (𝑆, 𝑞)), (5)

where 𝜙𝑞 is the reconstruction logit produced by cross-modality
knowledge, 𝜒 (·) indicates a cross-modality interaction module, and
𝜋 (·) is a fully connected layer, which projects the fusion feature
from latent space to word embedding space. Meanwhile, we model
the side-branch highlighted in Figure 2 (b) as the impact of the
masked query on the reconstruction as

𝑃 (𝑊̂ |𝑊̄ ) : 𝜓𝑞 = 𝜋 (𝑞), (6)

where 𝜓𝑞 denotes the reconstruction logit only generated by the
masked query 𝑞. Hence we can reconstruct the original query by
combining the prediction logits of these two branches as

𝑃 (𝑊̂ |𝐹 (𝑆,𝑊̄ ),𝑊̄ ) : 𝑞 = 𝜌 (𝜙𝑞,𝜓𝑞)
= 𝜌

(
𝜋 (𝜒 (𝑆, 𝑞)), 𝜋 (𝑞)

)
,

(7)

where 𝑞 is the final reconstruction logit, and 𝜌 (·) is an aggregation
function.

To better isolate the impact of the side-branch on original query
reconstruction, we propose a counterfactual approach that cuts off
the effect of the main-branch. This ensures that the cross-modality
knowledge contributes nothing to the reconstruction of the orig-
inal query, allowing us to focus solely on the contribution of the
side-branch. To create a counterfactual main-branch, we force the
cross-modality knowledge to predict the original query randomly,
regardless of the input video proposal and masked query. As a
result, the final reconstruction obtained by aggregating the predic-
tions generated by cross-modality knowledge and masked query
will solely rely on the latter. To achieve this, we modify the cross-
modality prediction 𝜙𝑞 in Equation (7) into a uniform logit in this
counterfactual situation, which is parameterized by a learnable
scalar 𝜇 [23]. By aggregating the logits produced by 𝜇 and masked
query, we obtain the counterfactual reconstruction logit 𝑞𝑐 as

𝑃 (𝑊̂ |𝐹𝑐 (𝑆,𝑊̄ ),𝑊̄ ) : 𝑞𝑐 = 𝜌 (𝜇, 𝜋 (𝑞)), (8)
where 𝜇 solely impacts the absolute value of the logit 𝑞𝑐 , but it does
not alter the relative value that represents the final reconstruction.

Based on the reconstruction 𝑞 and its counterfactual version 𝑞𝑐 ,
which is altered to rely solely on the masked query by incorporating
counterfactual cross-modality knowledge into the reconstruction
process, we propose to mitigate the spurious correlation between
the masked query and its reconstruction by removing the unimodal
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effect as
𝑊̂ = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞 − 𝑞𝑐 )

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝜌
(
𝜋 (𝜒 (𝑆, 𝑞)), 𝜋 (𝑞)

)
− 𝜌 (𝜇, 𝜋 (𝑞))

)
.

(9)

To prevent a trivial solution of Equation (9), we use a non-linear
aggregation function

𝜌 (𝑥,𝑦) = 𝑥 ⊙ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦) (10)

to combine the effects of the main-branch and side-branch.

3.4 Training and inference
We embed the proposed CCR into an off-the-shelf query recon-
struction based contrastive learning scheme [41]. To begin with, a
multi-modal transformer is applied to interact the video with the
query as the implementation of 𝜒 (·). Then, for each video-query
pair, the transformer generates 𝑛 positive proposal S𝑝 = {𝑆𝑝

𝑖
|𝑖 =

1, ..., 𝑁𝑝 } and their corresponding 2𝑛 intra-video negative propos-
als S𝑛 = {𝑆𝑛𝑘

𝑗
| 𝑗 = 1...𝑁𝑝 , 𝑘 = 1, 2}, and the whole video is treated

as the reference proposal 𝑆𝑟 . The diversity of the positive proposals
is ensured by a penalization term [19]

ℓ𝑑𝑖𝑣 = ∥ΩΩ⊤ − 𝜆𝐼 ∥2𝐹 , (11)

where 𝜆 is a hyperparameter, and Ω = 𝑐𝑎𝑡 [𝜔𝑝

1 ; ...;𝜔𝑝

𝑁 𝑝 ] where 𝜔
𝑝

𝑖

is the temporal weight of 𝑆𝑝
𝑖
[41].

For each triplet < 𝑆𝑝
𝑖
, 𝑆

𝑛1
𝑖
, 𝑆

𝑛2
𝑖

> and 𝑆𝑟 , by omitting the subscript
𝑖 , the reconstruction losses of positive, negative and reference pro-
posals, which are denoted as ℓ𝑝𝑐 , ℓ𝑟𝑐 , ℓ

𝑛1
𝑐 , and ℓ𝑛2

𝑐 respectively, are
rectified through our proposed CCR to minimize the losses of the
spurious correlation mitigated reconstruction 𝑊̂ in Equation (9)
and the aggregated logit 𝑞 in Equation (7) corresponding to all the
proposals as

ℓ∗𝑐 = 𝐶𝐸 (𝑊̂ ∗,𝑊 ) +𝐶𝐸 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞∗),𝑊 )
∗ ∈ {𝑝, 𝑟, 𝑛1, 𝑛2},

(12)

where𝐶𝐸 (·) is the cross entropy loss. Thus, the counterfactual intra-
video contrastive loss [41] for each video-query pair is obtained
as

ℓ𝑐 =𝑚𝑎𝑥 (0, 𝛼𝑝 + ℓ𝑝𝑐 − ℓ𝑟𝑐 )

+𝑚𝑎𝑥 (0, 𝛼𝑛 + ℓ𝑝𝑐 − ℓ𝑛1
𝑐 ) +𝑚𝑎𝑥 (0, 𝛼𝑛 + ℓ

𝑝
𝑐 − ℓ𝑛2

𝑐 ),
(13)

where 𝛼𝑝 and 𝛼𝑛 are hyperparameters.
Meanwhile, we train the fully connected layer 𝜋 to minimize the

reconstruction error given the masked query as

ℓ𝑞 = 𝐶𝐸 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜓𝑞),𝑊 ) . (14)

Then we optimize the cross-modality module 𝜒 and projection layer
𝜋 with respect to

ℓ = ℓ𝑐 + ℓ𝑞 + ℓ𝑑𝑖𝑣 . (15)
Additionally, 𝜇, which provides the counterfactual cross-modality
knowledge, is optimized individually from 𝜒 and 𝜋 as

ℓ∗
𝑘𝑙

= 𝐾𝐿(𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞∗) |𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞𝑐 )), ∗ ∈ {𝑝, 𝑟, 𝑛1, 𝑛2}

ℓ𝑘𝑙 =
∑︁

∗∈{𝑝,𝑟,𝑛1,𝑛2 }
ℓ∗
𝑘𝑙
, (16)

for all the proposals to minimize the Kullback-Leible divergence
between 𝑞∗ and its counterfactual version 𝑞𝑐 to prevent the rectified
reconstruction from being dominated by one of them [23].

Algorithm 1: Counterfactual Cross-modality Reansoning
(CCR) for each video-query pair in dataset
Data: positive proposal features S𝑝 , negative proposal

features S𝑛 , masked query 𝑞, query𝑊 , weight matrix
of positive proposals Ω

Result: cross-modality fusion module 𝜒 , prediction layer 𝜋 ,
uniform logit 𝜇

1 while 𝑆𝑝 ∈ S𝑝 and 𝑆𝑛1 , 𝑆𝑛2 ∈ S𝑛 do
2 𝜓𝑞 ← 𝜋 (𝑞);
3 𝑞𝑐 ← 𝜌 (𝜇,𝜓𝑞);
4 for ∗ ∈ {𝑝, 𝑛1, 𝑛2, 𝑟 } do
5 calculate 𝜙∗𝑞, 𝑞∗,𝑊̂ ∗ w.r.t. Equation (5), (6), and (9);
6 end
7 if training then
8 ℓ𝑑𝑖𝑣 ← ∥ΩΩ⊤ − 𝜆𝐼 ∥2

𝐹
;

9 ℓ𝑞 ← 𝐶𝐸 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜓𝑞),𝑊 );
10 calculate ℓ𝑐 w.r.t. Equation (12) and (13);
11 update 𝜒, 𝜋 w.r.t. ℓ𝑞 , ℓ𝑑𝑖𝑣 and ℓ𝑐 ;
12 calculate ℓ𝑘𝑙 w.r.t. Equation (16);
13 update 𝜇 w.r.t. ℓ𝑘𝑙 ;
14 else
15 return the best proposal in S𝑝 according to

vote-strategy [41];
16 end
17 end

During inference, given an untrimmed video 𝑉 and its corre-
sponding query𝑊 , the multi-modal fusion module 𝜒 (·) first en-
code them to generate the set of positive proposals S𝑝 = {𝑆𝑝

𝑖
|𝑖 =

1, ..., 𝑁𝑝 }. Following the experiment setting in [41], a vote-based
strategy [42] is utilized to select the best proposal as the output.
More specifically, for each positive proposal, we compute its Inter-
section over Union (IoU) with the other 𝑁𝑝 − 1 positive proposals,
and the sum of IoUs represents the number of votes it receives.
Ultimately, we select the positive proposal with the highest number
of votes as the final prediction. The overall training and inference
procedures are presented in Algorithm 1.

4 EXPERIMENTS
4.1 Implementation Details
In this paper, we measure the effectiveness of moment localization
using temporal Intersection over Union (𝐼𝑜𝑈 ), which is the ratio
between the temporal overlap and union of the segment predicted
by the model and the ground truth moment. Specifically, we use
“𝑅@𝑎,𝑚𝐼𝑜𝑈 ” to evaluate localization performance, which is the
average 𝐼𝑜𝑈 of the 𝑎 predictions with the lowest reconstruction
loss based on the rectified reconstruction 𝑞𝑝 − 𝑞𝑐 . Additionally,
we use “𝑅@𝑎, 𝐼𝑜𝑈 = 𝑏” as an evaluation metric to further assess
performance, which means there is at least one predicted moment
with a temporal 𝐼𝑜𝑈 larger than 𝑏 among the top 𝑎 predictions. We
reproduce the CPL [41] as our baseline on one NVIDIA GeForce
RTX 3090 GPU, and follow all the hyperparameter settings provided
by their official repository [39] to ensure a fair comparison.
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Table 1: Comparison of𝑚𝐼𝑜𝑈 on Charades-STA and Activi-
tyNet Captions datasets. The best result for each metric is
displayed in bold, and the second-best result is marked in red.
CPL-R denotes the result reproduced based on the official
CPL repository and is used to replace the original CPL result
in the top two rankings.

Methods
Charades-STA ActivityNet Captions

𝑅@1,𝑚𝐼𝑜𝑈 𝑅@5,𝑚𝐼𝑜𝑈 𝑅@1,𝑚𝐼𝑜𝑈 𝑅@5,𝑚𝐼𝑜𝑈

WS-DEC [6] - - 28.23 -
CTF [5] 27.3 - 32.20 -

WSLLN [10] - - 32.20 -
WSRA [7] 31.00 - - -
VCA [29] 38.49 - 33.15 -
LCNet [31] 38.94 - 34.29 -
CPL [41] 43.48 - - -
CPL-R[39] 43.50 67.70 35.71 43.78

Ours 44.66 67.86 36.69 53.37

4.2 Datasets
We evaluate our proposed CCR on two widely used benchmark
datasets, Charades-STA [25] and ActivityNet-Captions [1].

Charades-STA.TheCharades-STA dataset [25] consists of 16,128
video-query pairs generated by 6,672 videos, with an average video
duration of 29.96 seconds. Following [41], we trained our model
on the training set, which contains 12,408 video-query pairs, and
evaluated the performance on the test set, which contains 3,720
video-query pairs.

ActivityNet-Captions. The ActivityNet-Captions dataset [1]
contains 19,209 videos with an average duration of 117.6 seconds.
Following [41], we split the dataset into training, validation, and
test sets, which contain 37,417, 17,505, and 17,031 video-query pairs,
respectively.

4.3 Comparison with state-of-the-arts
We compare the performance of our proposed CCR with state-
of-the-art methods on Charades-STA and ActivityNet Captions
using 𝑅@𝑎,𝑚𝐼𝑜𝑈 and 𝑅@𝑎, 𝐼𝑜𝑈 = 𝑏, where 𝑎 ∈ {1, 2} and 𝑏 ∈
{0.1, 0.3, 0.5, 0.7}. The results are presented in Table 1, Table 2, and
Table 3, respectively. Because there are significant differences be-
tween the performances of our reproduction and CPL [41], we
additionally include the results of our reproduction as CPL-R for
comparison. Directly comparing CRM [14] with other methods,
including ours, is unfair because CRM requires multiple queries
that appear sequentially in the video for training, and hence we
have not highlighted its results in the top two rankings.

We compare the average temporal 𝐼𝑜𝑈 between our proposed
CCR and the existing methods in Table 1. Our proposed CCR out-
performs the current state-of-the-art method CPL in all evaluation
metrics, demonstrating a remarkable improvement of over 9% in
the 𝑅@5,𝑚𝐼𝑜𝑈 metric on the ActivityNet Captions dataset. In Ta-
ble 2, our CCR overall surpasses both CPL and CPL-R according
to 𝑅@1 metrics, with an average absolute gain of about 2%. For
𝑅@5 metrics, our CCR outperformed CPL overall. On ActivityNet
Captions dataset, we surpass the baseline and outperform it by
approximately 3% and 9% on average for 𝑅@1 and 𝑅@5 metrics,

Table 2: PerformanceComparison onCharades-STA. The best
result for each metric is displayed in bold, and the second-
best result is marked in red. CPL-R denotes the result re-
produced based on the official CPL repository and is used to
replace the original CPL result in the top two rankings. The
results of CRM (indicated as 𝐶𝑅𝑀†) are not included in the
top two rankings because it needs paragraph-video annota-
tions during training.

Methods
𝑅@1, 𝐼𝑜𝑈 = 𝑅@5, 𝐼𝑜𝑈 =

0.3 0.5 0.7 0.3 0.5 0.7

TGA [22] 32.14 19.94 8.84 86.58 65.52 33.51
SCN [20] 42.96 23.58 9.97 95.56 71.8 38.87
CTF [5] 39.8 27.3 12.9 - - -

WSTAN [28] 43.39 29.35 12.28 93.04 76.13 41.53
BAR [30] 44.97 27.04 12.23 - - -
WSRA [7] 50.13 31.20 11.01 86.75 70.50 39.02

VLANet [21] 45.24 31.83 14.17 95.7 82.85 33.09
LoGAN [27] 48.04 31.74 13.71 89.01 72.17 37.58
MARN [26] 48.55 31.94 14.81 90.70 70.00 37.40
CCL [38] - 33.21 15.68 - 73.50 41.87
𝐶𝑅𝑀†[14] 53.66 34.76 16.37 - - -
CNM[40] 60.39 35.43 15.45 - - -
LCNet[31] 59.60 39.19 18.87 94.78 80.56 45.24
RTBPN[37] 60.04 32.36 13.24 97.48 71.85 41.18
VCA[29] 58.58 38.13 19.57 98.08 78.75 37.75
CPL[41] 65.99 49.05 22.61 96.99 84.71 52.37
CPL-R[39] 66.53 49.43 22.36 96.80 84.20 52.18

Ours 68.59 50.79 23.75 96.85 84.48 52.44

respectively. The significant gain achieved by CCR on the Activi-
tyNet Captions dataset is due to the more variational visual content,
which increases the frequency of negative proposals producing ab-
normal correct reconstructions as illustrated in Figure 1 and Figure
3. Our CCR is designed to mitigate this issue, leading to its superior
performance on this dataset. Our CCR achieves comparable per-
formance to other methods, and on average performs better than
LCNet and VCA on𝑚𝐼𝑜𝑈 in Table 1, despite their state-of-the-art
performance on 𝑅@5, 𝐼𝑜𝑈 = 0.3, 0.5 metrics.

4.4 Ablation Studies
Generation of counterfactual cross-modality knowledge. The
only additional parameter in our proposed method compared to
the baseline is the counterfactual cross-modality knowledge 𝜇. In
addition to the uniform distribution presented in Section 3, we also
explore two other possible generation methods for𝑈 , referred to as
“Average” and “Random selected”, and evaluate their effectiveness on
the Charades-STA dataset. As illustrated in Table 5, our experiments
reveal that the replacement within mini-batch is insufficient to
generate counterfactual cross-modality knowledge in this scenario.
In this situation, the uniform prediction strategy outperforms the
other two methods for generating 𝜇.

Aggregation of main-branch and side-branch. As discussed
in Section 3, we non-linearly aggregate the effects of main-branch
and side-branch as

𝜌 (𝜙𝑞,𝜓𝑞) = 𝜙𝑞 ⊙ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝜓𝑞), (17)
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Table 3: Performance comparison on ActivityNet-Captions.
The best result for each metric is displayed in bold, and the
second-best result is marked in red. CPL-R denotes the result
reproduced based on the official CPL repository and is used
to replace the original CPL result in the top two rankings.
The results of CRM (indicated as 𝐶𝑅𝑀†) are not included
in the top two rankings because it needs paragraph-video
annotations during training.

Methods
𝑅@1, 𝐼𝑜𝑈 = 𝑅@5, 𝐼𝑜𝑈 =

0.1 0.3 0.5 0.1 0.3 0.5

CTF [5] 74.2 44.3 23.6 - - -
EC-SL [4] 68.48 44.29 24.16 - - -
MARN [26] - 47.01 29.95 - 72.02 57.49
SCN [20] 71.48 47.23 29.22 90.88 71.56 55.69
BAR [30] - 49.03 30.73 - - -

RTBPN [37] 73.73 49.77 29.63 93.89 79.89 60.56
CCL[38] - 50.12 31.07 - 77.36 61.29

WSTAN[28] 79.78 52.45 30.01 93.15 79.38 63.42
𝐶𝑅𝑀†[14] 81.61 55.26 32.19 - - -
CNM[40] 78.13 55.68 33.33 - - -
VCA [29] 67.96 50.45 31.00 92.14 71.79 53.83
LCNet[31] 78.58 48.49 26.33 93.95 82.51 62.66
CPL[41] 82.55 55.73 31.37 87.24 63.05 43.13
CPL-R[39] 78.13 51.19 28.19 88.23 62.16 40.04

Ours 80.32 53.21 30.39 91.44 71.97 56.50
Table 4: Ablation study on different manners of generating
counterfactual cross-modality knowledge. The best result is
indicated in bold. “Average” means that 𝜇 is set as the average
prediction of main-branch in a mini-batch, and “Random
selected” denotes that 𝜇 is randomly selected from the pre-
dictions within a mini-batch.

Counterfactual
cross-modality
knowledge 𝜇

𝑅@1

𝑚𝐼𝑜𝑈 𝐼𝑜𝑈 = 0.3 𝐼𝑜𝑈 = 0.5 𝐼𝑜𝑈 = 0.7

Baseline 43.50 66.53 49.43 22.36
Average 43.69 66.14 49.02 22.95

Random selected 44.01 67.51 49.87 23.02
Uniform 44.66 68.59 50.79 23.75

which allows us to obtain the total impact on query reconstruction.
We also implemented 𝜌 as another heuristic non-linear summation
and learnable projection network to evaluate their corresponding
performance, as presented in Table 4. However, both the learning-
based and non-linear summation methods achieved lower perfor-
mance compared to the aggregation applied in Equation (17).

Qualitative results.We provide a qualitative example in Figure
4 to further illustrate the effectiveness of our proposed CCR. In this
video, a person first places a laptop on a table, as described in the
query, then lies on a sofa, and finally watches TV while holding
a remote. The original reconstruction generated by the positive
proposal is the same as that of negative proposals, which includes
“a laptop”. Therefore, the contrast between positive and negative
proposals is invalid. Our proposed CCR rectifies the reconstruc-
tions to predict the wrong answer “used on” for the masked words,

Table 5: Ablation study on different aggregation manners of
themain-branch and side-branch. The best result is indicated
in bold. 𝑃𝑟𝑜 𝑗 (𝑐𝑎𝑡 [𝑥 ;𝑦]) presents we first concatenate 𝑥 and
𝑦 along the embedding dimension, then utilize a learnable
linear layer to project it back to the original space.

Branch aggregation
𝜌 (𝑥,𝑦)

𝑅@1

𝑚𝐼𝑜𝑈 𝐼𝑜𝑈 = 0.3 𝐼𝑜𝑈 = 0.5 𝐼𝑜𝑈 = 0.7

Baseline 43.50 66.53 49.43 22.36
𝑃𝑟𝑜 𝑗 (𝑐𝑎𝑡 [𝑥 ;𝑦]) 44.30 67.89 50.76 23.65
𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥 + 𝑦) 44.21 68.13 49.22 22.37
𝑥 ⊙ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦) 44.66 68.59 50.79 23.75

Query: person puts a laptop down on a table.

Negative proposal

Original 
negative reconstruction: 

a laptop

Counterfactual 
negative reconstruction: 

used on

Original
positive reconstruction: 

a laptop

Positive proposal

Reasonable
Contrast

Unreasonable
Contrast

Counterfactual
positive reconstruction: 

a laptop

Figure 4: A qualitative example that highlights the contrasts
between reconstructionswith andwithout CCR. Even though
there’s no visual content pertaining to the “laptop” masked
in the query of the negative proposal, the words “a laptop”
were still successfully reconstructed, rendering the contrast
between it and the positive proposal invalid. Utilizing our
proposed CCR, the reconstructions are rectified to produce
correct and incorrect outcomes for positive and negative
proposals, respectively.

enabling reasonable contrastive learning and further improving the
cross-modality alignment.
5 CONCLUSION
In this paper, we introduce a novel Counterfactual Cross-modality
Reasoning (CCR) method, which addresses the challenge of weakly
supervised video moment localization. We focus on the problem of
unreasonable contrastive learning, which arises due to the spuri-
ous correlation between masked and unmasked query words. This
issue is commonly overlooked by current state-of-the-art query
reconstruction based methods.

To overcome this problem, we first model the impact on query
reconstruction as a combination of cross-modality driven main-
branch and query-driven side-branch. We then extract the spurious
correlation induced by the unimodal impact by applying counter-
factual cross-modality knowledge during the aggregation process.
Finally, we address the problem of spurious correlation by remov-
ing it from the reconstructions of positive and negative proposals,
enabling reasonable contrastive learning.
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