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ABSTRACT
Self-supervised sound source localization is usually challenged by
the modality inconsistency. In recent studies, contrastive learning
based strategies have shown promising to establish such a consis-
tent correspondence between audio and sound sources in visual sce-
narios. Unfortunately, the insufficient attention to the heterogeneity
influence in the different modality features still limits this scheme
to be further improved, which also becomes the motivation of our
work. In this study, an Induction Network is proposed to bridge the
modality gap more effectively. By decoupling the gradients of visual
and audio modalities, the discriminative visual representations of
sound sources can be learned with the designed Induction Vector
in a bootstrap manner, which also enables the audio modality to be
aligned with the visual modality consistently. In addition to a visual
weighted contrastive loss, an adaptive threshold selection strategy
is introduced to enhance the robustness of the Induction Network.
Substantial experiments conducted on SoundNet-Flickr and VGG-
Sound Source datasets have demonstrated a superior performance
compared to other state-of-the-art works in different challenging
scenarios. The code is available at https://github.com/Tahy1/AVIN.
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1 INTRODUCTION
Audio-visual Sound Source Localization (AV-SSL) can fundamen-
tally support the intelligent Human-Computer Interaction (HCI) [8]
by imitating the perceptive connection of human beings. To bridge
the consistency between different modalities for sensing strengthen,
the aggregation/combination of distinct modality representations
has been employed [1, 12, 24] for representation alignment, but
the intrinsic disparities in modalities usually limit such a capabil-
ity of AV-SSL to achieve more robust performance in a variety of
scenarios.

Comparatively, the metric learning has been adopted in recent
studies to acquire uniform audio-visual representations for modal
semantics synchronization, e.g. cosine similarity calculation of
audio-visual modalities [18], which can benefit the localization
of sound sources. By aligning the audio and visual modalities, some
approaches choose to fuse the output features of a modality-specific
encoder and minimize an objective function, such as Information
Noise Contrastive Estimation (InfoNCE) loss or cross-entropy loss,
for a proxy task [51]. A representative work based on modality
alinement is proposed by Senocak et al. [34], which locate sound
sources by learning the relationship between audio and global visual
features. In a different way, Chen et al [5]. utilizes the pixel-wise

ar
X

iv
:2

30
8.

04
76

7v
1 

 [
cs

.C
V

] 
 9

 A
ug

 2
02

3

https://orcid.org/0000-0002-9098-5944
https://orcid.org/0000-0001-9690-7026
https://orcid.org/0000-0002-0541-8612
https://orcid.org/0000-0001-5013-2501
https://orcid.org/0000-0003-0023-7617
https://orcid.org/0000-0002-2977-8057
https://github.com/Tahy1/AVIN
https://doi.org/10.1145/3581783.3612502
https://doi.org/10.1145/3581783.3612502
https://doi.org/10.1145/3581783.3612502


MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Tianyu Liu, Peng Zhang, Wei Huang, Yufei Zha, Tao You, and Yanning Zhang

semantic space

modality space

‘driving motobike’

sound of motobikeimage of motobike

feature
space

modality
space

align

extract

sound of motobike

image of motobike

extract

modality
space

align

extract

feature space

(a) Current methods align in feature space (b) Our AVIN aligns in semantic space

extract

object

Figure 1: Two approaches of audio-visual representation
alignment. (a) Current solutions align audio and visual
modalities in feature space directly. (b) Our AVIN extract
semantics from visual modality and align with audio modal-
ity in semantic space.

audio-visual correspondence to establish the connection between
audio and local visual features. With a thresholding operation to
categorize the features into positive, negative, and ignore regions,
[5] proposes to maximize the cosine similarity of representations
between the audio and the region of sound source in visual modal-
ity.

However, since the heterogeneity of different modalities has
been widely disregarded in current solutions (align in feature space
directly, as illustrated in Figure 1 (a)), the gap of audio-visual modal-
ities still challenges the connection between the sounding objects
with corresponding sound sources. Furthermore, the gradients cou-
pling of distinct modalities also limits an enhancement of perfor-
mance.

In this work, an Audio-Visual Induction Network (AVIN) is in-
troduced to achieve more effective sound source localization. As
illustrated in Figure 1 (b), the main operations in the proposed AVIN
involves the semantic information extraction from the modality
in a low-cost manner, as well as the representations alignment of
different modalities based on the semantic information.

Assuming that the sounding objects exist in the image, the pro-
posed Induction Network is capable of adequately exploiting the
spatial information of visual modalities. Rather than enforcing the
alignment of audio and visual modalities directly, the visual modal-
ity is inducted to distill the representation of the complete sounding
object in a bootstrapped manner, which is then followed by the
alignment of audio modality.

Furthermore, we have discovered that the stop-gradient (stop-
grad) can significantly benefit the learning of consistent audio-
visual representation. In more recent self-supervised pre-training
tasks [7, 14], the stop-grad has been widely used to prevent the
representation collapse of Siamese networks, but it is unlike the
two-stream audio-visual networks that does not typically collapse
into a constant. Nonetheless, the coupled gradient of audio-visual
modalities during learning still makes the back-propagation process
intricate and unstable, and weaken the acquisition of consistent

audio-visual representations. To overcome those challenges, the
stop-grad is also employed in the proposed work to decouple the
gradients of the two modalities, such that the gradient of a partic-
ular modal sub-network is autonomous of the other modality. As
expectation, the overall model performance can be substantially
improved because each sub-network updates parameters indepen-
dently. Our main contributions can be summarized as follows:

• An Audio-Visual Induction Network (AVIN) is proposed to
learn a unified audio-visual representation. Based on the
extracted visual feature map to generate the semantic repre-
sentation of the sound source, the obtained Induction Vector
can guide the network to project the audio and visual fea-
tures of objects into a unified semantic space.

• The operation of stop-grad is initially introduced into the
audio-visual sound source localization task to overcome the
gradient coupling of distinct modalities. When the represen-
tation of one modality is regarded as constant, the gradient
of the other modality can be independently obtained to de-
couple the gradient between the two modalities.

• To facilitate the training of the visual network, an adaptive
threshold selection strategy is proposed to categorize the
similarity score of the visual representation and Induction
Vector into foreground, ignore, and background tri-maps, in
which the optimal threshold can also be determined accord-
ingly.

• Based on the similarity of visual features between samples
as a weight, a visual weighted contrastive loss is designed
for training robustness enhancement.

2 RELATEDWORKS
2.1 Audio-Visual Self-Supervised

Representation Learning
Audio-visual self-supervised representation learning relies on proxy
tasks to generate supervised signals [50, 51]. Modern approaches
solve this problem using contrastive learning. Owens et al. [29] pro-
pose a binary classification approach that considers corresponding
audio-visual pairs as positive and asynchronous audio-visual pairs
as negative. Korbar et al. [23] construct a two-stream network that
minimizes the Euclidean distance of audio and visual features with
contrastive loss, thereby ensuring that the audio-visual network is
semantically coherent and temporally aligned. In contrast, Asano
et al. [2] use improved Sinkhorn-Knopp algorithm [9] to assign
pseudo labels to audio and visual features as supervision signals.
Recently, audio-visual representation learning has been treated as
an instance discrimination task [26, 27, 47, 49], in which the cosine
similarity of synchronized audio-visual pairs is maximized through
the use of noise contrastive estimation (NCE) or Info NCE loss. Al-
though these works adopt a contrastive learning [28, 32] approach
to learn audio-visual representations, they do not consider the is-
sue of gradient coupling of distinct modalities. Compared to prior
work, the stop-grad is employed in our network to decouple the
gradients of the two modalities. By treating the representation of
the corresponding modality as constant, the gradient of the current
modality is solely related to itself.
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2.2 Audio-Visual Sound Source Localization
Cognitive science and psychology theories suggest that visual in-
formation associated with sound would significantly enhance the
searching efficiency in sound space, as demonstrated in [20]. In
neuroscience, Garner et al. [13] discover that the primary visual
cortex can suppress the visual responses after the association be-
tween auditory and visual stimuli. These findings have advocated
the research interest in the area of audio-visual sound source local-
ization.

Typical sound source localization relies on acoustic hardware.
E.g. Zunino et al. [52] design a device equipped with a microphone
array. By integrating the orientation information from the array
with the visual information of the camera, the performance of visual
tracking can be enhanced, but the main limitation of this scheme
is the monophonic sound processing due to the complexity of re-
quired hardware. In a different way, other methods rely on spatial
sparsity to determine sound source locations. Kidron et al. [21]
utilizes canonical correlation analysis (CCA) to exploit the spatial
sparsity of audio-visual events and avoid the issues of dimensional-
ity. Barzelay et al. [3] employ instances of significant change within
each modality to determine cross-modal associations and visual
locations based on handcrafted motion cues.

With the development of deep networks, more effective tech-
niques have been employed in recent works. Some methods [16,
29, 31, 36] exploit CAM to assist sound source localization. Based
on detected object proposal boxes, [30, 37, 42, 44, 48] determine
whether the potential objects are sound sources according to the
learned audio feature. By computing the cosine similarity between
audio-visual features, recent works [17–19, 33, 35, 39, 43] take ad-
vantage of two-stream network architecture to predict the spatial
location of sound sources.

For the solutions above, aligning the data of audio and vision
at the feature space is challenging because of the significant differ-
ences between the feature spaces of the two modalities, resulting
in the difficulty of accurate sound source localization. Instead of
aligning audio-visual modalities in feature space directly, this work
also takes into account the heterogeneity of audio and vision. The
proposed Induction Network performs the alignment in semantic
space, which is to ensure consistent semantic and accurate localiza-
tion results.

3 METHOD
Figure 2 presents the overall architecture of the proposed AVIN, and
it is a two-streammodel with bifurcated audio and visual modalities
fused at the bottom. The AVIN is composed of: visual network, au-
dio network, induction module (only for training), and localization
module (only for inference). The corresponding operations mainly
contain: using the generated visual modality features to obtain
Induction Vectors, which act as intermediate vectors to connect
the audio and visual modality representations. Then, an adaptive
threshold selection strategy is performed with Induction Vector
to learn and induct the candidate sounding object regions in the
image, which is further to obtain a unified and discriminative rep-
resentation in the common semantic space. Finally for the audio
modality, a visual weighted contrastive loss is designed to align the

audio with the visual representation, which is able to avoid faulty
negative samples during training phase.

Given a video clip, the central frame 𝑣 ∈ R3×𝐻×𝑊 together
with a 3s audio log-mel spectrogram 𝑎 ∈ R1×𝐹×𝑇 are input into
the network, in which 𝐻 and𝑊 denote the height and width of
the frame, 𝐹 represents the number of mel-frequency bins of the
spectrogram, and𝑇 is the number of audio frames. The functionality
of each part in AVIN is elaborated as below.

3.1 Visual Network
The visual network consists of a Projector 𝑃𝑣 and a Visual Encoder
𝐸𝑣 , which is formed by the ResNet or Transformer alternatively.
ResNet: As in [5], ResNet18 is employed as our visual encoder,
which consists of 8 residual blocks [15]. In order to maintain the
spatial information of the output, the average pooling layer and
the fully connected layer are excluded at the end of the network.
The visual embedding is denoted as 𝑧𝑣

𝑅𝑁
∈ R𝑐𝑣𝑅𝑁 ×ℎ×𝑤 , where 𝑐𝑣

represents the number of channels of the feature. The ℎ =
⌊
𝐻
16

⌋
and𝑤 =

⌊
𝑊
16

⌋
denote the height and width of 𝑧𝑣

𝑅𝑁
, respectively.

Transformer: The Vision Transformer [11] reshapes the image into
a sequence of non-overlapping patch sets 𝑣 ′ ∈ R𝑛×(𝑝2×3) , where
𝑝 × 𝑝 is the resolution of each patch, and 𝑛 = 𝐻𝑊 /𝑝2 represents
the number of patches. By concatenating a learnable CLS token
before the first patch, a total of (𝑛 + 1) tokens can be obtained. A
positional embedding is then added to the token before feeding into
the Transformer Encoder [45], which consists of 12 Transformer
blocks. Each block is composed of a Multi-Layer Perception (MLP),
Muti-Head Self-Attention (MHSA) layer, and a normalization layer.
In MHSA, each token is projected into a query Q, key K, and value
V, the attention between tokens is computed using:

Attention (𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 (1)

where 𝑑𝑘 is the dimension of the hidden layer in MHSA. In ac-
cordance with TokenCut [46], the weights of the self-supervised
trained DINO [4] are utilized to initialize the Vision Transformer.
The key of the last MHSA layer in the final block is used as the
visual embedding 𝑧𝑣

𝑇𝐹
∈ R𝑐𝑣𝑇𝐹

×ℎ×𝑤 of the transformer, and the CLS
token is discarded.
Visual Projector: To align audio and visual embeddings, a projec-
tor 𝑃𝑣 is proposed to project the embeddings into a common space
𝑓 𝑣 = 𝑃𝑣 (𝑧𝑣), 𝑓 𝑣 ∈ R𝑐×ℎ×𝑤 with dimension 𝑐 . In our work, distinct
projectors have been employed for different network architectures,
with a convolutional layer (Conv) utilized for ResNet, as well as a
Conv-ReLU-Conv configuration for transformer. The reason behind
using different projectors for different backbones is that the param-
eters of ResNet are updated during training in comparison to the
fixed parameters of transformer. Hence, additional nonlinear and
convolutional layers can be incorporated to augment the expressive
capabilities.

3.2 Audio Network
Similar to the vision network, the audio network consists of an
audio encoder and an audio projector as well.
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Figure 2: Architecture of Audio-Visual Induction Network. The four parts of the network: visual network, audio network,
induction module and localization module are distinguished by different colors. Note that the induction module is only used
during training and the localization module is only used during inference.

Audio Encoder: In this work, ResNet22 pre-trained by PANNs
[22] acts as the audio encoder, which consists of 8 residual blocks,
4 supplementary convolutional layers, and two fully connected
(FC) layers. To generate audio embeddings, the last classification
layer is removed. The output of the audio encoder is symbolized as
𝑧𝑎 ∈ R𝑐𝑎×1, where 𝑐𝑎 denotes the number of channels in the audio
embedding.
Audio Projector: The projector is employed to project audio em-
beddings into a common space for the computation of similarity
between audio and visual representations. Since audio embeddings
are represented as one-dimensional vectors, we employ the FC-
ReLU-FC structure to derive the audio representation 𝑓 𝑎 = 𝑃𝑎 (𝑧𝑎),
𝑓 𝑎 ∈ R𝑐×1, with an equal number of channels to the visual repre-
sentation.

3.3 Induction Module
The audio and visual representations are connected in induction
module with an intermediate vector ‘Induction Vector’, defined as
𝑓 𝑖𝑛𝑑 , which is obtained from visual modality and is supposed to
represent the semantics of the sound source. For visual networks,
𝑓 𝑖𝑛𝑑 is utilized to induct 𝑓 𝑣 to acquire more precise object repre-
sentations through a bootstrapping fashion. For audio networks,
𝑓 𝑎 can be alignedwith 𝑓 𝑖𝑛𝑑 using a visual weighted contrastive loss.

3.3.1 Induction Vector Generation.
To obtain 𝑓 𝑖𝑛𝑑 from 𝑓 𝑣 , global average pooling (GAP) is performed

in visual network based on ResNet as backbone:

𝑓 𝑖𝑛𝑑 = GAP(𝑓 𝑣) (2)

Considering that the ResNet classification network projects the
pooled features linearly into logits in the category space, the pooled
feature is further utilized based on the guiding intuition that con-
tains a specific category of semantic information. For validation,
the cosine similarity is calculated between 𝑓 𝑖𝑛𝑑 and the visual rep-
resentation map 𝑓 𝑣 (𝑖, 𝑗) at spatial location (𝑖, 𝑗) using Equation 3:

𝑠𝑣𝑣 (𝑖, 𝑗) =

〈
𝑓 𝑣 (𝑖, 𝑗), 𝑓 𝑖𝑛𝑑

〉
∥ 𝑓 𝑣 (𝑖, 𝑗)∥2

𝑓 𝑖𝑛𝑑2
, (𝑖, 𝑗) ∈ [ℎ] × [𝑤] (3)

where ⟨·, ·⟩ denotes the inner product, 𝑠𝑣𝑣 ∈ Rℎ×𝑤 . Figure 3 (a)
depicts the visualization outputs of 𝑠𝑣𝑣 . The foreground region
in the image has a high score, which indicates that the pooled
feature 𝑓 𝑖𝑛𝑑 has a strong similarity to the foreground. Based on
the assumption that the existence of sounding objects in image, the
target representation from pre-training contained in 𝑓 𝑖𝑛𝑑 can serve
as the semantics of the sound source.

For visual networks using Transformer as the backbone, an un-
supervised object detection method TokenCut [46] is employed to
generate 𝑓 𝑖𝑛𝑑 . Based on the finding of DINO (self-distillation with
no labels trained vision transformer features contain information
of the semantic segmentation), TokenCut adopts Normalized Cut
(NCut) [38] to divide Key features from the last attention layer of
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the DINO-pretrained model into two sets, foreground and back-
ground, as shown in Figure 3 (b). To obtain the foreground, the
similarity matrix𝑀 of 𝑧𝑇𝐹𝑣 is computed based on the Equation 4 as:

𝑀𝑠 (𝑖, 𝑗) =
〈
𝑧𝑖 , 𝑧 𝑗

〉
∥𝑧𝑖 ∥2

𝑧 𝑗 2
, 𝑧𝑖 , 𝑧 𝑗 ∈ {𝑧𝑇𝐹𝑣 } (4)

where 𝑧𝑖 and 𝑧 𝑗 represent tokens in 𝑧𝑣𝑇𝐹 ,𝑀 is an 𝑛 ×𝑛 symmetrical
matrix.𝑀𝑏 is derived after binarizing𝑀 as:

𝑀𝑏 (𝑖, 𝑗) =
{

1 𝑀 (𝑖, 𝑗) ≥ 𝜏𝑚
𝜖 𝑀 (𝑖, 𝑗) < 𝜏𝑚

(5)

where 𝜏𝑚 = 0.2 and 𝜖 = 10−5 are the hyperparameters. The set
composed of 𝑧𝑣

𝑇𝐹
is denoted asZ = {z𝑖 }, with each element z𝑖 as

the node, and the similarity between two nodes as the edge denoted
by M. A fully connected undirected graph G = (Z,M) can be
constructed with the edges and nodes, and each node is linked to
others by edges. To divide the graph into two disjoint sets A and
B, NCut performs the minimization as:

𝐶 (A,B)
𝐶 (A,Z) +

𝐶 (A,B)
𝐶 (B,Z) (6)

where𝐶 (·, ·) represents the sum of edges between the nodes within
the two sets. According to [38], solving a generalized eigensystem
(𝐷 −𝑀𝑏 ) 𝑦 = 𝜆𝐷𝑦 enables the discovery of the second smallest
eigenvector 𝑦1, where 𝐷 is:

𝐷 (𝑖, 𝑗) =
{∑

𝑗 𝑀𝑏 (𝑖, 𝑗) 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
(7)

Then the divided sets are A = {𝑧𝑖 |𝑦𝑖1 ≤ 𝑦1} and B = {𝑧𝑖 |𝑦𝑖1 > 𝑦1},
where 𝑦1 is the average of 𝑦1. The set of tokens with the largest
absolute value of the eigenvalue is denoted as the foreground set
F , and the foreground mask𝑚 ∈ R𝑛 is obtained by

𝑚𝑖 =

{
1 𝑧𝑖 ∈ F
0 𝑧𝑖 ∉ F

(8)

where𝑚 is reshaped to 1 × ℎ ×𝑤 , and the Induction Vector 𝑓 𝑖𝑛𝑑
can be generated by

𝑓 𝑖𝑛𝑑 = GAP(𝑓𝑣 ◦𝑚) (9)

where ◦ is the Hadamard product.

3.3.2 Bootstrapped Induct Visual Network.
The training of the visual network has two objectives: (1) to project
the region in the visual representation 𝑓𝑣 , which semantically cor-
responds to the sound source, into a unified representation distinct
from other semantics, and (2) to generate a high-quality Induction
Vector 𝑓 𝑖𝑛𝑑 from the semantically explicit visual representation 𝑓 𝑣 .

In this work, we employ the tri-map strategy in HardWay [5] to
train the visual network. The proposed AVIN differs from HardWay
in two aspects: 1) AVIN uses the Induction Vector to generate a
similarity map for visual representation, while HardWay utilizes the
audio representation; 2) A proposed adaptive threshold selection
strategy is employed to obtain the tri-map as shown in Figure 4 (a),
while HardWay employs a fixed threshold.

original

(a)

(b)

Figure 3: Visualization of salient region. (a) Pixel-wise cosine
similarity score map of ResNet features after global pooling
on the feature map. (b) Foreground mask extracted by To-
kenCut for transformer output features.

The similarity map 𝑠𝑣𝑣 in Equation 3 is used to separate the
image into positive, ignore, and negative regions, i.e., tri-map. It
is pre-defined in AVIN that a certain percentage is attributed to
the foreground region 𝑡𝑝% for each image, while 𝑡𝑛% is assigned
to the background region, and the remaining areas are ignored.
Specifically, the scores of ℎ ×𝑤 in the similarity map 𝑠𝑣𝑣 are sorted
in ascending order. The minimum value of the top 𝑡𝑝% of the scores
is denoted as 𝜖𝑝 , while the maximum value of the bottom 𝑡𝑛% scores
is denoted as 𝜖𝑛 .

�̂�𝑖 𝑗𝑝 = sigmoid
( (
𝑆𝑖 𝑗 − 𝜖𝑝

)
/𝜏𝑠

)
�̂�𝑖 𝑗𝑛 = 1 − sigmoid

( (
𝑆𝑖 𝑗 − 𝜖𝑛

)
/𝜏𝑠

)
𝑆𝑃𝑖 𝑗 =

〈
�̂�𝑖 𝑗𝑝 , 𝑆𝑖 𝑗

〉
𝐹���̂�𝑖 𝑗𝑝

��
𝑆𝑁 𝑖 𝑗 =

〈
�̂�𝑖 𝑗𝑛, 𝑆𝑖 𝑗

〉
𝐹���̂�𝑖 𝑗𝑛

��
(10)

where �̂� is the soft mask, ⟨·, ·⟩𝐹 is the Frobenius inner product, 𝜏𝑠 =
0.03 is the hyperparameter that controls the degree of softening,
and 𝑁 represents the number of samples in a batch. 𝑆𝑖 𝑗 denotes
the cosine similarity map between the 𝑗-th Induction Vector 𝑓 𝑖𝑛𝑑
and the visual representation map 𝑓 𝑣 of the 𝑖-th sample. For the
training of visual network, infoNCE is adopted as the loss function:

L𝑣 = − 1
𝑁

𝑁∑︁
𝑖=1

[
log

exp (𝑆𝑃𝑖𝑖/𝜏𝑐 )∑
𝑗 exp

(
𝑆𝑃𝑖 𝑗/𝜏𝑐

)
+ ∑

𝑗 exp
(
𝑆𝑁 𝑖 𝑗/𝜏𝑐

) ] (11)

with 𝜏𝑐 = 0.07 as the temperature hyperparameter of infoNCE.

3.3.3 Audio Representation Learning.
To establish a correlation between audio and visual representations,
the Induction Vector serves as a bridge to connect the two modali-
ties. As shown in Figure 4 (b), a visual weighted contrastive loss is
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Figure 4: Schematic of (a) adaptive threshold selection strat-
egy and (b) visual weighted contrastive loss.

introduced to facilitate learning the projection of audio representa-
tion in a common space.

Eu𝑖 𝑗 = 𝑑
(
𝑓 𝑖𝑛𝑑𝑖 , 𝑓 𝑎𝑗

)2

𝛾𝑖 𝑗 = −cossim
(
𝑓 𝑖𝑛𝑑𝑖 , 𝑓 𝑖𝑛𝑑𝑗

)
L𝑎 =

1
𝑁

𝑁∑︁
𝑖=1

max ©«0, Eu𝑖𝑖 −
1

𝑁 − 1

𝑁∑︁
𝑗=1

1 (𝑖 ≠ 𝑗) · 𝛾𝑖 𝑗 · Eu𝑖 𝑗 + 𝜃ª®¬
(12)

where 𝑑 (·, ·) denotes the Euclidean distance between two vectors,
the margin hyperparameter 𝜃 = 0.6 denotes the minimum margin
between positive and negative samples. 𝛾𝑖 𝑗 represents the nega-
tive cosine similarity of the Induction Vector between two distinct
samples, and it controls the direction, as well as the scale of the neg-
ative samples in the contrastive loss. It is noteworthy that 𝑓 𝑖𝑛𝑑 is
generated by the visual modality for the representation of object in
the image. If the visual similarity between two samples is high, i.e.,
𝛾 < 0, their sound is supposed to be similar as well, and it indicates
that the 𝑗-th sample should be classified as a positive sample. On
the other hand, if the visual similarity between two samples is low,
i.e., 𝛾 ≥ 0, it means that they are likely to be different objects and
sound different either. Thus, the 𝑗-th and 𝑖-th samples are classified
as negative sample pairs with the weight 𝛾 accordingly.

3.3.4 Stop-Grad Consideration.
The loss function of AVIN is defined as:

L = L𝑣 + L𝑎 (13)
During the training phase, the gradients of the visual and audio

networks are decoupled. Specifically, for L𝑎 as given by Equa-
tion 12, all vectors associated with the visual modality, including
𝑓 𝑖𝑛𝑑 and 𝛾 , are regarded as constants. A reasonable explanation is
that the intricate mutual coupling of gradients may destabilize the
backpropagation process, which is caused by the representation
differences between the audio and visual modalities. Decoupling
the gradients of the two modalities ensures that the parameter up-
date process of the visual network would only relate to the visual
modality itself. The audio network regards the Induction Vector
from the visual modality as constant, and seeks to minimize the

Table 1: Sound source localization result on Flickr test set
and VGG-SS benchmark

Method Training set
Flickr test set VGG-SS

cIoU AUC cIoU AUC

HardWay [5]

Flickr 10k

0.582 0.525 0.288 0.351
SSPL [39] 0.743 0.587 0.208 0.300
FNAC [40] 0.843 0.633 0.336 0.372
FNAC+OGL [40] 0.847 0.643 0.407 0.404
AVIN-RN 0.868 0.659 0.423 0.421
AVIN-TF 0.843 0.632 0.413 0.418

HardWay [5]

Flickr 144k

0.699 0.573 0.269 0.344
SSPL [39] 0.759 0.610 0.289 0.356
FNAC [40] 0.787 0.593 0.348 0.380
FNAC+OGL [40] 0.840 0.631 0.406 0.403
AVIN-RN 0.872 0.658 0.423 0.420
AVIN-TF 0.843 0.639 0.422 0.419

HardWay [5]

VGGSound 10k

0.618 0.536 0.291 0.368
SSPL [39] 0.763 0.591 0.316 0.374
FNAC [40] 0.857 0.637 0.372 0.388
FNAC+OGL [40] 0.821 0.636 0.415 0.408
AVIN-RN 0.884 0.659 0.450 0.431
AVIN-TF 0.835 0.643 0.448 0.433

HardWay [5]

VGGSound 144k

0.719 0.582 0.292 0.367
SSPL [39] 0.767 0.605 0.323 0.376
FNAC [40] 0.847 0.638 0.406 0.405
FNAC+OGL [40] 0.851 0.643 0.421 0.412
AVIN-RN 0.876 0.658 0.449 0.436
AVIN-TF 0.851 0.644 0.448 0.433

Euclidean distance between the synchronized audio representation
and the Induction Vector.

3.4 Localization Module
During the inference stage, the localization module is to ascertain
the similarity between the audio representation and the visual
representation map. Given the audio representation 𝑓 𝑎 and the
visual representation map 𝑓 𝑣 in the learned common space, the
similarity map 𝑠𝑎𝑣 is:

𝑠𝑎𝑣 (𝑖, 𝑗) = ⟨𝑓 𝑣 (𝑖, 𝑗), 𝑓 𝑎⟩
∥ 𝑓 𝑣 (𝑖, 𝑗)∥2 ∥ 𝑓 𝑎 ∥2

, (𝑖, 𝑗) ∈ [ℎ] × [𝑤] (14)

Finally, a min-max normalization process is performed to re-scale
𝑠𝑎𝑣 to the interval [0, 1]:

�̃�𝑎𝑣 =
𝑠𝑎𝑣 − min (𝑠𝑎𝑣)

max (𝑠𝑎𝑣) − min (𝑠𝑎𝑣) (15)

where �̃�𝑎𝑣 represents the output of AVIN and denotes the degree of
correlation between the location of each image and the provided
audio cues.

4 EXPERIMENTS
4.1 Comparisons with State-of-the-art Methods
The proposed AVIN is firstly compared with other works on the
SoundNet-Flickr test set as shown in Table 1. We employ ResNet
and Transformer as visual encoders denoted as AVIN-RN and AVIN-
TF, respectively. When training on Flickr 10k and 144k, AVIN-TF is
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comparable to the recently proposed FNAC [40], while AVIN-RN
outperforms the previous best (0.868 vs. 0.847 in 10k and 0.872
vs. 0.840 in 144k). Noticed that FNAC+OGL incorporates Object-
Guided Localization (OGL), which is a post-processing strategy to
refine localization results. In comparison, the output of AVIN is
only based on the correspondence of audio and visual features, but
achieves superior results. For cross-dataset evaluation purposes,
the proposed models are trained on the VGGSound 10k and 144k
training sets. Since a greater diversity of video categories is pre-
sented in VGGSound compared to SoundNet-Flickr, the AVIN can
effectively establish the association between visual and audio using
the induction vector, which has achieved state-of-the-art results and
validated the cross-dataset generalization ability in both settings.

The evaluation results on VGG-SS benchmark are also illustrated
in Table 1. With the multiple reproductions, the best results are
reported because the sample count in the test set is less than [5]
(4664 vs. 5158). AVIN surpasses all the other works with a clear
margin. In the VGGSound 10k training case, AVIN-RN outperforms
FNAC+OGL by 8.4% cIoU and 5.6% AUC performance increase, with
cIoU of 0.450 and AUC of 0.431. All the results demonstrate the
superior performance of the proposed work compared to state-of-
the-art works on both datasets.

Furthermore, we observe that smaller subsets (Flickr or VG-
GSound 10k) exhibit comparable performance to larger ones (Flickr
or VGGSound 144k). We hypothesize that AVIN can learn sufficient
audio-visual semantic information for satisfactory fitting from a
smaller subset. In contrast, the larger subset not only provides less
additional semantic information based on the smaller subset but
also may affected by overfitting [25], as evidenced in the AVIN-RN
model’s performance on the VGGSound dataset in Table 1.

The visualized results for sound source localization of AVIN-RN
and AVIN-TF on Flickr test set and VGG-SS are shown in Appen-
dix A.5 Figure 5. Our AVIN demonstrates enhanced prediction in
localizing the semantic region of the sound source compared to
prior works while minimizing background interference. Notably,
AVIN-TF exhibits a certain capability to delineate the contours of
sound sources.

4.2 Ablation Study
In the ablation study conducted in the subsequent experiments,
Flickr refers to using SoundNet-Flickr 10k as the training set and
evaluating on the SoundNet-Flickr test set, while VGG-SS refers to
using VGGSound 10k as the training set and evaluating on VGG-SS.

4.2.1 Induction Vector.
To evaluate the contribution of the induction vector, two sets of ex-
periments are conducted: (a) remove the induction vector and visual
weighted contrastive loss, directly compute the cosine similarity
between the visual representation map 𝑓 𝑣 and the audio vector
𝑓 𝑎 , which means to use the output of the localization module 𝑠𝑎𝑣

instead of 𝑠𝑣𝑣 to generate the tri-map; (b) retain 𝑓 𝑖𝑛𝑑 but remove
L𝑣 . Table 2 shows the results of the experiments above. In case (a),
when 𝑓 𝑖𝑛𝑑 is removed, the cIoU performance of AVIN-TF drops to
0.337 (on Flickr) and 0.098(on VGG-SS), while AVIN-RN drops to
0.659(on Flickr) and 0.361(on VGG-SS). A reasonable explanation
is that the location of salient objects contained in the pre-trained

Table 2: Ablation study for the induction vector

Method Dataset cIoU AUC

(a)
AVIN-RN

Flickr 0.659 0.560
VGGSound 0.361 0.395

AVIN-TF
Flickr 0.337 0.436

VGGSound 0.098 0.251

(b)
AVIN-RN

Flickr 0.522 0.491
VGGSound 0.263 0.337

AVIN-TF
Flickr 0.542 0.505

VGGSound 0.255 0.338

ResNet features can facilitate the network to determine rough audio-
visual correspondence, and in accompany with the induction vector
to benefit AVIN-RN to learn precise correspondence. Due to the
lack of salient object information, the result of the AVIN-TF is poor
after removing the induction vector. In case (b), the performance
of AVIN-RN and AVIN-TF drops to similar levels because of in-
sufficient training of bootstrapped visual network, which further
validates an informative deficiency without training visual network.

4.2.2 Stop-Grad Operation.
Experiments are conducted to investigate the influence of stop-grad
operation on training as shown in Table 3. It can be found that AVIN-
RN is more sensitive to the gradient than AVIN-TF, and the cIoU
performance drops by 0.559 on Flickr and 0.273 on VGG-SS, while
AVIN-TF has a drop of 0.092 on Flickr and 0.081 on VGG-SS. The
reason is that the gradient updates of the visual and audio networks
mainly depend on both modalities’ representations simultaneously,
which may weaken the training process due to the isomerism of
modality. By allowing the visual/audio network to update its param-
eters only according to the gradient of the visual/audio modality,
the stop-grad operation can help to improve the performance of
audio-visual sound source localization.

To verify the effect of stop-grad on other audio-visual sound
source localization architectures, a HardWay [5] variant is used
with the adaptive threshold selection strategy. The experiments
are conducted by replacing the audio network with a pretrained
ResNet22 model with fixed parameters [22]. The visual projector
uses a convolutional layer and the audio projector uses a fully con-
nected (FC) layer with the same number of channels. An FNAC
variant is also conducted by replacing the audio network with fixed
ResNet22. The experimental results are shown in Table 4, which
have verified that the performance is still acceptable with stop-grad
even the audio network parameters are fixed. When the audio rep-
resentation has a gradient and the audio network parameters are
updated with training, the performance decreases significantly in
comparison to stop-grad. The results indicates that the stop-grad is
an effective plug-and-play operation to improve the performance
of other architectures, and also promising to benefit the design of
future audio-visual networks.

4.2.3 Visual Weighted Contrastive Loss.
To validate the robustness of visual weights for AVIN, the visual
weight parameter 𝛾 is set to 1 with the vanilla contrastive loss to



MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Tianyu Liu, Peng Zhang, Wei Huang, Yufei Zha, Tao You, and Yanning Zhang

Table 3: Ablation study for stop-grad and visual weighted
contrastive loss

Stop-grad Weighted Method
Flickr VGGSound

cIoU AUC cIoU AUC

× ✓
AVIN-RN 0.309 0.411 0.177 0.300
AVIN-TF 0.751 0.578 0.367 0.397

✓ × AVIN-RN 0.851 0.650 0.436 0.431
AVIN-TF 0.755 0.602 0.437 0.419

✓ ✓
AVIN-RN 0.868 0.659 0.450 0.431
AVIN-TF 0.843 0.632 0.448 0.433

Table 4: Stop-grad on HardWay [5] and FNAC [40] variant

Method stop-grad
Flickr VGGSound

cIoU AUC cIoU AUC

Hardway [5]
× 0.731 0.583 0.401 0.414
✓ 0.811 0.614 0.412 0.419

FNAC [40]
× 0.755 0.588 0.368 0.389
✓ 0.779 0.608 0.372 0.390

train the audio network. The results presented in Table 3 (b) in-
dicate that the performance of AVIN for both two architectures
drops to different degrees. Since the vanilla contrastive loss cannot
distinguish between audio-visual pairs with the same semantics
contained in negative pairs, the Euclidean distance between 𝑓 𝑖𝑛𝑑
and 𝑓 𝑎 is incorrectly maximized. Comparatively, the proposed vi-
sual weighted contrastive loss, which is based on visual priors, can
correct and weight the erroneous negative pairs as positive pairs,
thereby substantially enhance the overall robustness.

4.2.4 Percentage of Adaptive Threshold.
The performance of network is affected by the hyperparameter of
adaptive threshold selection strategy. As a solution, we train AVIN-
RN and AVIN-TF with different 𝑡𝑝 and 𝑡𝑛 combinations respectively,
and the results are shown in Table 5. For AVIN-RN, the results show
less susceptibility to the ratios, and a broad range of thresholding
ratios (20-40% for 𝑡𝑝 , 10-50% for 𝑡𝑛) yield satisfactory outcomes.
However, AVIN-TF is more sensitive to 𝑡𝑝 and can achieve better
results when 𝑡𝑝 is 20-30%.

Additionally, we replace the tri-map with the bi-map generated
by TokenCut, which involves reshaping the mask𝑚 in Equation 8
to the scale of ℎ ×𝑤 , where �̂�𝑖𝑖𝑝 = 𝑚, �̂�𝑖𝑖𝑛 = 1 −𝑚, �̂�𝑖 𝑗𝑛 = 1 in
Equation 10, and 1 denotes a ℎ ×𝑤 tensor of all ones. Compared
to the performance of bi-map in last row of Table 5, the tri-map
generated by the adaptive threshold selection strategy can achieve
better performance.

5 CONCLUSION
In this work, Induction Network is proposed to bridge the gap be-
tween audio and visual modalities. After decoupling the gradients
of different modalities, the audio and visual representations are
aligned by the Induction Vector, which is obtained from the visual

Table 5: Ablation study for adaptive threshold

Method 𝑡𝑝 (%) 𝑡𝑛 (%)
Flickr VGGSound

cIoU AUC cIoU AUC

AVIN-RN

10 30 0.843 0.637 0.414 0.420
10 50 0.847 0.636 0.417 0.420
20 10 0.868 0.650 0.429 0.426
20 30 0.872 0.651 0.431 0.427
20 50 0.859 0.648 0.440 0.431
30 30 0.868 0.658 0.446 0.430
30 50 0.868 0.659 0.450 0.431
40 30 0.868 0.666 0.428 0.423
40 50 0.868 0.666 0.431 0.423

AVIN-TF

10 30 0.562 0.506 0.413 0.420
10 50 0.546 0.502 0.419 0.422
20 10 0.791 0.607 0.463 0.441
20 30 0.791 0.598 0.478 0.449
20 50 0.795 0.604 0.478 0.447
30 30 0.843 0.632 0.448 0.433
30 50 0.827 0.634 0.446 0.433
40 30 0.807 0.639 0.409 0.413
40 50 0.819 0.643 0.392 0.406
- - 0.755 0.594 0.459 0.441

modality in a bootstrap manner. Nevertheless, an adaptive thresh-
old selection strategy and a visually weighted contrastive loss are
proposed to further improve the robustness of the network.

Limitations. Although visual weighted contrastive loss is used
to correct faulty negatives, the faulty positives in the training set,
i.e., audio-visual irrelevant pairs, also limit the localization perfor-
mance. A faulty positive mining approach is considered to mitigate
this issue.
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A APPENDIX
A.1 Datasets
SoundNet-Flickr: SoundNet-Flickr [41] is a dataset consisting
of over 2 million real-life image-sound pairs with 500 annotated
bounding boxes by Senocak et al. [34], and each pair is processed
by 3 annotators. Following [39], the training set contains a random
subset of 10k and 144k pairs, while the testing set contains 250
annotated pairs.
VGG-Sound and VGG-Sound Source: VGG-Sound [6] is a more
challenging dataset that includes over 200k in-the-wild video clips
from YouTube with 10s audio and video segments. VGG-Sound
Source (VGG-SS) is an audio-visual localization benchmark with 5k
bounding box annotations of manually verified sounding objects
[5]. Following [39], the training set for both datasets includes a
random subset of 10k and 144k pairs, while the testing set contains
a subset (4664 samples) of VGG-SS due to some unavailable videos.

A.2 Implementation Details
Visual Network: The ResNet18 [15] and ViT-S [11] pretrained on
ImageNet [10] are employed as visual encoder. ResNet18 comprises
8 residual blocks and the output channel is 512, ViT-S contains 12
blocks with the 6 heads and 384 channel in MHSA. The length of the
image patch is 16. The parameters of ResNet18 are updated while
those of ViT-S remain frozen during training. The visual projector
projects the output channel to 512 for both ResNet and Transformer
.
Audio Network: The ResNet22 model pretrained by PANNs [22]
is employed as the audio encoder, including 8 residual blocks and
the channel number of output embedding is 2048. The parameters
of the audio encoder are frozen during training, and the output of
the audio projector is a 512D vector.
Data: For data requirement, the middle frame of video clip and the
3-second sound surrounding the frame are selected as the visual and
audio input, respectively. We performed operations of 224×224 ran-
dom cropping and random horizontal flipping on the input images
for data augmentation during training. Following [22], the audio
signal is resampled to 32kHz, and STFT is applied on waveforms
with a Hamming window size of 1024 and a hop size of 320. The
log-mel spectrogram is computed by applying 64 mel-filter banks,
which is transformed to 301 × 64.
Training Details: The Adam optimizer is used with the rate of
1 × 10−5 for the ResNet18 backbone, as well as the learning rate of
1 × 10−4 for both the visual and audio projectors. The a batch size
is set to 256 for training, and early stopping is configured to avoid
overfitting. The hyperparameter of adaptive threshold selection
strategy is set to 𝑡𝑝 = 30 and 𝑡𝑛 = 50 for AVIN-RN, 𝑡𝑝 = 30 and
𝑡𝑛 = 30 for AVIN-TF.

A.3 Evaluation Metrics
Following [34][5][39], the metrics of cIoU and AUC are used for
performance evaluation. The score map 𝑔 is computed for each
sample, which is defined as:

𝑔 = min ©«
𝑛∑︁
𝑗=1

𝑏 𝑗

𝐶
, 1ª®¬ (16)

where 𝑏 𝑗 is the binary image of 𝑗-th bounding box, 𝐶 is the min-
imum number of opinions to reach an agreement and 𝐶 = 2 in
practice, thus cIoU is defined as:

𝑐𝐼𝑜𝑈 (𝑡) =
∑
𝑖∈𝐴(𝑡 ) 𝑔𝑖∑

𝑖 𝑔𝑖 +
∑
𝑖∈𝐴(𝑡 )−𝐺 1

(17)

where 𝑖 is the pixel index of the score map, and the decision thresh-
old 𝑡 is set to 0.5. 𝐴 (𝑡) = {𝑖 |𝑠𝑖 > 𝑡} and 𝐺 = {𝑖 |𝑔𝑖 > 0}, where 𝑠𝑖
indicates the activation of heatmap 𝑆 at location 𝑖 . AUC is the area
under the curve plotted by the ratio of samples with 𝑐𝐼𝑜𝑈 > 𝑡 ′ to
the total number of samples when 𝑡 ′ changing from 0 to 1.

A.4 Computational Complexity Analysis
We perform the computational complexity analysis for different
methods as shown in Table 6. The number of parameters (column 5)
for AVIN-RN is 76.4M, whereas AVIN-TF is 89.5M (where ResNet22
[22] contributes 63.6M). It is worth noting that the SSPL has more
parameters than the proposed model (108.6M vs. 76.4M/89.5M) but
exhibits lower performance.

Additionally, the floating point operations (FLOPs) for each
method (column 4) is also calculated, and the AVIN is able to main-
tain a modest computational cost as well as to achieve a better
performance simultaneously.

Finally, we compare the speed of training (column 2) and infer-
ence (column 3) for all the methods. The training process is running
on two 2080Ti GPUs, whereas inference is on a single 2080Ti GPU.
It is normal for certain models to exhibit faster training speed com-
pared to inference, which is owing to the acceleration of two GPUs.

Among the proposed models, AVIN-RN demonstrates the fastest
training speed, which can process approximately 580 audio-visual
pairs per second. AVIN-TF exhibits a relatively slower training
speed, approximately 156 pairs per second, but still faster than
SSPL. This discrepancy is affected by the TokenCut [46] that runs
on the CPU and lacks acceleration, and thus consequently requires
a longer duration. In the inference stage, AVIN-RN maintains its
superiority in terms of speed, and achieves around 560 audio-visual
pairs per second. Comparatively, AVIN-TF achieves 385 pairs per
second, which is similar as FNAC and faster than SSPL.

A.5 Visualization results
In this section, visualization results of HardWay [5], SSPL [39],
FNAC [40], FNAC+OGL, AVIN-RN and AVIN-TF are shown in Fig-
ure 5.
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Table 6: Computational complexity analysis of different methods

Method Train (AVpairs/s) Inference (AVpairs/s) FLOPs Param

HardWay [5] 474 430 5.5G 23.4M
SSPL [39] 90 225 46.7G 108.6M
FNAC [40] 492 394 5.6G 22.9M

FNAC+OGL [40] 492 351 7.4G 34M
AVIN-RN 580 560 10.6G 76.4M
AVIN-TF 156 385 12.3G 89.5M

original

AVIN-RN

AVIN-TF

Flickr test set VGG-SS benchmark

FNAC+OGL

FNAC

SSPL

HardWay

Figure 5: Visualization of different methods on Flickr test set and VGG-SS benchmark. Both AVIN-RN and AVIN-TF are able to
localize sound sources in a variety of challenging scenarios.
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