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ABSTRACT
In this paper, we present MovieFactory, a powerful framework to
generate cinematic-picture (3072×1280), film-style (multi-scene),
and multi-modality (sounding) movies on the demand of natural
languages. As the first fully automated movie generation model to
the best of our knowledge, our approach empowers users to create
captivating movies with smooth transitions using simple text in-
puts, surpassing existing methods that produce soundless videos
limited to a single scene of modest quality. To facilitate this distinc-
tive functionality, we leverage ChatGPT to expand user-provided
text into detailed sequential scripts for movie generation. Then
we bring scripts to life visually and acoustically through vision
generation and audio retrieval. To generate videos, we extend the
capabilities of a pretrained text-to-image diffusion model through
a two-stage process. Firstly, we employ spatial finetuning to bridge
the gap between the pretrained image model and the new video
dataset. Subsequently, we introduce temporal learning to capture
object motion. In terms of audio, we leverage sophisticated retrieval
models to select and align audio elements that correspond to the
plot and visual content of the movie. Extensive experiments demon-
strate that our MovieFactory produces movies with realistic visuals,
diverse scenes, and seamlessly fitting audio, offering users a novel
and immersive experience. Generated samples can be found in
YouTube/Bilibili (1080P).

CCS CONCEPTS
• Computing methodologies→ Computer vision.
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1 INTRODUCTION
“The cinema has everything in front of it, and no
other medium has the same possibilities for getting
it known quickly to the greatest number of people.”

- by Cesare Zavattini
Movies, considered one of the most esteemed artistic mediums,

have enraptured audiences for well over a century. However, the
allure of the silver screen comes hand in hand with substantial
expenses, as the creation of exceptional films necessitates top-tier
equipment and a considerable production team. For instance, the
cinematic masterpiece "Avatar: The Way of Water" required a 12-
year production process, accompanied by a budget estimated at

around 400 million dollars. Despite the industry’s persistent am-
bition to simplify the film production process, current techniques
merely offer basic assistance in combining video and audio clips for
editing purposes [29, 31]. Consequently, the notion of generating
movies autonomously from scratch and empowering individuals in
filmmaking continues to exist as an unattainable fantasy.

Automatic visual content generation has attracted considerable
research attention over the years. Early methods, employing vari-
ational auto-encoders [12] or adversarial learning [6], are limited
in their ability to generate complex scenes. Leveraging diffusion
models [5, 9] and multi-model training, DALL-E 2 [23] first achieves
substantial advancements in open-domain text-to-image generation.
To further mitigate the computational cost associated with diffusion
models, Latent Diffusion [25] employs a variational auto-encoder
to compress images into a down-sampled latent space. Building
upon this, Stable Diffusion [33] achieves notable performance by
training with extensive data [30]. Recent works also focus on im-
proving text-to-image generation for high resolution [28], language
alignment [2], controllability [45], and customization options [27].

With the remarkable achievements in image generation [17, 18,
34, 43, 47], researchers have ventured into the realm of video gener-
ation. A number of studies [10, 38, 40, 44] adopt Transformer-based
architectures [37] to synthesize videos either in an autoregressive
or non-autoregressive manner. Other approaches draw inspiration
from image generation frameworks and utilize diffusion models.
To mitigate the training cost associated with starting from scratch,
text-to-video generation models often extend from pretrained text-
to-image models [7, 8, 16, 32, 46]. One of the keys to video gen-
eration lies in establishing coherent connections across different
frames. Inherited from Stable Diffusion, Video LDM [3] introduces
temporal convolution and attention layers after each corresponding
spatial layer, thereby addressing the out-of-distribution problem
through fine-tuning each pre-trained model on videos.

Despite significant advancements in video generation, achieving
the desired standards of picture quality, audiovisual effects, and
automation in generatingmovies remains a considerable challenge.
Firstly, existing large-scale video datasets often exhibit subpar qual-
ity, which introduces artifacts like watermarks and hinders the
model’s adaptation to the cinematic ultrawide format. Secondly,
owing to the scarcity of research on the co-modeling of audio and
video, current joint audio generation models [15, 26] fall short in
producing content that meets satisfactory standards. Lastly, current
models lack the ability to adjust user-provided text inputs, which
becomes particularly challenging when generating multiple scenes
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for a movie. Expecting users to provide detailed descriptions of
sequential scripts is both unrealistic and user-unfriendly.

To tackle the above issues, we present MovieFactory, a text-to-
movie framework capable of producing cinematic-picture (3072×
1280), film-style (multi-scene), multi-modality (sounding) movies,
offering users a novel and immersive experience. First, to enable
the automatic generation of multiple scenes, we leverage the capa-
bilities of ChatGPT [20] to expand concise user descriptions into
detailed scripts that collectively form the complete movie, with each
script corresponding to a distinct scene. Second, considering the in-
herent limitations entailed in generating audio content from scratch,
we adopt an alternative approach by retrieving correspondingly
aligned audio from a comprehensive database. Third, to enhance
the picture quality of generated videos, we propose a two-stage
learning strategy comprising video-by-frame pretraining and video
training. Adapting pretrained text-to-image models to the video
domain presents challenges due to the visual domain shift between
the pretrained image dataset and target video datasets. To overcome
this, we employ fine-tuning on independent video frames, incorpo-
rating domain-aware normalizations and additional spatial layers to
handle diverse spatial distributions across datasets, ensuring high-
quality generation while mitigating the out-of-distribution problem.
Subsequently, temporal layers are introduced and trained on videos
following previous works [3, 10]. Lastly, targeting high-quality
movie production, we employ fine-tuning on a small collection of
movie clips. Additionally, we incorporate a super-resolution model
for better user experiences, referring to remarkable performances
of existing works [4, 14, 21]. In summary, our contributions can be
summarized as follows:

1) We propose MovieFactory, a movie generation framework
that allows users to create high-definition (3072×1280),
cinematic-style (ultrawide format), and multi-scene movies
with accompanying sound by simply using text inputs.

2) A two-stage training strategy is introduced to handle the vi-
sual domain shift between image and video datasets. Domain-
aware normalizations and extra spatial layers enable the
model to generate high-quality visual content even when
trained on video datasets with limited quality.

3) We showcase the remarkable potential of combining large-
scale AI models in the domain of automated movie gener-
ation, introducing a novel and promising application area
for AI-generated content.

2 MOVIEFACTORY
Movie generation goes beyond a mere combination of video and
audio footage. It requires expertise in various domains, includ-
ing scriptwriting, cinematography, directing, and sound effect de-
sign. Therefore, the creation of movies presents a greater challenge
compared to basic video and audio generation, particularly when
considering the development of a user-friendly interface for non-
professionals. In this regard, we propose MovieFactory, a compre-
hensive and fully automated movie generation framework. With
MovieFactory, users can effortlessly initiate the movie creation pro-
cess by providing a concise description, which can be as simple as
a single word indicating the main character.

disaster including tsunami, wildfire, and volcano
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Figure 1: Illustration of our MovieFactory. Given an input
text, we utilize ChatGPT to expand it into sequential detailed
scripts, and each script describes one scene in the movie.
Then, our model generates the visual content and retrieves
the audio part for onemovie clipwith each script. Composing
all clips, we obtain the final high-quality movie.

To fulfill the comprehensive requirement of movies, including
high picture quality, smooth scene transitions, and video-audio syn-
chronization, our design incorporates a range of components. The
overall framework is shown in Fig. 1. First, we leverage the power
of a large language model to generate movie scripts of superior
quality. Careful engineering of prompts ensures that the result-
ing movie plots adhere to fundamental principles of filmology and
are well-suited for the subsequent audiovisual generation process.
Second, we devise generation modules to bring each script to life
visually and acoustically. Considering the restricted capabilities of
current audio generation models, generating sound from scratch is
not optimal. Therefore, we implement a two-stage process consist-
ing of text-to-video generation and text&video-to-audio retrieval.
In the first stage, we use a diffusion model to construct videos by
progressively removing noise from the input. In the second stage,
we retrieve synchronized audio from a comprehensive database
that corresponds to the given context. Finally, we consolidate the
generated sounding videos to obtain the complete movie.

2.1 Script Generation
The input for our framework can be as simple as a concise plot
description in a single sentence. However, considering the limita-
tions of current video generation models that can only produce
a single-scene clip from a solitary text prompt, it becomes essen-
tial to expand the user’s input into a series of prompts, with each
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Figure 2: Demonstration of the two training stages of our video diffusion model. In each stage, we fix all components from the
pretrained model, and only optimize the newly added blocks.

prompt describing a distinct scene. These prompts collectively form
a sequence of scripts. We expect these scripts to adhere to the prin-
ciples of scriptwriting while introducing innovative and unique
perspectives to the subject matter. Furthermore, the prompts should
effectively showcase the capabilities of video generation.

To attain this challenging objective, we leverage the powerful
large language model, ChatGPT [20], and integrate our require-
ments through prompt design. An example is shown below,

Prompt: “Write a sequence of prompts, using for movie gen-
eration for AI. Requirements: 1) each prompt only serves for
one scene lasting for about 2 seconds; 2) each prompt con-
tains clear subjects and detailed descriptions; 3) each prompt
contains texts like "4K" and "high resolution" for leading
high-quality generation; 4) the transition of each scene is
very smooth; 5) no other character appears in this movie. The
movie is about [User Input]”

By structuring prompts in this manner, we can guide the generation
model to produce coherent and engaging movie contents.

To illustrate, let us create a movie about “a race between a car
and an airplane.” Given our instruction, ChatGPT generates ten
scripts, each corresponding to a distinct scene. In this ten-scene
movie, the initial plot is on introducing the main characters through
successive “close-up” shots of the “airplane soaring through the
sky,” and the “car speeding along a coastal road.” As the movie
progresses, captivating highlights unfold, including scenes such
as “car drifting around a hairpin turn,” “airplane diving through
a narrow canyon,” and “car and airplane racing side by side.” The
movie concludes with a victorious moment captured in the scene
titled “checkered flag waving in victory.” Each script for generation
incorporates both the unfolding events and camera instructions,
providing clear guidance for the generation process.

2.2 Video Generation
As indicated by prior studies [3, 10, 11, 32, 41], text-to-image pre-
training plays a crucial role in open-domain text-to-video genera-
tion. This is primarily due to the significant gap in scale and quality
between current video datasets [1, 42] and well-established image
datasets [30]. Following these works, we extend a pretrained image
diffusion model to develop a video diffusion model. We leverage
the widely used Stable Diffusion1. To optimize our model, we incor-
porate two training steps: spatial finetuning and temporal training,
as illustrated in Fig. 2.

2.2.1 Spatial Finetune. serves the purpose of bridging the spatial
gap prior to capturing temporal information. In our approach, the
Stable Diffusion model is pretrained on the LAION-5B dataset [30],
which comprises high-quality images. Conversely, existing large-
scale video datasets are limited in terms of resolution and visual
quality, even containing watermarks. Furthermore, our pretrained
model is specifically optimized for generating square visual con-
tent, as it is trained on square images (height:width=1:1). Although
minor adjustments in resolution have shown negligible effects on
visual content and quality, significant changes in aspect ratio (e.g.,
transitioning from 1:1 to 2.35:1, as seen in movies) can lead to unsta-
ble generation, characterized by content ghosting and duplication.
Therefore, it is crucial to address the spatial out-of-distribution
discrepancy before delving into motion learning.

As Video LDM [3] indicates, using low-quality video data to
finetune the pretrained layers will inevitably harm the generation
performance. Unfortunately, current large-scale dataset cannot sat-
isfy good picture, motion, and text quality at the same time. In other
words, if we finetune the whole model and fit the video distribution
of the highest picture quality, the training may fail in the motion

1https://github.com/Stability-AI/stablediffusion

https://github.com/Stability-AI/stablediffusion
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learning which is a disaster for the whole framework, and vice versa.
To address above issues, we design a novel finetuning strategy to
take advantage of different datasets as much as possible. Different
from previous works which directly finetune the pretrained model,
we fix the original model and insert extra layers to fit the distribu-
tion changes. There are two advantages of this design: 1) the whole
knowledge in the pretraining can be completely remained, thus the
contents and scenes that are not included in the video dataset can
still be generated; 2) we can fit multiple distributions in the new
modules, which solves the out-of-distribution problem in the next
temporal training and keeps the ability to generate high-quality
pictures at the same time. Specifically, as shown in Fig. 2, we add
a modified ResBlk and Attention layer before each Up or Down
block in U-Net blocks. In the modified ResBlk, we add a learnable
domain-aware normalization to specify and fit different spatial dis-
tributions. For each dataset, it learn a scaler 𝛼𝑖 and shifter 𝛽𝑖 , and
works as follows:

H = X · 𝛼𝑖 + 𝛽𝑖 (1)
where X and H are the input and output feature respectively, and
𝛼𝑖 and 𝛽𝑖 are vectors with the same channel number as X and H.
For the structure of the added Conv2D and Attention layers, we
completely follow previous blocks in the same U-Net Block.

2.2.2 Temporal Training. makes the model learn the motion of
objects after the model is capable of generating images in the target
distribution. Following previous works, we add the temporal layer
after each pretrained spatial layer. Specifically, as illustrated in Fig. 2,
after each pretrained spatial ResBlk, we add a temporal ResBlk with
1D convolutions. Similarly, we add a temporal attention after each
spatial attention, which shares the totally same hyper-parameter
as the spatial one. Different from the pretrained spatial attention,
following Video LDM [3], we also add sinusoidal embeddings [37]
to the feature as the positional encoding for the time sequence.

2.3 Audio Retrieval
Audio plays an indispensable role in movies. By providing users
with an additional sensory experience, audio has the capacity to
enhance both the emotional impact and atmospheric quality of
a scene. Despite the self-evident importance of audio, limited re-
search has been dedicated to the joint generation of video and
audio. This can be attributed to challenges such as the scarcity of
large-scale datasets and the limitations imposed by model size, lead-
ing to the current inability of existing models [15, 26] to generate
high-quality audio. As an alternative, we adopted a retrieval-based
approach, leveraging the richness of the audio database to align suit-
able sounds with the provided video and text. Our audio retrieval
strategy is illustrated in Fig. 3.

Sound in a movie includes music, dialogue, sound effects, ambi-
ent noise, and/or background noise [24]. In this paper, we explore
two distinct categories: sound effects and background music. Sound
effects, such as footsteps, explosions, or door creaks, vary across
different scenes to enhance realism and enrich the visual expe-
rience, immersing the audience in the on-screen actions. On the
other hand, background music remains consistent throughout the
entire movie sequence, serving to establish the overall tone, evoke
emotions, and guide the audience’s perception of the narrative. To
address these two types, we propose different strategies. For sound

Audio
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Figure 3: Illustration of our audio retrieval strategy.

effects, we employ two retrieval approaches: text-to-audio [13] and
video-to-audio [35]. We extract features from the original scripts
or the generated video content and match them with suitable au-
dio clips from the database. As for background music, we leverage
ChatGPT to summarize the plot and tone, and then combine the rec-
ommended tone category with techniques from music information
retrieval [19] to identify appropriate music tracks.

3 EXPERIMENTS
3.1 Implementation Details
We choose Stable Diffusion 2.02 as the base image diffusion model,
which is trained to synthesize 512×512 images on LAION-5B [30].
In the spatial finetune stage, we adopt WebVid-10M [1] and HD-VG-
130M [39] to jointly train the model in the scale of 768×320. In the
temporal training stage, we only useWebVid-10M to train themodel
for 16 frames generation with fps 8, where we use the normalization
parameter learned for WebVid-10M in the spatial layers. Except for
the resizing, random crop, and random flip, no other augmentation
is involved in training. Also, no automatic or manual data filter is
utilized in the pretraining. We adopt RealBasicVSR [4] to 4× upscale
our generation results to obtain 3072×1280 videos.

3.2 Visual Generation
Before evaluating the movie creation performance, we first assess
the video generation capability of our model. In this section, we
adopt themodel that has been exclusively pretrained on theWebVid-
10M dataset. We present the generated samples in Fig. 4. The results
demonstrate the effectiveness of our two-stage training strategy, as
our model produces high-quality videos with clear visuals (without
any watermarks) and smooth object motion. The generated videos
exhibit rich details and showcase the successful application of our
proposed approach.

For quantitative comparison, we utilize the Fréchet Video Dis-
tance (FVD) [36] to assess video quality and the CLIP similarity
(CLIPSIM) [22] for evaluating text-video alignment. We generate 5k
samples using text extracted from the validation set of the WebVid-
10M dataset. As shown in Tab. 1, compared with ModelScope [16]
and LVDM [7], our model performs better on both metrics.

3.3 Creating Movies
Targeting the best visual quality as inmovies, we finetune ourmodel
with some real processed movie clips after the pretraining. Note
that, we only optimize the parameters of the spatial layers added in

2https://huggingface.co/stabilityai/stable-diffusion-2-base

https://huggingface.co/stabilityai/stable-diffusion-2-base
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“A time-lapse video of a bustling city skyline with car lights streaking by at night.”

“A mesmerizing display of fireworks reflecting on the surface of a calm lake.”

“A breathtaking view of a phoenix emerging from a burst of flames, reborn in all its glory.”

“A cinematic shot from a distance as a ship rockets through the galaxy, its engines ablaze with brilliant flames, creating a mesmerizing visual spectacle.”

“A mesmerizing display of glowing jellyfish floating gracefully in the deep ocean.”

“A slow-motion footage of bubbles rising from a treasure chest on the seabed, creating a magical and ethereal atmosphere.”

“A thrilling first-person perspective sequence in an FPS game, as the player sprints through a war-torn citye.”

Figure 4: Generation video samples of our MovieFactory. Our model is able to generate both realistic and science fiction scenes
in high quality, with rich details and smooth motion. More cases can be found in YouTube/Bilibili. Please play it in 1080p. All
generated samples are for research purposes only and cannot be used for any commercial purposes.

Table 1: Text-to-video generation on WebVid.

Method FVD↓ CLIPSIM↑
ModelScope [16] 414.11 0.3000
LVDM [7] 455.53 0.2751
Ours 317.52 0.3058

the stage of spatial finetune while fixing all other layers including
all temporal ones. Fig. 5 demonstrates the impressive capabilities of

our model in generating vivid and engaging movies. For example,
it can effectively depict the entire sequence of events experienced
by astronauts in an emergency, as well as create captivating blue
elf adventures that contain multiple scenes.

4 CONCLUSION
We introduce MovieFactory, a robust framework that revolution-
izes movie generation. MovieFactory stands as the first model of
its kind, enabling users to effortlessly create elaborate movies with

https://www.youtube.com/watch?v=tvDknhMFhzk
https://www.bilibili.com/video/BV1qj411Q76P
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An Adventure Day of Blue Elf

Scene1: Sunrise over the Vast Avatar Landscape Scene2: Blue elf Exploring Ancient Ruins

Scene3: Blue elf  Climbing Towering Cliffs Scene4: Blue elf  Soaring through the Sky on a Big Bird

Scene5: Blue elf  Exploring a Bioluminescent Cave Scene6: Blue elf  Navigating a Dense Jungle

Scene7: Blue elf  Crossing a Serene River Scene8: Blue elf  Discovering an Ancient Tree of Wisdom

Scene9: Blue elf  Gliding through a Canyon Scene10: Blue elf  Observing a Rare Creature in its Habitat

An Astronaut Space Adventure

Scene1:  Astronaut Maneuvers Scene1: Volcanic Eruption

Scene2: Astronaut on Fire Scene2: Tsunami Crashing Against the Shoreline

Scene3: Close-Up of Astronaut's Helmet Reflecting the Fiery Scene Scene3: Hurricane Winds Lashing a Coastal Area

Scene4: Astronaut Initiates Emergency Protocol Scene4: Animal Stampede Across a Savanna During Disaster

Scene5: Spaceship Sails Towards a Dazzling Horizon Scene5: Animal Exodus from a Flooded Area

World Disaster and  Animal Escape

Figure 5: Generation movie samples of our MovieFactory. Given a subject of the movie, our model automatically generates the
whole movie with multiple scenes. More cases can be found in YouTube/Bilibili. Please play it in 1080p and turn on the audio.
All generated samples are for research purposes only and cannot be used for any commercial purposes.

cinematic-picture (3072×1280), film-style (multi-scene), and multi-
modality (sounding) using simple texts. To automatically generate
multi-scene movies, we utilize ChatGPT to expand user descrip-
tions into detailed scripts, each representing a distinct scene, thus
forming a complete movie. To improve the visual quality of gen-
erated videos, we propose a two-step learning strategy involving
video-by-frame pretraining and subsequent video training. Auxil-
iary spatial layers and domain-aware normalizations are applied
to address the domain shift between pretrained image models and

target video datasets, ensuring high-quality generation and miti-
gating out-of-distribution issues. Temporal layers are introduced
and trained on videos to capture object motion and enhance the
temporal coherence of the generated scenes. In order to produce
high-quality movies, we fine-tune our models on a small collec-
tion of movie clips, further refining the generation process. Finally,
rather than generating audio content from scratch, we employ a
retrieval-based approach to align and retrieve corresponding audio
from a comprehensive database. Extensive experiments validate

https://www.youtube.com/watch?v=tvDknhMFhzk
https://www.bilibili.com/video/BV1qj411Q76P
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that MovieFactory opens up a brand-new experience for users, em-
powering them to create captivating movies with ease and bringing
a novel dimension to movie production.
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