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ABSTRACT
We propose a novel cascaded cross-modal transformer (CCMT) that
combines speech and text transcripts to detect customer requests
and complaints in phone conversations. Our approach leverages a
multimodal paradigm by transcribing the speech using automatic
speech recognition (ASR)models and translating the transcripts into
different languages. Subsequently, we combine language-specific
BERT-based models with Wav2Vec2.0 audio features in a novel
cascaded cross-attention transformer model. We apply our system
to the Requests Sub-Challenge of the ACM Multimedia 2023 Com-
putational Paralinguistics Challenge, reaching unweighted average
recalls (UAR) of 65.41% and 85.87% for the complaint and request
classes, respectively.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Speech recognition; Discourse, dialogue and pragmatics.

KEYWORDS
transformers, cascaded cross-attention, multimodal learning, deep
learning, automatic speech recognition, NLP

1 INTRODUCTION
In recent years, the field of computational paralinguistics has wit-
nessed significant advancements in analyzing and interpreting
non-verbal vocal cues, leading to valuable insights into human
communication. As part of this research landscape, we present a
multimodal framework for the Requests Sub-Challenge (RSC) of
the ACM Multimedia 2023 Computational Paralinguistics Chal-
lenge (ComParE) [22]. In this sub-challenge, the task is to detect
the presence or absence of a request or complaint within audio
calls between agents and customers. The objective is to develop
an effective model that can accurately identify and categorize in-
stances where a customer expresses a request or complaint during
the course of the conversation.

Being inspired by the success of previous multimodal methodolo-
gies [1, 5, 9, 13, 24] on other tasks, we propose a novel multimodal
framework which effectively harnesses cross-domain features de-
rived from both speech and text data, which are subsequently inte-
grated into a cascaded cross-modal transformer (CCMT) model. To
obtain multimodal information from audio data, the only modality
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provided by the RSC organizers, we employ state-of-the-art auto-
matic speech recognition (ASR) models [2, 19] to transcribe the
provided audio conversations. The additional modality, obtained
through speech-to-text conversion, provides valuable insights that
complement the original audio data, enabling the application of
various natural language processing (NLP) techniques. Further-
more, recognizing the existence of large language models (LLMs)
tailored for distinct languages [3, 6, 18], we expand the scope of
our research by translating the transcripts into multiple languages,
such as English and Spanish, via neural machine translation (NMT).

Tackling the complexity of real-world data through the combi-
nation of multiple modalities is a challenging task, requiring the
development of a robust and efficient method for aggregating all
sources of information [8, 20, 23]. To address this challenge, we
propose a novel CCMTmodel that aggregates information from two
NLP models, namely CamemBERT [18] and BERT [6], in the first
cascade step, and further combines the resulting multi-language
textual features with the audio-based Wav2Vec2.0 [2] features in
the second cascade step. While the employed NLP models facili-
tate capturing nuanced language cues and contextual information
within the conversations, the Wav2Vec2.0 model complements the
textual data by providing insights into vocal tone, emphasis, and
other non-verbal cues that contribute to the overall sentiment and
intent expressed by the customers.

In summary, our contribution is threefold:
• We propose a novel framework that generates multiple text
modalities from audio via ASR and NMT, enabling us to lever-
age different linguistic contexts for the 2023 Computational
Paralinguistics Challenge [22].

• We introduce a novel cross-modal transformer architecture,
called CCMT, which aggregates text and audio through a
cascaded cross-attention mechanism.

• We provide strong empirical evidence in favor of our frame-
work, via a comprehensive set of experiments.

2 METHOD
We design a novel multimodal framework for request and com-
plaint classification, which is illustrated in Figure 1. Starting from
the audio input data, our framework derives two additional text
modalities via automatic speech recognition (ASR) and neural ma-
chine translation (NMT). The three modalities are further processed
by our cascaded cross-modal transformer (CCMT) model. Next, we
describe each component in more detail.
Audio branch. In our framework, we employ the Wav2Vec2.0 [2]
model to learn representative tokens for the audio modality. The
raw audio data is split into 𝑘𝑎 ∈ N+ chunks, where 𝑘𝑎 depends on
the input length and varies from one sample to another. The ini-
tial tokens are fed into the model, which further performs a series

ar
X

iv
:2

30
7.

15
09

7v
1 

 [
cs

.C
L

] 
 2

7 
Ju

l 2
02

3

https://doi.org/XXXXXXX.XXXXXXX


Preprint, 2023, Arxiv Nicolae-Cătălin Ristea and Radu Tudor Ionescu

..

1

chat

suis

[CLS]

Je

kf

..

1
2

ka

..

Je

suis

chat

..

..

I

am

cat

..

1

cat

I
am

[CLS]

ke

2

..
..

Wav2Vec2.0

ASR

CamemBERT

FLAN BERT

Audio modality

Language modality [Fr]

Language modality [En]

2

R
eq

u
es

t 
H

ea
d

Positional 
encoding

C
o

m
p

la
in

t 
H

ea
d

 M
u

lt
i-

H
ea

d
 

A
,

en
ti

o
n

A
d

d
 &

 N
o
rm

F
ee

d
 F

o
rw

ar
d

A
d

d
 &

 N
o
rm

K
V

Q

×
 L

 M
u

lt
i-

H
ea

d
 

A
,

en
ti

o
n

A
d

d
 &

 N
o
rm

F
ee

d
 F

o
rw

ar
d

A
d

d
 &

 N
o
rm

Q
K

V

×
 L

Figure 1: Our multimodal framework for request and complaint classification. For the audio modality, we extract tokens using
the Wav2Vec2.0 [2] model on time-domain audio input data. For the text modalities, we first apply an ASR model to transcribe
each audio into French text. For the French language modality [Fr], the tokens are directly processed by the CamemBERT [18]
model. For the English language modality [En], we utilize a language translation model called FLAN [4] to translate the French
text into English. The English text tokens are then fed into the BERT [6] model. The resulting tokens are processed by the
CCMT model, which feeds the final class token into the complaint and request classification heads.

of computations to extract meaningful audio representations. The
output of the Wav2Vec2.0 model consists of the same number of
𝑘𝑎 tokens, representing the acoustic features of the audio modality.
These tokens encode important information about the audio sig-
nals, such as pitch, frequency, and intensity. We hereby note that
encoders of distinct modalities provide different numbers of output
tokens. However, our CCMT model requires the same number of
tokens for each modality. We randomly sample a fixed number
of 𝑘 ∈ N+ tokens to comply with the data uniformity constraint
enforced by CCMT. The selected audio tokens are then fed into the
CCMT model.
Text branches. To extract text transcripts from the audio files, we
employ a series of ASR models based on the Whisper architecture
[19], with three different backbones: small, medium and large. These
models generate French transcripts, since the language spoken in
the audio files is French. We consider multiple ASR models as an
augmentation technique to enhance the training data. Subsequently,
we incorporate two language modalities: French and English. Span-
ish is also considered as an option, but we do not integrate it in
the final model because it lowers the overall performance. For the
French branch, we have a total of 𝑘𝑓 + 1 ∈ N+ tokens, consisting
of 𝑘𝑓 words and an additional class token. These tokens are given
as input to the CamemBERT model [18], resulting in 𝑘𝑓 output to-
kens. To ensure uniformity across modalities, we randomly sample
a number of 𝑘 tokens from the output, thus obtaining the same
number of final tokens as for the audio modality.

For the English text modality, we employ the FLAN T5 [4] lan-
guage model to translate French text into English. This process can
naturally result in a different number of words. Consequently, the
input for the BERT model [6] consists of 𝑘𝑒 + 1 ∈ N+ tokens, com-
prising 𝑘𝑒 words and one class token. As for the French language
modality, we sample a fixed number of 𝑘 tokens from the output to
maintain uniformity across modalities. If the number of tokens for
either French or English modality is less than 𝑘 , we randomly du-
plicate tokens until 𝑘𝑓 = 𝑘𝑒 = 𝑘 to meet the uniformity constraint.

By incorporating both French and English language modalities,
we ensure that the CCMT model can effectively capture and inte-
grate linguistic information from multiple languages, facilitating
a comprehensive multimodal analysis for request and complaint
classification.
Cascaded Cross-Modal Transformer. Given that all models gen-
erate tokens with the same dimensionality, let𝑇𝑓 ∈ R𝑘×𝑑 represent
the set of tokens generated by the CamemBERT model, 𝑇𝑒 ∈ R𝑘×𝑑
represent the set of tokens generated by the BERT model, and
𝑇𝑎 ∈ R𝑘×𝑑 represent the set of audio tokens generated by the
Wav2Vec2.0 model, where 𝑑 ∈ N+. To let our model distinguish
between token positions from different modalities, we introduce
positional encoding vectors that are distinct among modalities.

In the first transformer block, we introduce the learnable pa-
rameters𝑊 ′

𝑄
,𝑊 ′

𝐾
,𝑊 ′

𝑉
∈ R𝑑×𝑑ℎ for the projection blocks, where

𝑑ℎ ∈ N+ represents the dimension of a single attention head. To ob-
tain the query, keys, and values, we perform matrix multiplications
between the input tokens and the projection matrices:𝑄 ′ = 𝑇𝑒 ·𝑊 ′

𝑄
,

𝐾 ′ = 𝑇𝑓 ·𝑊 ′
𝐾
,𝑉 ′ = 𝑇𝑓 ·𝑊 ′

𝑉
. We use the English modality for queries,

and the French modality for keys and values, as we consider that
the French modality is more important for the task, precisely be-
cause the input phone calls are in French. The output of the cross-
attention layer is denoted as𝑈 ′ ∈ R𝑘×𝑑ℎ and can be expressed as
follows:

𝑈 ′ = softmax
(
𝑄 ′ · 𝐾 ′⊤√︁

𝑑ℎ

)
·𝑉 ′ . (1)

To ensure that the tokens maintain the same output dimension-
ality, we introduce a learnable matrix 𝑀′ ∈ R𝑑ℎ×𝑑 within the
multi-head attention layer. By multiplying the output 𝑈 ′ with𝑀′,
we restore the original dimensionality of the input tokens, result-
ing in 𝑌 ′ = 𝑈 ′ · 𝑀′. Subsequently, we apply the summation and
normalization operations, followed by a feed-forward module (FF),
and another summation and normalization layer. The equations
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that describe these operations are formally presented below:

𝑍 ′ = 𝑌 ′ + Norm(𝑌 ′), 𝑇𝑐 = 𝑍 ′ + FF(Norm(𝑍 ′)), (2)

where 𝑇𝑐 ∈ R𝑘×𝑑 denotes the output linguistic cross-attention to-
kens. In the second cross-attention transformer block, these tokens
are combined with the 𝑇𝑎 tokens. Here, we introduce the learnable
parameters𝑊 ′′

𝑄
,𝑊 ′′

𝐾
,𝑊 ′′

𝑉
∈ R𝑑×𝑑ℎ for the projection blocks. As for

the first transformer block, we obtain the query, keys, and values
by multiplying the input tokens with the corresponding projection
matrices: 𝑄 ′′ = 𝑇𝑎 ·𝑊 ′′

𝑄
, 𝐾 ′′ = 𝑇𝑐 ·𝑊 ′′

𝐾
, 𝑉 ′′ = 𝑇𝑎 ·𝑊 ′′

𝑉
. By employ-

ing operations analogous to Equations (1) and (2), we obtain the
output tokens 𝑇𝑜 ∈ R𝑘×𝑑 . The first token, which represents the
class token, is passed to two multi-layer perceptron (MLP) heads.
The MLP heads produce the final prediction for the request and
complaint classes.

3 EXPERIMENTS
Data set. The data set provided by the ComParE organizers for RSC
is a subset (audio-only) of the HealthCall30 corpus, constructed by
Lackovic et al. [15]. The data set is partitioned into a training set of
6,822 samples, a development set of 3,084 samples and a test set of
3,503 samples.
Performance measure. The participants are ranked by the or-
ganizers based on the unweighted average recall (UAR), i.e. the
average of the recall scores on the positive and negative classes.
Baselines. For the audio experiments, we compare our model,
which is based on Wav2Vec2.0 [2], against ResNet-50 [11] and
various transformer-based approaches [10, 21]. For the text experi-
ments, we conduct a comparative analysis of multiple NLP models
[16, 18] and four ASR models [2, 19]. We also explore various fusion
techniques, comparing our CCMT model with a conventional trans-
former model [7], and other common fusion techniques, e.g. based
on plurality voting or multi-layer perceptrons (MLPs).
Hyperparameter choices. The Wav2Vec2.0 [2] model is fine-
tuned for 10 epochs with a learning rate of 10−5 on mini-batches
of 16 samples. The BERT [6] and CamemBERT [18] models are
both trained for 25 epochs with a learning rate of 5 · 10−5 and a
weight decay of 10−5, on mini-batches of 32 examples. For all other
models, we use the hyperparameters recommended by the authors
introducing the respective models. The CCMT model is trained
for 30 epochs with a learning rate of 10−4 on mini-batches of 32
samples. All models are trained with the Adam optimizer [14]. For
the CCMT model, we randomly sample 𝑘 = 100 tokens (always
keeping the class token) for each input modality.
Results for the audio modality. The results of the models based
on the audio modality are summarized in Table 1. Among the eval-
uated architectures, the transformer-based models demonstrate
consistently better performance. Specifically, the pretrained AST
[10] model achieves a request UAR of 64.72% and a complaint UAR
of 55.91%, outperforming both SepTr [21] and 1D transformer mod-
els. However, the best results are obtained with the Wav2Vec2.0 [2]
model. By fine-tuning the Wav2Vec2.0 model, we achieve a request
UAR of 71.64% and a complaint UAR of 58.12%, showcasing the
effectiveness of the time-domain audio representation provided by
Wav2Vec2.0. Based on the results reported in Table 1, we select the
fine-tuned Wav2Vec2.0 model for our multimodal pipeline.

Table 1: Results on the development set with several architec-
tures based on the audio modality. The architectures are ei-
ther trained from scratch or fine-tuned. The models marked
with an asterisk (∗) are pretrained on other data sets. We
report the mean UAR (in percentages) and the standard de-
viation over three runs. The best score on each task is high-
lighted in bold.

Model Input data UAR
Request Complaint

ResNet-50 Spectrogram 59.51 ± 1.27 52.18 ± 0.86
ResNet-50 STFT 60.84 ± 1.08 53.49 ± 0.73
ResNet-50 Mel-Spectrogram 60.31 ± 1.01 53.44 ± 0.74
SepTr [21] STFT 62.31 ± 0.59 54.03 ± 0.55
AST [10]∗ Spectrogram 64.72 ± 0.45 55.91 ± 0.39
1D Transformer Time domain 61.63 ± 0.42 53.82 ± 0.39
Wav2Vec2.0 [2] Time domain 68.87 ± 0.21 56.55 ± 0.22
Wav2Vec2.0 [2]∗ Time domain 71.64 ± 0.16 58.12 ± 0.16

Table 2: Results on the development set with several
NLP models trained on French transcripts generated with
Wav2Vec2.0 [2] and Whisper [19] ASR models. Whisper
S+M+L stands for our augmentation technique based on us-
ing the transcripts from all three ASR models. We report the
mean UAR (in percentages) and the standard deviation over
three runs. The best score on each task is highlighted in bold.

Model ASR model UAR
Request Complaint

LSTM [12] Wav2Vec2.0 [2] 71.14 ± 0.51 55.49 ± 0.50
FlauBERT [16] Wav2Vec2.0 [2] 76.82 ± 0.21 58.77 ± 0.23
CamemBERT [18] Wav2Vec2.0 [2] 77.45 ± 0.13 60.15 ± 0.11
CamemBERT [18] Whisper S [19] 79.71 ± 0.19 62.92 ± 0.20
CamemBERT [18] Whisper M [19] 81.86 ± 0.11 64.83 ± 0.11
CamemBERT [18] Whisper L [19] 82.03 ± 0.10 65.47 ± 0.09
CamemBERT [18] Whisper S+M+L 82.44 ± 0.08 65.61 ± 0.08

Results for the French text modality. In Table 2, we present the
results for the French text transcripts using various NLPmodels. We
explored different ASR models, including Wav2Vec2.0 [2] and three
sizes ofWhisper [19] (small, medium, and large). Since CamemBERT
achieves the best performance, we choose the CamemBERT model
in favor of the FlauBERT and LSTM models For the subsequent
experiments. TheWhisper family of ASRmodels leads to significant
performance improvements. The highest results are obtained by
jointly using the transcripts generated by all Whisper models. We
highlight that the results obtained for the text modality in Table
2 are significantly higher compared to the audio modality results
in Table 1. This observation suggests that, for our specific tasks,
language features are more important than acoustic features.
Results for multiple text modalities. The results of the language
transformers on three different languages, namely French, English,
and Spanish, are presented in Table 3. Among the considered lan-
guage models, the CamemBERT [18] model trained on French data
reaches the best performance. This is an expected outcome, since
the audio calls are in French, and translating to other languages
can introduce translation errors and degrade performance. Still, we
believe that fusing models pretrained on different languages can
boost the performance of CamemBERT. Therefore, we also explore
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Table 3: Results on the development set with various NLP
models on three distinct languages: English (En), French (Fr)
and Spanish (Sp). We report the fusion results of the French
model with the other language models via an MLP-based ag-
gregation method. We report the mean UAR (in percentages)
and the standard deviation over three runs. The best score
on each task is highlighted in bold.

Model Language UAR
Request Complaint

CamemBERT [18] Fr 82.44±0.08 65.61±0.08
RoBERTa [17] En 78.57±0.07 63.89±0.10
BERT [6] En 79.35±0.08 63.91±0.08
BERT [6] Sp 72.41±0.08 59.87±0.11
CamemBERT [18]+BERT [6] Fr+En 82.61±0.08 65.91±0.08
CamemBERT [18]+BERT [6] Fr+Sp 81.80±0.08 64.11±0.09
CamemBERT [18]+2×BERT [6] Fr+En+Sp 82.01±0.08 64.95±0.09

Table 4: Results on the development set with distinct fusion
techniques applied on three models: two language models
trained on French [Fr] and English [En] transcripts, and an
audio-basedmodel.We report themean UAR (in percentages)
and the standard deviation over three runs. The best score
on each task is highlighted in bold.

Model Text Text Audio UAR
[Fr] [En] Request Complaint

Plurality voting ✓ ✓ ✓ 80.08 ± 0.11 62.11 ± 0.13
MLP ✓ ✓ 82.60 ± 0.07 65.98 ± 0.07
MLP ✓ ✓ 82.61 ± 0.08 65.91 ± 0.08
MLP ✓ ✓ ✓ 82.65 ± 0.08 66.08 ± 0.07
Transformer ✓ ✓ 82.81 ± 0.08 65.99 ± 0.09
Transformer ✓ ✓ 82.04 ± 0.07 65.24 ± 0.08
Transformer ✓ ✓ ✓ 82.81 ± 0.09 66.13 ± 0.07
CCMT (ours) ✓ ✓ 83.01 ± 0.08 66.20 ± 0.07
CCMT (ours) ✓ ✓ 81.96 ± 0.08 65.84 ± 0.09
CCMT (ours) ✓ ✓ ✓ 83.31 ± 0.08 66.64 ± 0.08

various combinations between the CamemBERT model and the
other models trained on English and Spanish, using an MLP block
to fuse the distinct language models. For English and Spanish, we
fine-tune BERT [6] models that were previously pretrained on corre-
sponding language-specific data. Notably, the BERT model trained
on English data outperforms the BERT model trained on Spanish
data by approximately 6% in terms of UAR on the request class, and
4% on the complaint class, respectively. Regarding the fusion exper-
iments, the best results are clearly obtained by fusing the French
and English models, surpassing the baseline CamemBERT model by
approximately 0.3% in terms of UAR for both request and complaint
classes. However, the addition of the Spanish BERT model leads to
a decrease in performance for both classes. We therefore exclude
the Spanish language model from the subsequent experiments.
Results of multimodal methods. In Table 4, we present the
results of the multimodal fusion experiments involving three mod-
els: CamemBERT [18] trained on French text transcripts, BERT
[6] trained on English text transcripts, and Wav2Vec2.0 trained on
audio samples. While fusing the distinct modalities, a consistent pat-
tern emerges across all fusion techniques. Combining CamemBERT
with Wav2Vec2.0 [2] proves to be more effective than combining

Table 5: Private test set results of our CCMT model with two
or three input modalities, with and without the development
set included in the training data. We alternatively trained
the CCMT model on the training set (T), as well as the union
between the training and development sets (T+D). The best
UAR score on each task is highlighted in bold.

Training Modalities UAR
data Request Complaint Average
T Fr+Audio 85.09% 64.73% 74.91%
T Fr+En+Audio 85.87% 65.41% 75.64%

T+D Fr+En+Audio 80.29% 61.79% 71.04%

the two text models, and the most favorable outcomes are consis-
tently achieved when all three modalities are combined. Regarding
the fusion techniques, traditional methods such as plurality voting
and MLP aggregation demonstrate lower effectiveness compared
with more complex approaches based on transformers. When we
combine tokens from all modalities into a transformer model, we
achieve an UAR of 82.81% for the request class and 66.13% for the
complaint class. However, the best results are obtained by combin-
ing all modalities via our CCMT model. To this end, we choose
CCMT to make our final submissions on the private test set.
Results on the private test set. In Table 5, we report the results
obtained on the private test set using three different approaches.
Our first submission is based on a CCMT model that fuses two data
modalities via CamemBERT and Wav2Vec2.0 tokens. Our second
and third submissions are produced by our full CCMTmodel, which
is based on three modalities. The difference between the second and
third submissions lies in the training data, i.e. the second submission
uses the official RSC training data, while the third one adds the
development set to the training data.

When using only two data modalities (Fr+Audio), the perfor-
mance is slightly lower when compared with the performance
reached by the complete CCMT model. This observation confirms
the beneficial impact of integrating models trained on distinct lan-
guages. Including the validation data in the training set appears to
degrade our performance, largely due to the challenges involved in
selecting a good checkpoint without seeing any validation results.
Ultimately, our best submission reaches an UAR of 75.64%.

4 CONCLUSION
In this paper, we introduced CCMT, a multimodal transformer-
based framework designed for request and complaint detection.
Our framework incorporates two distinct language models and one
audio model, allowing us to effectively capture and analyze infor-
mation from different modalities. The core component of CCMT is
a cascaded cross-attention transformer that iteratively aggregates
information from the linguistic and audio features. We evaluated
the performance of CCMT in the Requests Sub-Challenge of the
ACM Multimedia 2023 Computational Paralinguistics Challenge
[22]. Our framework demonstrated outstanding results, achieving
an average UAR of 75.64%. This performance significantly surpasses
the competition baselines (by more than 15%), indicating the effec-
tiveness of our approach.
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