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ABSTRACT
Bodily behavioral language is an important social cue, and its auto-
mated analysis helps in enhancing the understanding of artificial
intelligence systems. Furthermore, behavioral language cues are
essential for active engagement in social agent-based user inter-
actions. Despite the progress made in computer vision for tasks
like head and body pose estimation, there is still a need to explore
the detection of finer behaviors such as gesturing, grooming, or
fumbling. This paper proposes a multiview attention fusion method
named MAGIC-TBR that combines features extracted from videos
and their corresponding Discrete Cosine Transform coefficients via
a transformer-based approach. The experiments are conducted on
the BBSI dataset and the results demonstrate the effectiveness of
the proposed feature fusion with multiview attention. The code is
available at: https://github.com/surbhimadan92/MAGIC-TBR

CCS CONCEPTS
• Computing methodologies→Machine learning; • Human-
centered computing → Empirical studies in HCI.
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1 INTRODUCTION AND BACKGROUND
Recognizing human behavior allows for intuitive and natural in-
teractions with the technology. By understanding behavioral cues,
computer systems can respond more appropriately, which improves

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3612858

the user experience and makes human-computer interaction more
engaging [10]. These behavior cues may include a wide range of
observable actions such as body language, speech patterns, and
microexpressions. Collectively, these behavior cues contribute to
our understanding of human interaction, allowing us to respond
effectively in various social contexts.

Body language is a powerful social cue which greatly influence
how others perceive and interpret our communication [7, 11, 19, 21].
It contains non-verbal signals such as facial expressions, gestures,
and body posture. These cues provide important information about
our emotions [5] and convey information which words alone can-
not express [20]. The automatic analysis of body language is widely
studied in the context of human-computer interaction [6]. By un-
derstanding the dynamics of body language, one can interpret the
underlying emotions, intentions, and attitudes of users. An example
which illustrates the correlation of body language and verbal com-
munication is when someone involuntarily smiles upon receiving a
pleasant news. This serves as evidence of how body language aids
in understanding emotions, in addition to verbal cues [18].

Although body language can offer valuable insights into user’s
emotions, there are some limitations when it comes to the interpre-
tation part. Body language doesn’t follow strict grammatical rules,
and it needs to be subjectively interpreted as body movements
don’t always have a definite meaning [12]. Moreover, it is crucial to
consider interpersonal differences, as the same body language may
hold different meanings across different individuals. Contextual
factors further complicate the interpretation of body language as
the same individual may exhibit different body language in different
social settings.

This paper we focus on recognizing bodily behavior through
videos during a constrained social interaction scenario. Our ob-
jective is to understand an individual’s body behavior in a group
interaction setting when 3-4 individuals discuss a controversial
topics. To this end, we propose a Multiview Attention Fusion for
Transformer-based Bodily Behavior Recognition (MAGIC-TBR), a
simple yet effective approach which captures discriminative and
complementary feature representation from either view. The pri-
mary contribution of our work lies in integrating Swin Transformer-
based RGB and DCT features which effectively combines the spatial
and motion information for multi-view fusion. This integration
leads to the creation of robust video-level features. We demonstrate
through extensive experiments on the benchmark dataset [1] that
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Figure 1: Overall architecture of MAGIC-TBR. The method is based on bimodal fusion of RGB and DCT features.

our MAGIC-TBR approach improves bodily behavior recognition
performance compared to the baseline method [13].

2 METHOD
2.1 Problem Formulation
Given a 64-frame video snippet (V) of a person 𝑝𝑖 interacting with
a group of people P (𝑝𝑖 ∈ P), where the video captures the person’s
seated body and face without audio. The objective is to predict
the likelihood of 14 behavior classes present in the video using
multilabel classification. Additionally, two side-view videos from
both the left and right-hand perspectives are available.

2.2 Dataset
The BBSI dataset [1] provides annotations on theMPIIGroupInterac-
tion dataset [14], comprising 22 group discussions, each participant
engaging in 20-minute discussions on controversial topics. The
BBSI dataset annotates 15 bodily behavior classes including gesture,
fumble, hand-face, hand-mouth, and legs-crossed. It contains 2.87
million annotated frames, capturing 26 hours of human behavior
during continuous group interactions. Interested readers may refer
to [1, 14] for more information on the dataset. In order to ensure
consistency in the dataset, we resize the original videos to 224×224.
Additionally, we exclude videos which have fewer than 64 frames,
as they may not provide sufficient information for analysis. Fur-
thermore, we remove videos which contain occlusions and missing
information in either of the multiview perspectives.

2.3 Features Extraction
We apply the following feature extraction methods:

2.3.1 Discrete Cosine Transform (DCT). DCT represents the im-
age content in frequency domain as a sum of cosine functions of

different frequencies and amplitudes [4]. High-frequency DCT co-
efficients capture the transition in pixel intensities across small
spatial regions including edges and textures. Frequency domain
representations allows to capture specific image features and prop-
erties that is not directly observable in pixel values. We apply DCT
to every RGB frames and recombine these transformed frames to
generate a DCT video. Figure 2 displays examples of RGB and their
corresponding DCT frames.

2.3.2 Video Swin Transformer. Swin transformer [8] contains a
hierarchical structure with shifted windows to capture visual infor-
mation efficiently. This Transformer incorporates a spatial-temporal
attention mechanism, enabling it to learn complex visual features
dynamically. We fine-tune the pre-trained video swin transformer’s
weights on both RGB & DCT using 32-frame videos from the BBSI
dataset. For implementation, we have used the MMaction2 toolbox
[3], and the fine-tuned swin RGB and swin DCT networks serve as
feature extractors, producing 1024-dimensional feature vectors.

2.3.3 LaViLa Vision Features. Video-language networks provide
contextual information, which can draw attention to specific events
in the input videos. Motivated by this, we have applied the LaViLa
[23] which learns video-language representations via a large lan-
guage model and generates textual descriptions of the video clips.
We apply the basic LaViLa network to extract video features. This
network randomly sample four frames per video clip and encode
their features into a (256 × 768) dimensional vector.

2.4 Classification Methods
We apply following classification methods to calculate the likeli-
hood of 14 behavior classes.

2.4.1 MultiviewAttention FusionMethod. Weapply attention-based
multiview fusion, as described in [9, 17], to assign importance to the
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Figure 2: Top: RGB frames from input videos and Bottom:
corresponding DCT frames. DCT helps in finding the areas
likely to contain edges or boundaries.

three views of each person. We construct two separate networks,
namely Multiview RGB Attention Fusion (Figure 1: left) and Mul-
tiview DCT Attention Fusion (Figure 1: right), respectively. These
networks have similar configurations and generates class scores
for RGB and DCT videos.

Themultiview attentionmodel takes swin-transformer-generated
view-specific features as input. These inputs are processed through
respective dense layers with 64 neurons, resulting in fixed-length
feature vectors. These view descriptors are then concatenated and
passed through a fully connected layer, followed by a softmax
layer with three neurons for calculating attention scores (Attention
Module). Generated attention scores are utilized to determine the
relative importance of each view. We also apply layer normalization
to generated feature vectors. To fuse the normalized features, an
additive layer is employed to sum the weighted view features and
process them through a dense layer for multilabel classification
using a sigmoidal activation function..

2.4.2 Bimodal Feature Fusion: The Bimodal Feature Fusion ap-
protch aims to combine the feature vectors generated by the RGB
Multiview Attention Fusion (Figure 1: left and the DCT Multiview
Attention Fusion (Figure 1: right). To achieve this, we apply a single
addition layer followed by a dense layer with fourteen neurons
(each corresponding to a specific class) and a sigmoid activation
function for the multilabel classification. The overall network is
depicted in Figure 1.

2.4.3 Transformer on LaViLa. We apply a transformer network
inspired from [16] on the video features extracted from the LaV-
iLa framework. As we are dealing with a multi-label classification
problem, we apply only the encoder head comprising multi-head
self-attention, a feed-forward network, and a classification head.

2.4.4 Trimodal Feature Fusion: The Trimodal Feature Fusion is an
extension of the bimodal feature fusion approach which includes
768-dimensional LaViLa transformer generated features as a third
modality.

Table 1: Comparison of overallmean average precision (MAP)
scores on the validation and test sets for different methods.

Methods Validation MAP Test MAP

Baseline 0.41 0.56
Transformer on Lavila 0.25 -
Multiview DCT 0.35 -
Multiview RGB 0.45 -
Trimodal Fusion: RGB + DCT + Transformer 0.47 -
Bimodal Fusion: RGB + DCT 0.49 0.57

3 RESULTS AND DISCUSSION
In this section, we present the outcomes of our experiments and
compare with the baseline method [13]. Given the presence of
imbalanced class samples in this 14-class multi-label classification
problem, we apply mean average precision as the evaluation metric.

3.1 Experimental Details
We perform our experiments on a Nvidia A100 GPU, equipped with
40 GB GPU memory. When training the transformer on LaviLa
features, we apply binary crossentropy loss and train the network
with the Adam optimizer at a learning rate of 0.001. We observe
that for Multiview attention fusion, Bimodal, and Trimodal fusion
methods, stochastic gradient descent at learning rate of 0.01 yields
the best results in reducing the binary crossentropy loss. We set the
number of epochs to 300 and apply early stopping with a parameter
set at 10.

3.2 Overall Results
We present overall classification results on the validation and test
sets in Table 1. Our proposed methods exhibit better performance
than the baseline approach on the validation set, with the exception
of the Transformer on Lavila and Multiview DCT. Multi-view RGB
and Trimodal fusion outperforms the baseline MAP score by 0.04
and 0.06 points respectively. The bimodal fusion technique, which
involves the early fusion of multiview RGB and DCT generated
feature vectors, surpasses all other methods in terms of MAP score.
It achieves a validation MAP of 0.49 and a test MAP of 0.57.

3.3 Classwise Results
We present classwise classification results on the validation sets
in Table 2. We observe that our classification methods perform
better in terms of overall MAP score, but while we carefully analyse
classwise MAP scores we observe legs-crossed and fold-arm are
better classified via the baseline method.

3.3.1 The Multiview DCT. We observe Multiview DCT method
surpasses the baseline performance in five specific classes: fumble,
scratching, stretching, leg movements, and even settle. Except for
leg movement and settle, all classes involve hand movements. A
previous study [22] indicate that hand trajectory signals result in the
increase in the high-frequency components. We observe, for fumble,
leg movement, and stretching class this method outperforms all other
methods due to the predominance of high-frequency components.

3.3.2 The Multiview RGB. We observe that Multiview RGBmethod
outperforms the baseline, with the exception of the fold-arms and
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Table 2: Comparison of classwisemean average precision (MAP) scores on the validation set for differentmethods. AC: Adjusting
clothing, LM: Leg Movements, Transformer: Transformer Trained on LaVila Features, Trimodal Fusion: Lavila+RGB+DCT
while Bimodal: RGB+DCT.

Methods Hand
Face

Hand
Mouth Gesture Fumble Scratch Streching Smearing

Hands Shrug AC Groom Fold
Arms LM Settle Legs

Crossed

Baseline [13] 0.511 0.431 0.82 0.377 0.122 0.004 0.07 0.044 0.239 0.582 0.958 0.295 0.335 0.949
Transformer 0.562 0.482 0.526 0.279 0.062 0.003 0.017 0.013 0.046 0.429 0.156 0.042 0.046 0.806
Multiview DCT 0.437 0.264 0.719 0.508 0.132 0.009 0.044 0.031 0.134 0.404 0.558 0.405 0.374 0.854
Multiview RGB 0.717 0.51 0.835 0.469 0.152 0.004 0.097 0.09 0.35 0.618 0.934 0.263 0.407 0.913
Trimodal Fusion 0.711 0.534 0.86 0.491 0.298 0.004 0.136 0.048 0.174 0.636 0.914 0.351 0.392 0.902
Bimodal Fusion 0.788 0.551 0.871 0.497 0.221 0.006 0.129 0.097 0.344 0.691 0.927 0.398 0.408 0.904

legs-crossed class. This improvement can be attributed to the robust
representation obtained by incorporating information from all the
views. In many cases, the RGB frontal view may have limited visi-
bility, particularly around legs. However, side views provide more
lighting and a left or right profile, allowing the model to capture
additional information.

3.3.3 Transformers on LaViLa. We observe Transformer trained
on LaViLa features works better for hand-on-face and hand-on-
mouth classes in comparison with baseline method. These classes
involve static postures and distinct facial characteristics. LaViLa
vision features, derived from the TimeSformer [2] Transformer,
effectively capture the temporal dependencies and interactions be-
tween frames over time. In contrast, other classes exhibit relatively
lower recognition accuracy. The reason behind this could be that
the Lavila model we applied extracts features from only a random
selection of 4 frames, which could potentially lead to a loss of
motion information.

3.3.4 Bimodal & Trimodal Fusion. We observe bimodal fusion in-
tegrating robust representations from multiview DCT and RGB,
exhibits outstanding performance among other methods. Addition-
ally, the trimodal fusion approach (RGB+DCT+LaViLa) achieves
comparable results to bimodal for most classes.

3.4 Initial Explainability
To achieve initial explanations, we analyze attention scores from
RGB and DCT Multiview models in bimodal fusion (Figure 3). Dur-
ing our analysis of the dataset videos, we observe that view 2 has
lower illumination compared to view 1, especially in subject posi-
tion 4. Additionally, there is occlusion in the leg areas of View 1 for
subject position 2 due to the close placement of sitting chairs. The
attention scores highlight the frontal view as having the highest
attention, offering focused and less occluded videos for both RGB
and DCT. DCT prioritizes view 1, focusing on highly illuminated
videos, as DCT is more efficient for illumination variation [15],
resulting in more accurate high-frequency components, while RGB
emphasizes view 2, avoiding occlusion. Overall, multiview attention
fusion contributes to good classification performance. However,
this explanation is limited to treating all classes collectively, with
future work focusing on classwise explanations.

4 CONCLUSION
In this paper, we present MAGIC-TBR approach which recognizes
14 bodily behavioral classes from multiview input videos. We have

Figure 3: The average attention scores on the validation set.

incorporated these multiview (RGB and DCT) networks into bi-
modal and trimodal fusion settings and evaluated the transformer
model’s performance on LaViLa features. Our experimental results
indicate that classes involving hand movements such as fumble,
streching, and scratching are better recognized by Multiview DCT
due to the presence of high-frequency components. In contrast,
classes involving distinct facial characteristics such as hand-face
and hand-mouth are better recognizable by transformer on Lavila,
which preserves interactions between frames. Bimodal Fusion is
outperforming all other methods, including trimodal, possibly due
to the need for a more robust representation of LaViLa features for
fusion. While comparing bimodal fusion with baseline, we observe
an increment of 0.08 and 0.01 in validation and test MAP, respec-
tively. We have also attempted to provide initial explainability via
generated attention scores.

For future work, we propose to focus on enhancing the prediction
performance of classes with subtle movements and limited samples
such as smearing hands and scratching. Furthermore, incorporating
advanced LaViLa-based features and building a more robust fusion
architecture can also be explored.
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