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ABSTRACT

Live video streaming has grown dramatically in recent years. A key
challenge is achieving high video quality of experience (QoE) in low-
rate networks. To tackle this problem, recent streaming approaches
strategically drop video frames, thus reducing the bandwidth re-
quired. However, these methods are usually designed for video on
demand (VoD) services and perform poorly in live video stream-
ing. In this paper, we design a new live video streaming approach,
Reparo, which aims to improve users’ QoE in low-rate networks.
On the upload client side, Reparo discards video frames such that
they are never encoded or transmitted. To decide which frames
should be dropped, we design a real-time Video Frame Discarding
(VFD) model, which strives to minimize the impact on video quality
while maximizing bandwidth savings. To complement this, Reparo
further proposes a modified adaptive bitrate algorithm and two
encoding modes, targeting low-frame-rate encoding. On the server
side, Reparo then recovers the dropped frames using a lightweight
Video Frame Interpolation Deep Neural Network (VFI-DNN). Ex-
perimental results show that, compared with vanilla DASH, Reparo
reaches an SSIM gain of 0.018, or reduces bandwidth consumption
by 30.86%. With an average bandwidth of 0.974Mbps, it improves
QoE by 18.13% on average compared to DASH.

*Qing Li is the corresponding author.
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1 INTRODUCTION

Live video streaming, accounting for 17% of Internet traffic in
2022 [9], consists of three components: the upload client, the media
server, and the end-user clients. The upload client first encodes
video frames received from a camera [4, 7, 34, 46, 50], and then
transmits them to the media server through real-time streaming
protocols [1, 13, 37, 38]. Next, the media server decodes and pro-
cesses the received video, and distributes it to the end user clients.
Finally, the end users receive the video, often using different bi-
trates determined by various adaptive bitrate (ABR) algorithms
[20, 24, 30, 33, 44, 53, 56]. This process is rife with challenges though.
For example, the uplink bandwidth from the upload client to the
media server is often insufficient [14, 61, 62]. As a result, the upload
client may have to encode high-quality video frames with a lower
bitrate, thereby reducing users’ QoE.

There has been much work in the spatial domain, attempting to
optimize the frame encoding process in live video delivery. To save
the uplink bandwidth, video coding approaches optimize the video
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compression process [2, 19]. Alternatively, recent super-resolution
approaches downsample the video to be transmitted and enhance
video quality through image enhancement [6, 18, 25, 28, 31, 32].
Nevertheless, these methods can fall short under low-rate networks.

This leads to exploration in the time domain, focusing on optimiz-
ing frame rate. Two recent studies, BETA [22] and VOXEL [36], try
to improve video delivery by dropping frames. BETA strategically
discards B-frames, while VOXEL drops P-frames and B-frames pack-
ets through the QUIC protocol [26]. Nonetheless, BETA and VOXEL,
designed for on-demand streams, take too long to determine the
frames to drop. As a result, these existing methods cannot be used
for live video streaming, which has stringent latency requirements.

With these limitations in mind, we propose Reparo, a new live
video streaming system that enhances video transmission by strate-
gically discarding video frames. Reparo is deployed on both the
upload client and the server. On the upload client, the differences
between adjacent frames are extracted and fed into a Video Frame
Discarding (VFD) model. This model determines whether an inter-
mediate frame between its two adjacent frames should be dropped
or not. After the frame(s) to drop have been selected, the upload
client determines the encoding bitrate using an ABR algorithm [56]
modified for live video streaming. It then chooses an appropriate
low-frame-rate encoding mode. Reparo proposes two modes, called
Hbit and BWSave, which we switch between based on network
conditions. The Hbit mode aims to improve the per-frame bitrate
of the video while keeping a similar uplink bandwidth overhead,
while the BWSave mode aims to save the uplink bandwidth without
bringing severe quality degradation. On the server side, after the
video frames are decoded, DNN-based interpolation is run along-
side the VFD model update. Following this, the updated VFD model
is sent back to the upload client.

There are several challenges when applying the frame-drop &
frame-interpolation methods to live video delivery:

(1) The impact of a frame drop will vary considerably based on the
frame selected. Thus, the video quality impact of a frame drop
needs to be predicted in real-time at the upload client. However,
the limited computing power of the upload client might not
be able to perform rapid DNN-based frame interpolation. This
will negatively influence the calculation of the video quality
for the frame-drop & frame-interpolation process.

(2) The real-time impact of the different low-frame-rate coding

modes (Hbit and BWSave) cannot be assessed in advance. Thus,

it is difficult to combine the low-frame-rate coding strategies
with the modified ABR algorithm for encoding bitrate selection.

Since the performance of the pre-trained VFD model decays

with the changing of video content, the server requires consec-

utive video frames to assess the effectiveness of Video Frame

Interpolation Deep Neural Network (VFI-DNN), in order to

generate a dataset for updating the VFD model. However, with

the limited uplink bandwidth, it is difficult to upload dropped
video frames to the media server to construct this dataset.

Reparo addresses the above challenges. First, Reparo proposes
a lightweight VFD model for the upload client, trained using his-
torical live video. This model takes the inter-frame differences as
an input and selects the best frames to drop, according to whether
the server’s interpolation will be effective enough. Accordingly,
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the inference of this lightweight model could replace the heavy

computation of the DNN on the upload client.

Second, Reparo combines the extra quality gain or saved band-
width achieved through the two low-frame-rate modes (which we
term Hbit and BWSave) with network conditions. By considering
the bandwidth prediction of a modified ABR algorithm [56], it dy-
namically selects the preferred mode to match network conditions.

Third, to continually improve performance, Reparo dynamically
re-trains the VFD model at the server, using the received incomplete
frames. It analyzes the differences between equally spaced video
frames and checks the VFI-DNN performance to identify the frames
which are successfully and unsuccessfully reconstructed. Using this
binary set, the server then periodically re-trains the VFD model.

We evaluate Reparo using six different types of video content and
two types of network traces. We compare Reparo-related schemes
against the state-of-the-art (i.e., BETA, VOXEL and DASH) modified
for live video streaming. For different bitrate levels, Reparo can
achieve an average structural similarity (SSIM) gain of 0.018, or a
bandwidth saving ratio of 30.86%. When a commonly-used ABR
algorithm [56] is modified and utilized to select the encoding bitrate
and the encoding mode for the upload client, Reparo outperforms
DASH, BETA and VOXEL by 9.28 ~ 18.13% in terms of QoE. In
summary, we make the following contributions:

e We implement and evaluate Reparo, a live video streaming sys-
tem that enhances video transmission by strategically discarding
video frames.

e We propose a VFD model, which takes the features across con-
secutive frames as an input, and selects frames to drop based on
VFI-DNN’s predicted effectiveness. This takes just 213ms-593ms
on various smartphones.

e We propose two encoding modes to better match the selected

bitrate to the predicted bandwidth. The two modes bring 0.018

SSIM gain and 30.86% bandwidth saving ratio respectively. They

improve QoE by 9.28 ~ 18.13% over the baselines.

Reparo infers VFI-DNN in real-time to recover dropped frames,

and provides VFI-DNNs with fewer layers for limited computing

power.

e We propose a mechanism to update the VFD model in an online
fashion, using the incomplete frames received on the server. This
results in 22.96% additional quality gain and 46.53% additional
bandwidth savings for two modes respectively.

2 RELATED WORK

Live Video Streaming Optimization. The main bottlenecks of
live video delivery are driven by limited uplink bandwidth and the
associated real-time frame delivery requirements. Recent works
focus on improving video coding and using super-resolution (in the
spatial domain) to enhance the performance of live video delivery.

Salsify [16] integrates encoders with transport protocols, and
Dave [19] uses reinforcement learning for encoding. Our proposal
simplifies these methods by dropping frames before encoding to
increase the average bitrate or save bandwidth without significant
quality loss. This lightweight approach is real-time capable, even
on low-resource devices.

In terms of enhancing video quality, super-resolution (SR) tech-
niques have been applied. LiveNAS [25] updates the SR DNN with
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high-resolution patches, LiveSRVC [6] compresses key frames for
SR inference, and NeuroScaler [55] selects frames for SR DNN real-
time reuse. Unlike these spatially focused solutions, our Reparo
design emphasizes time-based resolution or frame rate, and can
work in conjunction with SR methods to boost overall performance.

Frame/Packet drop in video delivery. Similar to us, there are
existing works that optimize video delivery by dropping packets
or video frames. Yahia et al. [52] drops video frames in live video
streams using HTTP/2 with a fixed bitrate. Stewart et al. [45] modify
the SCTP protocol to be partially reliable, thus dropping a portion
of the packets without taking the characteristics of video frames
into account. BETA [22] regards all B-frames as discardable, and
VOXEL [36] modifies all P-frames and B-frames to be transmitted
unreliably. The above schemes provide inspiration, yet none of
them is well suited to the scenario where the uplink bandwidth is
severely constrained in live video streaming.

Video Frame Interpolation. Video frame interpolation (VFI) aims
to create an intermediate frame between two adjacent ones to
maintain coherence. Traditional VFI strategies are mainly based
on optical flow [5, 17, 42]. Recently, deep neural network-based
approaches [12, 21, 23, 35, 41] have shown increasingly powerful
performance. In addition, lightweight video frame interpolation
neural networks [11, 27] have also achieved good performance
compared to heavier ones. We posit that this offers the potential to
optimize video delivery systems.

3 CHALLENGES

3.1 Limitations of Frame Drop Approaches

Unlike on-demand video streaming, live video streaming has strict
latency requirements. Unfortunately, existing frame drop schemes
have high latency, as they must estimate the impact of frame drop on
QoE. Furthermore, these methods drop frames after video encoding,
which leads to a larger decision space for the encoding bitrate
selection process and consequently slows it down. The decision
space expands since it now includes the selection of the number of
video frames to discard in addition to the original bitrate levels.

Latency of Selecting Frames to Drop. We use VOXEL as an exam-
ple to highlight the additional latency introduced by selective frame
drops, since VOXEL uses the SSIM value compared to the original
dropped frames as a threshold to select unimportant frames. Sup-
pose that there are n frames that could be dropped in a video chunk,
and VOXEL drops frames at the granularity of a single frame. To
measure the QoE variation of dropping different numbers of unim-
portant frames, it is necessary to decode the chunk and compare
SSIM frame-by-frame. However, in the above process, frequently
calculating the quality of the video chunks will introduce a large
latency. Figure 1(a) shows the average execution times for calcu-
lating SSIM with different video resolutions. The execution times
are measured on 100x 1 second video chunks taken from YouTube
live videos, with corresponding original video frames before drop-
ping as reference. We use an Intel(R) Xeon(R) Gold 5218 CPU @
2.30GHz, and a C++ implementation. We see that when dropping
10 ~ 20 frames in a 1s video chunk, even the calculation under
480p resolution will take 0.61 ~ 1.20s, which is undesirable for live
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Figure 1: Existing Methods Bring Significant Latency

video streaming. This makes rapidly calculating the QoE variation
caused by discarding frames a significant challenge.

Inefficient Bitrate Selection. VOXEL enlarges the decision space
for the encoding bitrate selection algorithm at the upload client side.
This is because the number of discarded video frames is not deter-
mined before executing the selection algorithm. Thus, traditional
bitrate selection algorithms could be undermined by unanticipated
frame drops, and the execution efficiency of both traversal-based
and reinforcement learning-based bitrate selection algorithms is
reduced. This fails to meet the low latency requirements of live
video streaming. Moreover, VOXEL’s frame drop granularity is ac-
tually at the packet level, and all P-frames in VOXEL are discardable,
resulting in more complex decision space.

Figure 1(b) demonstrates that MPC [56], a traversal-based ABR
algorithm, has a considerable latency overhead due to an expansion
of the decision space. This implies that fewer future chunks can be
traversed, and the performance of the algorithm will decline when
used for bitrate selection. As a result, it is challenging to make the
decision space of the live video coding bitrate selection algorithm
not become inflated after frame drops with existing approaches.

Deprivation of the Chance to Increase Per-Frame Encoding
Rate. Unlike dropping frames before encoding, the method of dis-
carding frames after encoding sometimes scarcely improves video
quality. Nevertheless, live video streaming with constrained up-
link bandwidth often encounters persistently low video bitrates,
which results in poor visual quality. If frames are dropped before
encoding, the average encoding bitrate of the remaining frame can
be increased to obtain higher-quality video frames with the same
bandwidth consumption. In summary, approaches like BETA and
VOXEL are unable to improve the quality of the video in low-rate
networks directly.

3.2 Limitations of Frame Recovery Methods

Existing methods to recover missing frames, such as frame interpo-
lation, are straightforward. However, they may degrade the overall
video quality. Recently, lightweight video interpolation Deep Neural
Networks (DNNs) [11, 27] offer the possibility to recover discarded
video frames in real-time and with high quality.

Naive video recovery lowers visual quality. We use VOXEL as
an example to show how simple video recovery techniques can
lower visual quality. VOXEL performs packet-level frame drops,
so frames may be partially or entirely lost. For both cases, VOXEL
adopts the strategies of substituting dropped packets with zeroes
and replacing the dropped frames with the previous frame. If many



MM °23, October 29-November 3, 2023, Ottawa, ON, Canada

(Upload Client N Media Server
HR Raw Frames Video Encoder ‘ VFI Processor
Preserved Hbit Mode o) 7 6 sHl:H 1 Lo
= Might be discarded <25f0s DI
S2o1ps 1 —E— 3
7 s s BWSave Mode
x 3B o
Diff Extractor | VFD Trainer F1
= v Diff Feature P2
FI F2 F3 F4 —>ssm2——> 1 3 u‘g,‘c —E—: F3
Fi B2 B3 B4 s —Y > 3 5 e | SSIM>Thr? :Af'
. N 3
FI F2 F3 F4 '%_»ss:m—’\> 5.6 7 ,Updalbd 135 Update
>0.977 VFD Model SR Dataset

Frame Discarder
S

J

Figure 2: Reparo System Overview

adjacent frames have salient content changes, the visual quality will
degrade significantly after frame drop and recovery. Lightweight
VFI-DNNS [11, 27] can only recover quality when the input frames
don’t have drastic scene changes.

VFI-DNNs cannot handle everything. Although VFI-DNNs show
better performance than traditional methods like optical flow-based
ones [5, 17, 42], VFI-DNNs are not capable of completely recovering
every randomly discarded video frame. For example, the VFI-DNN
is less effective when there are drastic scene changes from one
input frame to the next. Hence, accurately discarding unimportant
frames for VFI-DNN to recover is a challenge.

4 REPARO: SYSTEM OVERVIEW

The main goal of Reparo is to make better utilization of the limited
uplink bandwidth at the upload client side. Figure 2 shows the
complete architecture of Reparo. It consists of an upload client and
a media server.

Upload Client. Unlike traditional upload clients, in Reparo, the
client drops unimportant frames and encodes the remaining frames
with a lower frame rate. Two design components operate at the
client to maximize the end users’ QoE. The Frame Discarder extracts
the frame difference features and uses them to decide which frames
to drop. This is embedded in a Video Frame Discarding (VFD) model,
which performs a binary classification for each frame (to drop or
not). The video encoder first adjusts the ABR algorithm by using
the average value of the video chunks’ size and quality to replace
information about future video chunks for selecting the encoding
bitrate level. This makes the ABR algorithm available for encoding
bitrate selection at the upload client. Next, Reparo proposes two low
frame rate encoding modes to accommodate network conditions,
utilizing different bitrates per frame for video encoding.

Server. Upon receiving frames, the server executes the VFI-DNN
to recover any dropped frames after decoding the received video
chunks. It then retrains the VFD model only with the incomplete
frames it has received. To be more specific, the VFI processor re-
covers dropped frames in real-time and provides VFI-DNNs with
different numbers of convolution-deconvolution pairs to better
adapt to computing resources. The VFD trainer utilizes two kinds
of consecutive frames to generate the dataset for VFD model up-
dating. After re-training and updating the model, the server sends
the new VFD models back to the client so they can make better
frame-drop decisions.
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Figure 3: VFD-VFI Mechanism on the Client Side

5 UPLOAD CLIENT DESIGN
5.1 Frame Discarder

The role of the frame discarder is to select the optimal frames to
drop. It calculates frame difference features to measure the scene
change. It then constructs a binary classifier using these features to
estimate the server’s VFI-DNN effectiveness. We therefore strive to
select frames that can be recovered effectively by the server’s VFI-
DNN. Below, we list the steps performed by the Frame Discarder.

Extracting frame difference features. Reparo first extracts fea-
tures that capture the difference between adjacent frames. Figure
3(a) shows the strategies of dropping consecutive frames and drop-
ping only even-indexed frames. When multiple consecutive frames
are dropped, we can either use multi-frame recovery VFI-DNNs
once, or single-frame recovery VFI-DNNs multiple times. However,
the former is less adaptive to scene changes, while the latter leads
to greater quality degradation. As a result, we only permit dropping
even-indexed frames. To predict whether each even-indexed frame
can be recovered effectively by the VFI-DNN on the server, we
measure the degree of scene change between its adjacent frames in
real-time. Inspired by Reducto [29], we perform this comparison
using four low-level disparity features that are represented as four
floating point numbers: pixel difference, edge difference, area dif-
ference, and grayscale histogram difference. The time required for
the extraction of the four features on 1080p video frames can easily
meet the real-time requirements of 12fps since only the differences
between odd-indexed frames are extracted.

Measuring interpolation effectiveness. After extracting the above
features, we determine whether the performance degradation of
using the VFI-DNN (due to scene changes) is acceptable or not.
The efficacy of the VFI-DNN in recovering video frames can be
directly assessed using the SSIM value, with the original frame
serving as a reference. Consequently, an SSIM threshold can be
directly selected to ascertain the validity of the VFI-DNN approach.
Given that the state-of-the-art convolutional neural network-based
single-frame VFI-DNN, AdaCoF [27], has achieved an SSIM value
of 0.97 on two widely-used datasets for video frame interpolation
tasks (Middlebury [3] and UCF101 [43]), we set an SSIM threshold
of 0.97. This threshold determines whether the output of VFI-DNN
might compromise the overall quality of an individual video frame.

Identifying frames to drop. Based on the above, we next train a
binary classifier to select the frames to drop. The classifier’s goal is
to predict if a dropped frame could be recovered by the VFI-DNN,
while also reaching the minimum SSIM threshold.
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Given two odd-indexed input frames, F,, and Fp, assume that
the even-indexed frame between them is Fp, and the output of the
VFI-DNN when taking Fy, and Fy, as input is F;’,. Then, a binary
classifier from the inter-frame feature differences to the decision of
dropping (or preserving) Fj, could be established as follows:

Dif f (Fn, Fa) — SSIM(Fp, Fp) > 0.97? 1)

The binary classifier described in Equation 1 defines our Video
Frame Discarding (VFD) model, and Figure 3 (b) illustrates its op-
erational mechanism. To ensure the efficient implementation of
our VFD model and its ability to meet the real-time demands of
live video streaming, we propose two design strategies. First, we
employ a lightweight Multi-Layer Perceptron (i.e., 2 layers) model
to represent the VFD binary classifier. This streamlined model can
readily perform real-time inference with limited computational
resources on the upload client. Second, we select the most recent
(i.e., previous 5 minutes) video of the same live channel to pre-train
the VFD model offline. This is because, for a single live channel, its
previously broadcast videos tend to have greater similarity with
the current live video content (than unrelated videos). Thus, these
strategies ensure that the upload client can better approximate the
impact of dropping a specific frame on video quality.

5.2 Video Encoder

The role of the video encoder is to select the optimal encoding
bitrate after a frame drop. After identifying frames that can be dis-
carded, video frames can naturally be encoded at a reduced frame
rate. Initially, Reparo’s video encoder modifies MPC’s [56] input
features by substituting the quality and size of future video chunks
for their average value. The ABR algorithm then uses these inputs
to select the level of encoding bitrates for live video streaming. Sub-
sequently, it more effectively adapts to the gap between bandwidth
prediction and the chosen bitrate level through two low frame rate
encoding modes, Hbit and BWSave, which are used when the pre-
dicted bandwidth is higher or lower than the selected bitrate level
respectively. To be more specific, the two modes help to improve
the video quality or save the uplink bandwidth by adjusting the
encoding bitrate per frame.

Encoding bitrate level selection. First, Reparo needs to choose
the optimal encoding bitrate, which must consider information un-
available in live video streaming. As examples, let us take adaptive
bitrate (ABR) algorithms like MPC [56] and Pensieve [33], which
are used in on-demand video streaming. They rely on upcoming
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video chunk size and quality, historical network bandwidth, and
other factors to select the best bitrate level. However, live streaming
generates video content in real-time, making future video chunk
size and quality unknown. To compensate, Reparo modifies the
MPC algorithm, by using the average size and quality for each
bitrate level as a substitute for future video chunk information.
This modified MPC selects the encoding bitrate level for the upload
client in live video streaming.

Encoding mode adaptation. Due to real-time constraints, Reparo
selects the encoding bitrate only from a limited set of levels. This can
lead to a potential gap between selected bitrate levels and predicted
uplink bandwidth. To fill this gap, we propose two low frame rate
coding modes: Hbit and BWSave. For Hbit mode, by keeping the
total encoding bitrate constant before and after frame dropping, the
average bitrate of preserved frames increases after dropping frames.
This leads to higher quality for the remaining frames compared
to the regular encoding strategy. For BWSave mode, aiming at a
constant average bitrate of the preserved frames before and after
frame dropping results in lower bandwidth consumption.

Figure 4 shows an example of the Hbit and BWSave modes. Sup-
pose that d frames are dropped in a video chunk with n frames, and
the selected encoding bitrate level is Ry. Then, the per-frame bitrate
under Hbit mode and BWSave mode is % and % respectively, and
the chunk’s overall encoding bitrate under Hbit mode and BWSave
mode can be calculated accordingly as Ry and w.

Intuitively, our two coding modes can be combined with band-
width prediction methods in modified MPC [56]. If the predicted
bandwidth is above the selected bitrate level, we would lean to-
wards selecting the Hbit Mode for higher quality, and conversely,
we would opt for the BWSave Mode to minimize the likelihood of
rebuffering.

6 MEDIA SERVER DESIGN

6.1 VFI Processor

The role of the VFI Processor is to implement the VFI-DNN to
restore the decoded low frame rate video chunks to their original
frame rate of 25fps.

Recovering video frames under weak network conditions. When
receiving low frame rate video, the VFI-DNN is used to restore the
frame rate to 25 fps in real-time. For 480p, it recovers frames sequen-
tially, but for 720p, Reparo uses multiple GPUs for parallel inference,
distributing frames equally among 3 GPUs to speed up the process.
It should be noted that Reparo does not support 1080p video, as its
4Mbps transmission requirement is sufficient to transmit video at
the highest bitrate level.

Conv-Deconv Pair Num 2 3 4 5
Max Feature Channel 64 128 256 512
Memory/MB 44 11 34 84
SSIM-test 0.8058 0.9062 0.9105 0.9101

Table 1: Different Levels of VFI-DNN's

VFI-DNN support for different computing resources. Server
resources can fluctuate when there are multiple streams, possibly
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limiting original VFI-DNN inference. To address this, Reparo re-
duces VFI-DNN memory needs by removing some convolutional
and deconvolutional blocks from AdaCoF [27]. Table 1 shows mem-
ory usage and AdaCoF performance with different conv-deconv
pairs removed. Performance stays robust with more than two pairs
remaining, so Reparo may use 3 or 4 pairs for real-time frame
recovery when resources are limited.

6.2 VFD Trainer

The role of the VFD trainer is to update the VFD model according
to changing video content. Despite similarities between historical
and current live videos, these decrease over time. This requires
server-side resources to infer VFI-DNN and obtain the dataset for
updating the VFD model.

Algorithm 1: VFD Update Dataset Generation

Input: Received frames in a chunk F, Indices of frames Ind
Output: Dataset D

1 Initialize D = [];

2 for Fi_1, F;, Fiy1 in F do

3 if Indj+1 — Ind; = 2 and Ind; — Ind;—1 = 2 then

4 x1 = Dif f(Fis1, Fi), x2 = Dif f(Fi, Fi-1);
5 F! = VFI(Fi41, Fi-1);

6 if SSIM(F;, F]) > 0.97% then

7 ‘ yi=y2=1

8 else

9 \ y1=y2=0;

10 end

1 Add [x1,y1] and [x7,y2] to D;

else if Ind;y1 — Ind; = 1 and Ind; — Ind;—1 = 1 then
x = Dif f(Fis1, Fi-1);

F] = VFI(Fis1, Fi-1);

if SSIM(F;, F/) > 0.97 then

12
13
14

15

16 ‘ y=1

17 else

18 ‘ y=0;

19 end

20 Add [x,y] to D;
21 else

22 ‘ continue;

23 end

24 end

Acquiring the update dataset. To retrain the VFD model, it is
undesirable to require clients to upload additional training data.
Thus, retraining must be based on the incomplete frame sequences
received on the server side.

Algorithm 1 details how the training dataset for VFD model
updates is created. After receiving an incomplete frame sequence,
the server examines every three consecutive frames. When the
distances between the middle and end frames are equal, we use
the middle frame as a reference to calculate the SSIM of the frame
created by applying the VFI-DNN to the two end frames. Then, two
given SSIM thresholds for different distances are used to classify
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positive and negative samples. When the distances are unequal, the
data from the three frames is discarded.

Line 3 involves distances of two between the middle frame and
the sides, with a relaxed VFI-DNN threshold of 0.972. If the SSIM
is above this, the difference features between terminal frames are
labeled as positive samples; otherwise, they are negative. Line 13
deals with distances of one between the middle frame and the sides.
If the SSIM value exceeds 0.97, the differences become a positive
sample; otherwise, the sample is labeled negative. Line 22 concerns
unequal distances between the middle frame and sides, causing
deviations in VFI-DNN on the side frames, rendering these frames
unsuitable for training data.

Updating the VFD model and sending it to the client. Using
the above method, the media server generates training data and
updates the VFD model with three iterations over the given data. It
then sends the updated model back to the upload client to replace
the outdated VFD model every 3 seconds, which is feasible due to
the typically abundant downlink bandwidth from the server to the
upload client.

7 EVALUATION

We pose the following evaluative questions. Can Reparo achieve
video quality improvements and bandwidth savings in low-bandwidth
networks? Does Reparo provide better QoE for end users? How
effective are the VFD and VFI-DNN models?

7.1 Evaluation setup

Testbed Setup. Reparo is implemented in Python, and a testbed is
built to generate the data for evaluation. Our pipeline is based on
Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz, and NVIDIA GeForce
RTX 2080 Super GPUs. It should be noted that no GPU resources
are provided for the client.

Model Training. For the VFI-DNN training, our VFI-DNNs are
all trained on the vimeo-triplet dataset [51] like AdaCoF [27]. The
AdaCoF is not updated online as it generalizes well. The VFD model
uses a simple MLP with two hidden layers of size 100 and 10. Its
size is only 30KB and it only takes 10-50ms to infer on smartphones.
We use scikit-learn [39] to implement the model.

Evaluation Videos. We use six different types of 1080p video
clips that last at least 10 minutes from YouTube (including Podcast
[57], Skit [58] and Sports [59]) and Twitch (including Chatting [47],
LoL [48] and Saddummy [49]). They are first transcoded into 1080p
video in H.264 software codec [50] with a bitrate of 4.8Mbps and a
frame rate of 25fps. The first 5 minutes of the videos are used to
train the VFD model, while the remaining part of the videos are used
for the video streaming simulation. The VFD model’s versatility
across scenarios is proved by including the "Skit" YouTube video
[58], whose training and evaluation parts are totally different. For
each video, we provide seven different bitrates on top of Pensieve
[33] for the encoding bitrate selection algorithm. The resolution is
set from 240p to 1080p according to [10]. Finally, as live streaming
requires shorter buffers than VoD, we set the length of the buffer
length to 10s.

Network Traces. To simulate the uplink bandwidth, we use a 4G
uplink dataset [40] containing 123 traces with an average bandwidth
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Figure 5: Quality Gain and Bandwidth Consumption of Reparo’s Two Modes Across Different Video Bitrates

of 0.617Mbps, and 105 traces from the FCC 2019 dataset [15] with
an average bandwidth of 1.391Mbps. It should be noted that the
105 traces from FCC are selected based on the criterion that the
average bandwidth is less than 2 Mbps. These two kinds of traces
together have an average value of 0.974Mbps and could be used for
simulating a bandwidth-constrained environment.

QOE Calculation. To measure the QoE, we rely on the linear QoE
model proposed by Pensieve [33]:

N N N-1

QE="qRa) 1Y . Tu= . 1g(Rur1) —q(R)l (@)
n=1 n=1 n=1

where p is set to 4.3 like Pensieve [33], and the gain of SSIM is

calculated by its effective bitrate function generated by linear inter-

polation like NAS [54].

Baselines. To demonstrate that Reparo could enhance users’ QoE
and video quality, we compare Reparo with some baseline methods
under the H.264 codec [50].

DASH: The upload client encodes the original video frames with
a bitrate decided by the DASH bitrate adaptation algorithm, and
no frame drop or interpolation methods are used.

Reparo-g: The upload client drops video frames with a pre-
trained generic VFD model, and recovers them with VFI-DNN.
Hbit and BWSave modes are denoted as Hbit_ge & BWSave_ge.
BETA-Live & VOXEL-Live [22, 36]: The upload client encodes
every Group of Pictures (GOP) once to acquire the temporal
encoding order. Then, an extra choice of dropping the first 50%
of the unimportant frames (i.e. B frames for BETA-Live and P, B
frames for VOXEL) to save bandwidth will be provided for the
encoding bitrate selection algorithm.

VFI-only: The upload client drops all the even-indexed frames,
and utilizes the VFI-DNN to reconstruct these dropped frames.
VFD-only: The upload client makes use of our VFD model to
identify the frames that could be dropped, but the frames are
simply replaced by the last frame in front of it.

7.2 Results

We use SSIM, bandwidth save ratio and QoE as our metrics. The
first two are utilized for the evaluation of Reparo’s two fixed modes
separately. QoE shows Reparo’s performance when its two modes
are selected according to real network conditions.
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Quality Improvement and Bandwidth Savings for Fixed En-
coding Modes. Figure 5(a) and 5(b) displays the average SSIM
value of all YouTube and Twitch video chunks generated by Reparo
and the other baseline methods at seven bitrate levels on top of
Pensieve [33]. To calculate the per-video SSIM, we extract the av-
erage per-frame SSIM of all video frames. Figure 5(c) and Figure
5(d) show the normalized average bandwidth consumption of each
video chunk from the YouTube and Twitch streams. It should be
noted that BETA-Live and VOXEL-Live baselines are regarded as
fixed strategies here to show their capacities for saving bandwidth
and their quality loss.

Reparo surpasses all baselines, with three key observations. First,
compared to vanilla DASH streaming, Reparo’s Hbit and BWsave
modes improve performance. The Hbit mode gains 0.018 SSIM,
equal to a 41.27%-56.11% bitrate improvement, while BWsave mode
saves 30.86% bandwidth on average. Second, Reparo with our up-
dated VFD model achieves a 22.96% quality improvement and 46.53%
more bandwidth saving than using the generic VFD model. Third,
Reparo’s BWsave mode outperforms BETA-Live in quality and band-
width overhead. Despite Reparo saving less bandwidth than VOXEL-
Live, its visual quality is even lower than the previous bitrate level
of Reparo, making Reparo with the updated VFD model superior to
all baselines.

Overhead of Low Frame Rate Encoding. It should also be noted
that the VFD-VFI mechanism introduces extra overhead because
the VFD model cannot correctly identify every frame that can be
discarded, and the lowered frame rate will hurt the efficiency of
video encoding. In HBit mode, 4%-12% extra bandwidth is consumed.
While in BWSave mode, the VFD-VFI mechanism brings an average
SSIM loss of 0.007, but these overheads are not significant compared
to the average SSIM gain of 0.018 and the average bandwidth saving
ratio of 30.86%.

Overall QoE Improvements under Low-rate Network. Figure 6(a)
and Figure 6(b) present the average QoE attained by the different
methods under 4G uplink [40] and FCC [15] traces. We observe that
Reparo achieves a 36.33% overall QoE gain on 4G uplink traces, and
a10.12% overall QoE gain on the FCC traces compared to vanilla
DASH for the six different types of popular videos.

After merging two kinds of network traces together, we get an
overall QoE gain of 18.13% on DASH, 13.26% on VOXEL-Live, 9.28%
on BETA-Live, and 3.3% on Reparo-g. In addition, we multiply the
rebuffer penalty in FCC traces with a factor of 15 to make the figure



MM °23, October 29-November 3, 2023, Ottawa, ON, Canada

s DASH BETA B Reparo
I VOXEL Reparo_g

(]

2 E

315 31

3 \ 3

N1.0 N1.0

5 2

Sl Ml s

4 4

Bitrate Rebuffer
Method

(a) Average QoE on 4G

QoE QoE

Method

Bitrate Rebuffer

(b) Average QoE on FCC

Fulin Wang et al.

—— DASH
—— BETA

—— VOXEL
Reparo_g

Reparo

1.0
0.8
50.6
0.4
0.2
0.0

3

2
QoE for 1s chunks
(d) QoE CDF on FCC

4

QoE for 1s chunks
(c) QoE CDF on 4G

Figure 6: QoE Gain of Reparo

more clear, and all the other values are original. We see that Reparo
significantly reduces the rebuffer penalty and gains better bitrate
utility compared to DASH.

Figure 6(c) and Figure 6(d) present the CDF curves of QoE under
the 4G and FCC traces for all video chunks of our six videos. We
see that the majority of the Reparo curve is located below the other
curves, showing that the QoE of Reparo is better than that of the
others.
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Figure 7: Reparo’s Chunk-level Gain

Reparo’s Chunk Level Effectiveness. To further explain the ef-
fectiveness of Reparo, Figure 7 presents Reparo’s chunk-level gain
compared to DASH across the six types of videos. Figure 7(a) il-
lustrates the SSIM gain on every video chunk brought by Reparo’s
Hbit mode. On six types of videos, more than 75% of chunks could
reach an SSIM gain of at least 0.005 from Hbit mode. Figure 7(b)
shows the chunk-level bandwidth save ratio brought by Reparo’s
BWSave mode. On the six types of videos, more than 75% of chunks
reach a bandwidth save ratio of at least 20% from BWSave mode.

Mobile Phone Processor VFD Pipeline

Galaxy A90 5G  SDM 855 593ms
OnePlus 9 SDM 888 520ms
iPhone 13 A15 bionic 213ms

Table 2: Time Cost of VFD Workflow on 1s Chunks

VFD-VFI Overhead. Since Reparo adds the VFD-VFI mechanism
compared to vanilla DASH, we next demonstrate that the VFD-VFI
pipeline can operate in real-time. For the VFD pipeline on the client
side, we use three types of mobile devices to measure the execution
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speed of the VFD process, implemented by Pydroid for Android
and Pyto for iOS. Table 2 shows the delay of executing the whole
VFD pipeline on a 1s video chunk. We see it easily meets real-time
requirements of under 600ms.

Resolution fps Delay on Single GPU GPUs

240p 46 21ms 1
360p 20 50ms 1
480p 15 66ms 1
720p 16 112ms 3

Table 3: VFI-DNN Inference Latency

For VFI-DNN inference, Table 3 shows the frames per second
achievable, alongside the computational time required. Reparo’s
VFI-DNN can reach a speed of 15 frames per second, at 480p res-
olution under single-GPU inference. This exceeds the minimum
requirement of 12 fps. For 720p video, we use 3 GPUs to infer VFI-
DNN in parallel, distributing the video frames equally among 3
GPUs for inference, thus speeding up the inference to 16 fps.

8 CONCLUSION AND FUTURE WORKS

In this paper, we have proposed Reparo, a new live video streaming
system for low bandwidth networks. Reparo requires less uplink
bandwidth between the upload client and the media server. It works
on a novel video-frame-discard & video-frame-interpolation frame-
work, adapting the frame-drop approach to the ingest part of the
live video stream. Reparo also exploits the potential of frame-drops
by selecting low frame-rate coding modes. Compared to DASH,
our evaluation shows that Reparo achieves 18.13% improvement in
users’ QoE based on real-world network traces. Future work will
focus on exploring the VFD model’s generalizability, attempting to
categorize the videos into different classes, and adopting a more
generalized pre-trained VFD model for each class.
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Reparo: QoE-Aware Live Video Streaming in low-rate Networks by Intelligent Frame Recovery

A AN EXAMPLE RESULT OF VFI-DNN

A.1 VFI-DNN Outperforms Naive Approaches

Figure 8 displays the performance of VFI-DNN [27], the traditional
video frame interpolation method [60], and the approach of di-
rectly replacing the missing intermediate frame with the preceding
frame. The traditional optical-flow-based video frame interpolation
method struggles to recover the intermediate video frames even
between two adjacent frames with minor scene changes, resulting
in performance inferior to simply replacing the intermediate frame
with the one preceding it. In contrast, VFI-DNN demonstrates the
capability to recover the missing intermediate video frame with
significantly higher quality.

Ground Truth (a) Replace
SSIM=0.90

(b) VFI-DNN (c) Optical Flow
SSIM=0.95 SSIM=0.89
Figure 8: The Quality Comparison of VFI-DNN and the Other

Approaches
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A.2 VFI-DNN Cannot Handle Everything

The performance of VFI-DNN is constrained by the extent of scene
changes. For instance, Figure 9 illustrates that VFI-DNN is less
effective when confronted with drastic scene changes between two
consecutive input frames. Consequently, it is essential to predict the
performance of the video frame interpolation DNN on the upload
client to identify frames that cannot be adequately recovered by
our VFI-DNN after being dropped.

‘ \' )‘ v
Ry
(a) Bad Result

(b) Good Result
Figure 9: Good and Bad Results of VFI-DNN

B SINGLE FRAME VFI-DNN IS BETTER

Figure 10 presents a case study based on a 40-second clip from
one of our evaluation videos, "Legend" [48]. In this study, for each
preserved frame, multiple consecutive frames are discarded and
subsequently recovered using the state-of-the-art multi-frame VFI-
DNN [8]. By employing the original dropped frames as a reference
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for calculating the SSIM, it becomes apparent that as the number
of dropped consecutive frames increases, the SSIM value decreases.

In comparison to the single-frame interpolation model, the multi-
frame interpolation model demonstrates less robustness and is un-
suitable for the frame-drop & frame-interpolation process proposed
by Reparo. This is attributed to two primary factors. Firstly, em-
ploying the multi-frame model indicates that multiple consecutive
frames are dropped, making it challenging for VFI-DNN to capture
the nonlinear motion of objects between these frames. Secondly,
the multi-frame interpolation model is typically utilized to enhance
the frame rate of the original video, such as increasing the frame
rate of game videos from 30 fps to 60 fps or even 120 fps. In the
context of the frame-drop & frame-interpolation process, after the
video frames are discarded, the gap between the remaining frames
should inherently be larger. Consequently, the multi-frame model
leads to a more significant degradation of video quality.

10

20
Chunk index

Figure 10: The Performance of Multi-frame VFI-DNN when
Discarding Multiple Consecutive Frames

30 40

C VFD-VFI ABLATION STUDY

We finally evaluate Reparo’s Hbit mode to verify if the VFD-VFI
mechanism effectively handles quality degradation from inappropri-
ate frame drops. Therefore, we calculate the number of interpolated
frames with an SSIM loss over 0.05 as an additional metric after
removing the VFD model and VFI-DNN.

Figure 11(a) shows the average SSIM value of VFD-only, VFI-only,
and Reparo under Hbit mode. Reparo with only the VFD model has
a 0.007 lower SSIM, demonstrating VFI-DNN’s effectiveness, and
contributing to 39% of the overall quality gain. Although Reparo
with only VFI-DNN has a 0.003 higher SSIM, Figure 11(b) reveals
that the VFI-only approach generates many frames with consider-
able SSIM degradation. In contrast, Reparo filters 56.87 ~ 96.91%
lossy frames, enhancing the user experience. To conclude, both the
VFD model and VFI deep neural network are effectively designed.

§1-2 mmm Reparo

B VFl-only
0.90 210
=0.86 gos
$0.82 Reparo £0.6
0.78 VFD-only >0.4
VFl-only 70.2
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(a) SSIM Result of Ablation
Figure 11: VFD & VFI Ablation Study of Reparo

(b) Number of Lossy Frame Generated
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