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Abstract

General Instance Re-identification is a very important
task in the computer vision, which can be widely used
in many practical applications, such as person/vehicle re-
identification, face recognition, wildlife protection, com-
modity tracing, and snapshop, etc.. To meet the increasing
application demand for general instance re-identification,
we present FastReID as a widely used software system in
JD AI Research. In FastReID, highly modular and extensi-
ble design makes it easy for the researcher to achieve new
research ideas. Friendly manageable system configuration
and engineering deployment functions allow practitioners
to quickly deploy models into productions. We have imple-
mented some state-of-the-art projects, including person re-
id, partial re-id, cross-domain re-id and vehicle re-id, and
plan to release these pre-trained models on multiple bench-
mark datasets. FastReID is by far the most general and
high-performance toolbox that supports single and multi-
ple GPU servers, you can reproduce our project results
very easily and are very welcome to use it, the code and
models are available at https: https://github.com/
JDAI-CV/fast-reid.

1. Introduction

General instance re-identification (re-id), as an instance-
centric AI technique, aiming at finding a certain per-
son/vehicle/face/object of interest in a large amount of
videos. It facilitates various applications that require painful
and boring video watching, including searching for video
shots related to an actor of interest from TV series, a lost
child in a shopping mall from camera videos, a suspect vehi-
cle from a city surveillance system. Moreover, the General
instance re-identification technique is also used for snap-
shop in e-commerce platforms, commodity tracing in mer-
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chandise security and wildlife protection. Many researchers
realize a task based on open source code, less extensible and
reusable modification make it difficult to reproduce the re-
sults. Besides, there often exists a gap between academic
research and practical applications, which makes it difficult
for academic research techniques to be quickly transferred
to productions.

To accelerate progress in the community of general in-
stance re-identification including researchers and practi-
tioners in academia and industry, we now release a uni-
fied instance re-id library named FastReID. We have in-
troduced a stronger modular, extensible design that allows
researchers and practitioners easily to plug their oven de-
signed module without repeatedly rewriting codebase, into
a re-id system for further rapidly moving research ideas
into production models. Manageable system configuration
makes it more flexible and extensible, which is easily ex-
tended to a range of tasks, such as general image retrieve
and face recognition, etc. Based on FastReID, we provide
many state-of-the-art pre-trained models on multiple tasks
about person re-id, cross-domain person re-id, partial per-
son re-id and vehicle re-id, and in the future we will release
face recognition and object retrieval models. Besides, we
hope that the library can provide a fair comparison between
different approaches.

Recently, FastReID has become one of the widely used
open-source library in JD AI Research. We will continu-
ally refine it and add new features to it. We warmly wel-
come individuals, labs to use our open-source library and
look forward to cooperating with you to jointly accelerate
AI Research and achieve technological breakthroughs.

2. Highlight of FastReID
FastReID provides a complete toolkit for training, eval-

uation, finetuning and model deployment. Besides, Fas-
tReID provides strong baselines that are capable of achiev-
ing state-of-the-art performance on multiple tasks.
Modular and extensible design. In FastReID, we in-
troduce a modular design that allows users to plug
custom-designed modules into almost any part of the re-
identification system. Therefore, many new researchers and
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Figure 1. The Pipeline of FastReID library.

practitioners can quickly implement their ideas without re-
writing hundreds of thousands of lines of code.

Manageable system configuration. FastReID imple-
mented in PyTorch is able to provide fast training on multi-
GPU servers. Model definitions, training and testing are
written as YAML files. FastReID supports many optional
components, such as backbone, head aggregation layer and
loss function, and training strategy.

Richer evaluation system. At present, many researchers
only provide a single CMC evaluation index. To meet the
requirement of model deployment in practical scenarios,
FastReID provides more abundant evaluation indexes, e.g.,
ROC and mINP, which can better reflect the performance of
models.

Engineering deployment. Too deep model is hard to de-
ploy in edge computing hardware and AI chips due to time-
consuming inference and unrealizable layers. FastReID
implements the knowledge distillation module to obtain a
more precise and efficient lightweight model. Also, Fas-
tReID provides a conversion tool, e.g., PyTorch→Caffe and
PyTorch→TensorRT to achieve fast model deployment.

State-of-the-art pre-trained models. FastReID provides
state-of-the-art inference models including person re-id,
partial re-id, cross-domain re-id and vehicle re-id. We plan
to release these pre-trained models. FastReID is very easy
to extend to general object retrieval and face recognition.
We hope that a common software advanced new ideas to
applications.

Random erasing Random patch Cutout

Figure 2. Image pre-processing.

3. Architecture of FastReID
In this section, we elaborate on the pipeline of FastReID

as shown in Fig. 1. The whole pipeline consists of four
modules: image pre-processing, backbone, aggregation and
head, we will introduce them in detail one by one.

3.1. Image Pre-processing

The collected images are of different sizes, we first re-
size the images to fixed-size images. And images can be
packaged into batches and then input into the network. To
obtain a more robust model, flipping as a data augmentation
method by mirroring the source images to make data more
diverse. Random erasing, Random patch [1] and Cutout
[2] are also augmentation methods that randomly selects a
rectangle region in an image and erases its pixels with ran-
dom values, another image patch and zero values, making
the model effectively reduce the risk of over-fitting and ro-
bust to occlusion. Auto-augment is based on automl tech-
nique to achieve effective data augmentation for improv-
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ing the robustness of feature representation. It uses an auto
search algorithm to find the fusion policy about multiple
image processing functions such as translation, rotation and
shearing.

3.2. Backbone

Backbone is the network that infers an image to feature
maps, such as a ResNet without the last average pooling
layer. FastReID achieves three different backbones includ-
ing ResNet [3], ResNeXt [4] and ResNeSt [5]. We also add
attention-like non-local [6] module and instance batch nor-
malization (IBN) [7] module into backbones to learn more
robust feature.

3.3. Aggregation

The aggregation layer aims to aggregate feature maps
generated by the backbone into a global feature. We will
introduce four aggregation methods: max pooling, average
pooling, GeM pooling and attention pooling. The pool-
ing layer takes X ∈ RW×H×C as input and produces a
vector f ∈ R1×1×C as an output of the pooling process,
where W,H,C respectively represent the width, the height
and the channel of the feature maps. The global vector
f = [f1, ..., fc, ..., fC ] in the case of the max pooling, av-
erage pooling, GeM pooling and attention pooling of are
respectively given by

Max Pooling : fc = max
x∈Xc

x (1)

Avg Pooling : fc =
1

|Xc|
∑
x∈Xc

x (2)

Gem Pooling : fc = (
1

|Xc|
∑
x∈Xc

xα)
1
α (3)

Attention Pooling : fc =
1

|Xc ∗Wc|
∑

x∈Xc,w∈Wc

w ∗ x

(4)
where α is control coefficient and Wc are the softmax at-
tention weights.

3.4. Head

Head is the part of addressing the global vector gen-
erated by aggregation module, including batch normaliza-
tion (BN) head, Linear head and Reduction head. Three
types of the head are shown in Fig. 3, the linear head
only contains a decision layer, the BN head contains a bn
layer and a decision layer and the reduction head contains
conv+bn+relu+dropout operation, a reduction layer and a
decision layer.
Batch Normalization [8] is used to solve internal covari-
ate shift because it is very difficult to train models with

Linear head

Feature
vector Reduction

Layer

BNConv(1x1)+BN+
ReLU+Dropout

Decision
Layer

Reduction head

BN head

BN

Feature
vector

Decision
Layer

Decision
Layer

Feature
vector

Figure 3. Different heads that implemented in FastReID

saturating non-linearities. Given a batch of feature vector
f ∈ Rm×C (m is the sample number in a batch), then the
bn feature vector fbn ∈ Rm×C can be computed as

µ =
1

m

m∑
i=1

fi,

σ2 =
1

m

m∑
i=1

(fi − µ)2,

fbn = γ · f − µ√
σ2 + ε

+ β

(5)

where γ and β are trainable scale and shift parameters, and ε
is a constant added to the mini-batch variance for numerical
stability.
Reduction layer is aiming to make the high-dimensional
feature become the low-dimensional feature, i.e., 2048-
dim→512-dim.
Decision layer outputs the probability of different cate-
gories to distinguish different categories for the following
model training.

4. Training

4.1. Loss Function

Four different loss functions are implemented in Fas-
tReID.
Cross-entropy loss is usually used for one-of-many classi-
fication, which can be defined as

Lce =
C∑
i=1

yi log ŷi + (1− yi) log(1− ŷi), (6)
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where ŷi = eW
T
i f∑C

i=1 e
WT
i

f
. Cross-entropy loss makes the pre-

dicted logit values to approximate to the ground truth. It
encourages the differences between the largest logit and
all others to become large, and this, combined with the
bounded gradient reduces the ability of the model to adapt,
resulting in a model too confident about its predictions.
This, in turn, can lead to over-fitting. To build a robust
model that can generalize well, Label Smoothing is pro-
posed by Google Brain to address the problem. It encour-
ages the activations of the penultimate layer to be close to
the template of the correct class and equally distant to the
templates of the incorrect classes. So the ground truth label
y in cross-entropy loss can be defined as yi(j = c) = 1− δ
and yi(j 6= c) = δ

C−1 .
Arcface loss [9] maps cartesian coordinates to spheri-
cal coordinates. It transforms the logit as WT

i f =
‖Wi‖‖f‖ cos θi, where θi is the angle between the weight
Wi and the feature f . It fixes the individual weight ‖Wi‖ =
1 by l2 normalisation and also fixes the embedding fea-
ture f by l2 normalisation and re-scale it to s, so ŷi =

es cos θi∑C
i=1 e

s cos θi
. To simultaneously enhace the intra-class com-

pactness and inter-class discrepancy, Arcface adds an addi-
tive angular margin penalty m in the intra-class measure.
So ŷi can rewritten as ŷi = es cos(θi+m)

es cos(θi+m)+
∑C−1
i=1,i 6=c e

s cos θi
.

Circle loss. The derivation process of circle loss is not de-
scribed here in detail, it can refer to [10].
Triplet loss ensures that an image of a specific person is
closer to all other images of the same person than to any
images of other persons, which wants to make an image
xai (anchor) of a specific person closer to all other im-
ages xpi (positive) of the same person than to any image
xni (negative) of any other person in the image embedding
space. Thus, we want D(xai , x

p
i ) +m < D(xai , x

n
i ), where

D(:, :) is measure distance between a pair of person im-
ages. Then the Triplet Loss with N samples is defined as∑N
i=1[m + D(gai , g

p
i ) − D(gai , g

n
i )], where m is a margin

that is enforced between a pair of positive and negative.

4.2. Training Strategy

Fig. 4 shows the train strategy that contains many
tricks including learning rate for different iteration, network
warm-up and freeze.
Learning rate warm-up helps to slow down the premature
over-fitting of the mini-batch in the initial stage of the model
training. Also, it helps to maintain the stability of the deep
layer of the model. Therefore, we will give a very small
learning rate, e.g., 3.5×10−5 in the initial training and then
gradually increase it during the 2k iterations. After that, the
learning rate remains at 3.5−4 between 2k iterations and 9k
iterations. Then, the learning rate starts from 3.5 × 10−4

and decays to 7.7 × 10−7 at cosine rule after 9k iterations,
the training is finished at 18k iterations.
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Figure 4. Learning rate curve as a function of the number of itera-
tion

Backbone freeze. To re-train a classification network to
meet the requirement of our tasks, we use the collected
data from the tasks to fine-tune on the ImageNet pre-trained
model. Generally, we add a classifier that collected the net-
work such as ResNet, and the classifier parameters are ran-
domly initialized. To initialize the parameters of the clas-
sifier better, we only train the classifier parameters while
freezing the network parameters without updating at the be-
ginning of the training (2k iterations). After 2k iterations,
we will free the network parameter for end-to-end training.

5. Testing

5.1. Distance Metric.

Eucildean and cosine measure are implemented in Fas-
tReID. And we also implement a local matching method:
deep spatial reconstruction (DSR).
Deep spatial reconstruction. Suppose there is a pair of
person images x and y. Denote the spatial features map
from backbone as x for x with dimension dimension wx ×
hx × d, and y for y with dimension wy × hy × d. The
total N spatial features from N locations are aggregated
into a matrix X = [xn]

N
n=1 ∈ Rd×N , where N = wx ×

hx. Likewise, we construct the gallery feature matrix Y =
{ym}Mm=1 ∈ Rd×M , M = wy × hy . Then, xn can find the
most similar spatial feature in Y to match, and its matching
score sn. Therefore, we try to obtain the similar scores for
all spatial features of X with respect to Y, and the final
matching score can be defined as s =

∑N
n=1 sn.

5.2. Post-processing.

Two re-rank methods: K-reciprocal coding [11] and
Query Expansion (QE) [12] are implemented in FastReID.
Query expansion. Given a query image, and use it to find
m similar gallery images. The query feature is defined as fq
and m similar gallery features are defined as fg . Then the
new query feature is constructed by averaging the verified
gallery features and the query feature. So the new query
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Figure 5. Illustration of knowledge distillation module

feature fnewq can be defined as

fqnew =
fq +

∑m
i=1 f

(i)
g

m+ 1
. (7)

After that the new query feature fqnew is used for following
image retrieve. QE can be easily used for practical scenar-
ios.

5.3. Evaluation

For performance evaluation, we employ the standard
metrics as in most person re-identification literature, namely
the cumulative matching cure (CMC) and the mean Aver-
age Precision (mAP). Besides, we also add two metrics: re-
ceiver operating characteristic (ROC) curve and mean in-
verse negative penalty (mINP) [13].

5.4. Visualization

We provide a rank list tool of retrieval result that con-
tributes to checking the problems of our algorithm that we
haven’t solved.

6. Deployment
In general, the deeper the model, the better the perfor-

mance. However, too deep a model is not easy to de-
ploy in edge computing hardware and AI chips since 1)
it needs time-consuming inference; 2) many layers are
difficult to implement on AI chips. Considering these
reasons, we implement the knowledge distillation module
in FastReID to achieve a high-precision, high-efficiency
lightweight model.

As shown in Fig. 5, given a pre-trained student model
and a pre-trained teacher model on reid datasets, the teacher
model is a deeper model with non-local module, ibn mod-
ule and some useful tricks. The student model is simple
and shallow. We adopt two-stream way to train the stu-
dent model with teacher backbone freezing. The student
and teacher models respectively output classifier logits ls, lt
and features fs, ft. We want student model to learn classifi-
cation ability as much as possible about the teacher model,
the logit learning can be defined as

Llogit = ‖ls − lt‖1. (8)

Table 1. Performance comparison on Market1501, DukeMTMC
and MSMT17 datasets.

Methods Market1501 DukeMTMC MSMT17
R1 mAP R1 mAP R1 mAP

SPReID [14] (CVPR’18) 92.5 81.3 84.4 70.1 - -
PCB [15] (ECCV’18) 92.3 77.4 81.8 66.1 - -
AANet [16] (CVPR’19) 93.9 83.4 87.7 74.3 - -
IANet [17] (CVPR’19) 94.4 83.1 87.1 73.4 75.5 45.8
CAMA [18] (CVPR’19) 94.7 84.5 85.8 72.9 - -
DGNet [19] (CVPR’19) 94.8 86.0 86.6 74.8 - -
DSAP [20] (CVPR’19) 95.7 87.6 86.2 74.3 - -
Pyramid [19] (CVPR’19) 95.7 88.2 89.0 79.0 - -
Auto-ReID [21] (ICCV’19) 94.5 85.1 - - 78.2 52.5
OSNet [1] (ICCV’19) 94.8 84.9 88.6 73.5 78.7 52.9
MHN [22] (ICCV’19) 95.1 85.0 89.1 77.2 - -
P2-Net [23] (ICCV’19) 95.2 85.6 86.5 75.1 - -
BDB [24] (ICCV’19) 95.3 86.7 89.0 76.0 - -
FPR [25] (ICCV’19) 95.4 86.6 88.6 78.4 - -
ABDNet [22] (ICCV’19) 95.6 88.3 89.0 78.6 82.3 60.8
SONA [26] (ICCV’19) 95.7 88.7 89.3 78.1 - -
SCAL [22] (ICCV’19) 95.8 89.3 89.0 79.6 - -
CAR [1] (ICCV’19) 96.1 84.7 86.3 73.1 - -
Circle Loss [10] (CVPR’20) 96.1 87.4 - - 76.9 52.1
FastReID (ResNet50) 95.4 88.2 89.6 79.8 83.3 59.9
FastReID (ResNet50-ibn) 95.7 89.3 91.3 81.6 84.0 61.2
FastReID (ResNeSt) 95.0 87.0 90.5 79.1 82.6 58.2
FastReID-MGN (ResNet50-ibn) 95.7 89.7 91.6 82.1 85.1 65.4
FastReID (ResNet101-ibn) 96.3 90.3 92.4 83.2 85.1 63.3
+ QE 96.5 94.4 93.4 90.1 87.9 76.9
+ Rerank 96.8 95.3 94.4 92.2 - -

In order to ensure the consistency of student model and
teacher model in the feature space distribution, probabilistic
knowledge transfer model based on Kullback-Leibler diver-
gence is used for optimizing the student model:

LPKT =

N∑
i=1

N∑
j=1,i6=j

pj|i log(
pj|i

pi|j
)

pi|j =
K(f is, f

j
s )∑N

j=1,i6=j K(f is, f
j
s )

pj|i =
K(f it , f

j
t )∑N

j=1,i6=j K(f
i),fjt
t

(9)

where K(:, :) is cosine similarity measure.
At the same time, the student model needs ReID loss

Lreid to optimize the entire network. Therefore, the total
loss is:

Lkd = Llogit + αLPKT + Lreid. (10)

After finish training, the fs is used for inference.
We also provide model conversion tool (PyTorch →

Caffe and PyTorch→ TensorRT) in the FastReID library.

7. Projects

7.1. Person Re-identification

Datasets. Three person re-id benchmarking datasets: Mar-
ket1501 [27], DukeMTMC [28], MSMT17 [29] are used for
evaluating the FastReID. We won’t go into the details of the
database here.

5



Table 2. Ablation Studies of FastReID on DukeMTMC. (ResNet50, 384×128).
Bag-of-Tricks IBN Auto- Soft Non- Gem Circle Backbone Cosine Lr R1 mAP mINPAugment Margin Local Pooling Loss Freeze Scheduler√

85.5 75.2 37.9√ √
89.2 79.1 43.9√ √
84.9 72.8 34.5√ √
86.1 76.3 39.0√ √
87.3 77.6 42.0√ √
87.4 77.1 40.3√ √
88.7 78.3 41.8√ √
85.9 74.7 36.4√ √ √
88.8 77.8 40.3√ √ √
89.5 78.3 41.6√ √ √ √
89.5 78.5 42.5√ √ √ √ √ √ √ √ √
91.3 81.6 47.6

Market1501 DukeMTMC MSMT17

Figure 6. ROC curves and distribution curves between intra-class and inter-class samples on three benchmarking datasets for FastReID
(ResNet101-ibn)

FastReID Setting. We use flipping, random erasing and
auto-augment to process the training image. The IBN-
ResNet101 with a Non-local module is used as the back-
bone. The gem pooling and bnneck are used as the head and
aggregation layer, respectively. For the batch hard triplet
loss function, one batch consists of 4 subjects, and each
subject has 16 different images, and we use circle loss and
triplet loss to train the whole network.
Result. The state-of-the-art algorithms published in CVPR,
ICCV, ECCV during 2018-2020 are listed in Table 1,
FastReID achieves the best performance on Market1501
96.3%(90.3%), DukeMTMC 92.4%(83.2%) and MSMT17
85.1%(65.4%) at rank-1/mAP accuracy, respectively. Fig. 6
shows the ROC curves on the three benchmarking datasets.

7.2. Cross-domain Person Re-identification

Problem definition. Cross-domain person re-identification
aims at adapting the model trained on a labeled source do-
main dataset to another target domain dataset without any
annotation.
Setting. We propose a cross-domain method FastReID-
MLT that adopts mixture label transport to learn pseudo
label by multi-granularity strategy. We first train a model
with a source-domain dataset and then finetune on the
pre-trained model with pseudo labels of the target-domain
dataset. FastReID-MLT is implemented by ResNet50 back-
bone, gem pooling and bnneck head. For the batch hard
triplet loss function, one batch consists of 4 subjects, and
each subject has 16 different images, and we use circle loss
and triplet loss to train the whole network. Detailed con-
figuration can be found on the GitHub website. The frame-
work of FastReID-MLT is shown in Fig. 7.
Result. Table 3 shows the results on several datasets,

Source 
domain 
image

target 
domain 
image

Pre-processing

Pre-processing

Backbone

Clustering

Aggregation Head Loss

Label refinery

Pretrained 
backbone

Flipping,
Random erasing,
Auto-augment

Flipping,
Auto-augment

K-means

BnneckResNet50 Gem Pooling
Triplet loss
Circle loss

Optimal transport

Batch size: 
4 ids×16 imgs

Figure 7. Framework of FastReID-MLT

Table 3. Performance comparison to the unsupervised cross-
domain re-id SOTA methods on three benchmark datasets. “BOT”
denotes to the bag of tricks method, which is a strong baseline in
the ReID task. M: Market1501, D: DukeMTMC, MS: MSMT17.

Methods D→M M→D
mAP R1 mAP R1

TJ-AIDL [30] (CVPR’18) 26.5 58.2 23.0 44.3
SPGAN [31] (CVPR’18) 22.8 51.5 22.3 41.1
ATNet [32](CVPR’19) 25.6 55.7 24.9 45.1
SPGAN+LMP [33](CVPR’18) 26.7 57.7 26.2 46.4
HHL [34] (ECCV’18) 31.4 62.2 27.2 46.9
ARN [35] (CVPR’18-WS) 39.4 70.3 33.4 60.2
ECN [36] (CVPR’19) 43.0 75.1 40.4 63.3
UCDA [37] (ICCV’19) 30.9 60.4 31.0 47.7
PDA-Net [38] (ICCV’19) 47.6 75.2 45.1 63.2
PCB-PAST [39] (ICCV’19) 54.6 78.4 54.3 72.4
SSG [40] (ICCV’19) 58.3 80.0 53.4 73.0
MPLP+MMCL [41] (CVPR’20) 60.4 84.4 51.4 72.4
AD-Cluster [42] (CVPR’20) 68.3 86.7 54.1 72.6
MMT [43] (ICLR’20) 71.2 87.7 65.1 78.0
FastReID-MLT 80.5 92.7 69.2 82.7
Supervised learning (BOT [44]) 85.7 94.1 75.8 86.2

Methods M→MS D→MS
mAP R1 mAP R1

PTGAN [45] (CVPR’18) 2.9 10.2 3.3 11.8
ENC [36] (CVPR’19) 8.5 25.3 10.2 30.2
SSG [40] (ICCV’19) 13.2 31.6 13.3 32.2
DAAM [46] (AAAI’20) 20.8 44.5 21.6 46.7
MMT [43] (ICLR’20) 22.9 49.2 23.3 50.1
FastReID-MLT 26.5 56.6 27.7 59.5
Supervised learning (BOT [44]) 48.3 72.3 48.3 72.3
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Table 4. Comparison of the state-of-the-art Partial Person Re-
ID methods on the PartialREID, OccludedREID and PartialiLIDS
datastes.

Methods PartialREID OccludedREID PartialiLIDS
R1 mAP R1 mAP R1 mAP

PCB [15] (ECCV’18) 56.3 54.7 41.3 38.9 46.8 40.2
SCPNet [47] (ACCV’18) 68.3 - - - - -
DSR [48] (CVPR’18) 73.7 68.1 72.8 62.8 64.3 58.1
VPM [49] (CVPR’19) 67.7 - - - 65.5 -
FPR [50] (ICCV’19) 81.0 76.6 78.3 68.0 68.1 61.8
HOReID [51] (CVPR’20) 85.3 - 80.3 70.2 72.6 -
FastReID-DSR 82.7 76.8 81.6 70.9 73.1 79.8

FastReID-MLT can achieve 92.7%(80.5%), 82.7%(69.2%)
under D→M, M→D settings. The result is close to super-
vised learning results.

7.3. Partial Person Re-identification

Problem definition. Partial person re-identification (re-id)
is a challenging problem, where only several partial obser-
vations (images) of people are available for matching.
Setting. The setting as shown in Fig. 8.
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Figure 8. Framework of FastReID-DSR

Result. Table 5 shows the results on PartialREID, Oc-
cludedREID and PartialiLIDS datasets. FastReID-DSR can
achieve 82.7% (76.8%), 81.6% (70.9%) and 73.1% (79.8)
at rank-1/mAP metrics.

7.4. Vehicle Re-identification

Datasets. Three vehicle re-id benchmarking datasets: VeRi,
VehicleID and VERI-Wild are used for evaluating the pro-
posed FastReIDin the FastReID. We won’t go into the de-
tails of the database here.
Settings. The setting as shown in Fig. 9.
Result. The state-of-the-art algorithms published during
2015-2019 are listed in Table 5, Table 6, Table 7. Fas-
tReID achieves the best performance on VeRi, VehicleID
and VERI-Wild, respectively.

8. Conclusion
This paper introduces a open source library namely Fas-

tReID for general instance re-identification. Experimental
results demonstrated the versatility and effectiveness of Fas-
tReID on multiple tasks, such as person re-identification
and vehicle re-identification. Were sharing FastReID be-
cause open source research platforms are critical to the rapid

Backbone Head

Loss

ResNet50,
IBN,
Non-local

Bnneck

Triplet loss,
Circle loss

Pre-processing

Flipping,
Random erasing,
Auto-augment

Input
image

VeRi Setting

Aggregation

Gem Pooling

Batch size:
16 ids � 4 imgs

Backbone Head

Loss

ResNet50,
IBN

Bnneck

Cross-entropy loss
Triplet loss

Pre-processing

Flipping,
Random erasing

Input
image

VehicleID & VERI-Wild Setting

Aggregation

Gem Pooling

Batch size:
4 ids � 128 imgs

Figure 9. Framework of FastReID on VehicleID and VERI-Wild

Table 5. Comparison of the state-of-the-art vehicle Re-Id methods
on the VeRi dataset.

Methods mAP (%) R-1 (%) R-5 (%)
Siamese-CNN [52] (ICCV’17) 54.2 79.3 88.9
FDA-Net [53] (CVPR’19) 55.5 84.3 92.4
Siamese-CNN+ST [52] (ICCV’17) 58.3 83.5 90.0
PROVID [54] (TMM’18) 53.4 81.6 95.1
PRN [55] (CVPR’19) 70.2 92.2 97.9
PAMTRI [56](ICCV’19) 71.8 92.9 97.0
PRN [55] (CVPR’19) 74.3 94.3 98.9
FastReID 81.9 97.0 99.0

Table 6. Comparison of the state-of-the-art vehicle Re-Id methods
on the VehicleID dataset.

Methods Small Medium Large
R-1 R-5 R-1 R-5 R-1 R-5

DRDL [57] 48.9 73.5 42.8 66.8 38.2 61.6
NuFACT [54] 48.9 69.5 43.6 65.3 38.6 60.7
VAMI [58] 63.1 83.3 52.9 75.1 47.3 70.3
FDA-Net [53] - - 59.8 77.1 55.5 74.7
AAVER [59] 74.7 93.8 68.6 90.0 63.5 85.6
OIFE [60] - - - - 67.0 82.9
PRN [55] 78.4 92.3 75.0 88.3 74.2 86.4
FastReID 86.6 97.9 82.9 96.0 80.6 93.9

Table 7. Comparison of the state-of-the-art vehicle Re-Id methods
on the VERI-Wild dataset.

Methods Small Medium Large
mAP R-1 mAP R-1 mAP R-1

GoogLeNet [61] 24.3 57.2 24.2 53.2 21.5 44.6
DRDL [57] 22.5 57.0 19.3 51.9 14.8 44.6
FDA-Net [53] 35.1 64.0 29.8 57.8 22.8 49.4
MLSL [62] 46.3 86.0 42.4 83.0 36.6 77.5
FastReID 87.7 96.4 83.5 95.1 77.3 92.5

advances in AI made by the entire community, including re-
searchers and practitioners in academia and industry. We
hope that releasing FastReID will continue to accelerate
progress in the area of general instance re-identification. We
also look forward to collaborating with learning from each
other for advancing the development of computer vision.
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