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ABSTRACT
The recently rising markup-to-image generation poses greater chal-
lenges as compared to natural image generation, due to its low
tolerance for errors as well as the complex sequence and context
correlations between markup and rendered image. This paper pro-
poses a novel model named “Contrast-augmented Diffusion Model
with Fine-grained Sequence Alignment” (FSA-CDM), which in-
troduces contrastive positive/negative samples into the diffusion
model to boost performance for markup-to-image generation. Tech-
nically, we design a fine-grained cross-modal alignment module
to well explore the sequence similarity between the two modal-
ities for learning robust feature representations. To improve the
generalization ability, we propose a contrast-augmented diffusion
model to explicitly explore positive and negative samples by maxi-
mizing a novel contrastive variational objective, which is mathe-
matically inferred to provide a tighter bound for the model’s opti-
mization. Moreover, the context-aware cross attention module is
developed to capture the contextual information within markup
language during the denoising process, yielding better noise predic-
tion results. Extensive experiments are conducted on four bench-
mark datasets from different domains, and the experimental re-
sults demonstrate the effectiveness of the proposed components in
FSA-CDM, significantly exceeding state-of-the-art performance by
about 2% ∼ 12% DTW improvements. The code will be released at
https://github.com/zgj77/FSACDM.
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1 INTRODUCTION
The recent progress of generative models like Generative Adversar-
ial Network (GAN) [37, 39] and Denoising Diffusion Probabilistic
Model (DDPM) [17] has tremendously promoted the prosperity of
text-to-image generation, which aims at generating a semantically
matching image conditioned on a language description. Most exist-
ing image generation studies focus on generating natural images,
where each ambiguous natural language expression may generate
multiple semantically consistent images with diverse appearances.

As a comparison, Deng et al. [8] recently proposed a novel text-
to-image task called “markup-to-image”, which aims at mapping a
structured markup description like mathematical formulas, HTML
simple tables, music notations, and chemical molecules (see Fig-
ure 1 (a)), into an exact image, which could precisely express the
corresponding markup language. Different from natural image gen-
eration, markup-to-image task has known ground truth to facilitate
models’ evaluation. Moreover, the compositional nature of markup
language requires a deeper exploration of relational properties,
which poses greater challenges for this task.

Benefiting from advances in Diffusion Models (DMs) for image
generation [32], Deng et al. first designed a DM with scheduled
sampling for markup-to-image generation. This approach attempts
to alleviate the exposure bias problem in DMs, where a model is
never exposed to incorrectly generated tokens during the training
but frequently faces these errors in the inference phase. Despite
the success, it still has the following drawbacks when applied in
markup-to-image generation: First, it does not explore the fine-
grained temporal alignment relationship between a markup lan-
guage description and the corresponding rendered image, which
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Figure 1: Several examples to illustrate the datasets of markup-to-image (Sub-figure (a)) as well as its characteristics, including
the sequence relationship betweenmarkups and images (Sub-figure (b)), the contextual correlation within a markup description
(Sub-figure (c)), and the low tolerance for character errors (Sub-figure (d)).

is widely present in the data of this task (see Figure 1 (b)); Second,
there is strong compositional nature of markup language, and cap-
turing the contextual correlation within a markup description is
crucial for a deep understanding (see Figure 1 (c)); Third, markup-
to-image has a low tolerance for errors, and even a small symbol
error may cause a complete semantic bias (see Figure 1 (d)). Thus,
using a single image construction process in DMs without posi-
tive/negative contrastive feedback is not conducive to improving
the model’s generalization.

Towards this end, this paper proposes a novelContrast-augmented
Diffusion Model with Fine-grained Sequence Alignment (FSA-
CDM), which exposes the model to both positive and negative
samples with powerful feature learning for markup-to-image gen-
eration. Specifically, given a pair of image and markup inputs, we
first encode them into a sequence of visual and language tokens,
respectively. Then, we employ Bi-LSTM to capture the contextual
relationship among visual tokens and design a fine-grained cross-
modal alignment module to well align each visual token with the
corresponding textual token sequence by sequence. On this basis,
we propose a contrast-augmented diffusion model for markup im-
age generation. Different from [8] only receiving a single sample
for construction, FSA-CDM receives a to-be-constructed sample
with several contrastive positive/negative samples to augment the
model’s training. We mathematically design a contrastive varia-
tional objective integrating both positive and negative samples and
infer a tighter bound for optimization. By contrastively exploring
multiple samples, FSA-CDM could better improve the model’s gen-
eralization ability as well as reduce prediction errors. Furthermore,
we design a Context-aware Cross Attention Module (CCAM) to
replace the traditional cross attention during the denoising process.

CCAM constructs a relationship matrix from visual features to ex-
plore the complex contextual relationship among markup inputs,
and thus could better predict noise for image construction.

Extensive experiments are carried out on all four benchmark
datasets from different domains. Our FSA-CDM presents high-
quality image generation and significantly outperforms state-of-
the-art (SOTA) methods on all the benchmark datasets. Our contri-
butions are summarized as follows:

• We propose a fine-grained sequence alignment module to
align markup language and its rendered image at the se-
quence level, thereby learning robust uni-modal representa-
tions to support markup-to-image generation.

• We propose a contrast-augmented diffusion model that ex-
plicitly introduces positive and negative samples by using
contrastive learning. A novel contrastive variational objec-
tive is mathematically inferred to achieve a tighter bound for
variational evidence, improving the model’s generalization
ability as well as alleviating the exposure bias problem.

• We design a context-aware cross attention module for noise
prediction during the denoising process. CCAM constructs
a relationship matrix between characters from visual fea-
tures to guide the contextual information capturing among
markup language, yielding accurate noise prediction.

2 RELATEDWORK
2.1 Text-to-Image Generation
The early text-to-image generation adopts Generative Adversarial
Networks (GAN) [15], which was first proposed by Reed et al. [31].
On this basis, a variety of studies on GANs have been proposed
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to improve the quality of image generation via progressive refine-
ment [44, 45], cross-modal attention [34, 41, 43] as well as semantic
modeling [6, 26, 35]. Another text-to-image generation paradigm
adopts VQ-VAE [30, 36] to generate discrete image markers from
text cues. Imposing VQ-VAE, transformer-based approaches like
DALLE [29] and CogView [12] could effectively generate images
from text prompts but suffer from the limitations of autoregressive
models with one-way bias and cumulative prediction errors [27].

Diffusion model (DM) [17, 23] is a recently rising approach in
text-to-image generation, which attempts to add noises into an
image step by step followed by the denoising process to recon-
struct the image. Compared to GAN-based methods, DMs are free
of training instability and mode collapse [10], and thus demonstrate
impressive performance for image generation [28, 33]. For instance,
Gu et al. proposed VQ-Diffusion [16] based on VQ-VAE to elimi-
nate the one-way bias and cumulative prediction errors, yielding
better image quality. Liu et al. [22] proposed a composable DM to
solve the semantic deficiency, where an image is generated by a
set of diffusion models, each modeling a component of the image.
Benny et al. [2] proposed a dynamic dual-output DM to address the
problem of poor-quality images when the number of iterations is
low. Besides, several studies aimed at improving the understand-
ing of text inputs. For instance, Xu et al. [40] proposed a method
combining CLIP, which uses high-quality images generated by a
pre-trained text DM for all-view segmentation. Zhao et al. further
proposed MagicFusion [46] to fuse multiple text-guided DMs to
improve image quality. Gao et al. proposed a Masked Diffusion
Transformer [14], which can reconstruct the complete information
of an image from an incomplete contextual input. More advanced
researches on DMs for image generation include DMs on semi-
supervised learning [47], DMs on attention mechanism [4], etc.
Recently, Deng et al. [8] first proposed a novel image generation
task named markup-to-image by DM. Different from natural image
generation with flexible interpretations of text prompts, markup-to-
image generation aims to generate an exact image under a unique
interpretation of a given markup prompt and has a low tolerance
for symbol errors, which greatly increases the technical challenges.

2.2 Contrastive Learning in Generative Model
Contrastive learning is a powerful self-supervised representation
learning [5] approach that has been used in generative models. For
instance, Kang et al. proposed ContraGAN [19] to consider the
relationship of multiple image embeddings as well as the data-to-
class relationship by using a conditional contrast loss. Yang et al.
proposed DiscoFaceGAN [9] to add contrastive learning to face
generation to facilitate untangling, allowing precise control of face
attributes. Ye et al. [42] proposed a contrastive learning method to
learn consistent textual representations of captions corresponding
to the same image, thereby enhancing the quality and semantic
consistency of synthetic images. In addition, Parmar et al. indicated
that contrastive learning can be combined with metric learning
to improve VAE, solving the instance-level fidelity between input
and reconstruction in the induced feature space. ContrastVAE [38]
creates two views for input data to alleviate the uncertainty and
sparsity issues, thereby improving the generalization ability of VAE.

For diffusion models, Ouyang et al. [24] found that enhancing dis-
tinguishability was important and thus adopted the contrastive loss
to guide the diffusion model. In order to improve the connection
between input and output, Zhu et al. [48] designed a conditional
discrete contrastive diffusion loss, which directly incorporates neg-
ative samples into the model’s training for optimizing the evidence
lower bound. Although the above methods have achieved good
results in image generation, they simply introduce the contrastive
loss into DMs in a separate learning pattern or only incorporate
negative samples to DMs to optimize conventional variational ob-
jectives, which has limited learning capability on image generation.

Beyond the previous studies, this work explicitly incorporates
both positive and negative samples into DM for better optimiz-
ing variational objectives to provide a tighter bound for evidence,
thereby improving discrimination and generalization performance
for markup-to-image generation. Moreover, our approach first ex-
plores sequence and context relationships for markup-to-image
generation, and thus could better capture the correlations between
visual and textual features for performance improvement.

3 METHOD
In this section, we first present the definition of markup-to-image
generation, and then describe our Contrast-augmented Diffusion
Model with Fine-grained Sequence Alignment (FSA-CDM). The
overall framework of FSA-CDM is illustrated in Figure 2, which con-
sists of two parts: an image and a markup encoder with fine-grained
sequence alignment to extract robust uni-modal representations,
and a contrast-augmented diffusion model with a context-aware
attention module to accurately generate rendered images.

3.1 Task Definition
Given a markup language 𝑥 ∈ X and its corresponding rendered
image 𝑦 ∈ Y, the goal of markup-to-image is to establish a model
𝑓𝜃 : X → Y to approximate the true mapping 𝑓 : X → Y trained
on supervised data. Specifically, the markup language we focus
on includes latex formulas, HTML codes, musical notations, and
chemical molecular sequences. Different from the natural image
synthesis benchmarks, the layout of rendered images corresponding
to the markups is more discrete, which increases the difficulty of
feature extraction. Besides, a rendered image also has a long-term
symbol dependency, and thus the accumulation of local errors can
lead to information deviation conveyed by the entire image.

3.2 Input Representation
As mentioned in section 3.1, the input of markup-to-image is a set
of paired markups and rendered images, denoted as (X,Y). For a
markup sequence x, the pre-trained markup language model [7, 13]
is employed as an encoder to obtain its embedding representation
t ∈ R𝑁×𝐷 , where 𝑁 and𝐷 are the number of tokens and the dimen-
sion of each token, respectively. Following the previouswork [8], we
adopt ResNet to extract visual features v ∈ R𝐶×𝐻×𝑊 for a rendered
image y, where 𝐶 , 𝐻 , and𝑊 are the channel, height, and width
of v, respectively. Since rendered images have a sequential struc-
ture with rich contextual information, we propose to progressively
optimize visual features and align them with the corresponding
markup embeddings to learn robust uni-modal representations.
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Figure 2: The framework of FSA-CDM, which consists of an image and a markup encoder with fine-grained cross-modal
alignment, and a contrast-augmented diffusion model containing several CCAMs, where 𝑦0, 𝑦𝑇 , 𝑦𝑡 and 𝑦𝑐𝑡 denote original
samples, full-noise samples, denoising samples, and contrast-augmented positive/negative samples, respectively.

Sequential Visual Feature Capturing. We first use a convolu-
tion + map-to-sequence operation [1] to convert v into a sequence of
visual tokens vs = (vs1, vs2, ..., vs𝑀 ) ∈ R𝑀×𝐷 , where each token
corresponds to a receptive field in y and the number of tokens𝑀
depends on the width of y. Afterward, vs is fed into a bidirectional
LSTM (Bi-LSTM) [20] to capture the contextual information, allow-
ing each token to distinguish itself from its semantic context as well
as capture the long-term symbol dependency. Finally, we refine vs
by concatenating the hidden states h = (h1, h2, ..., h𝑀 ) ∈ R𝑀×𝐷

output by Bi-LSTM, as suggested in [21].
Fine-grained Cross-modal Alignment. Considering that a

pair of markup and rendered image inputs sequentially convey
consistent semantics, it is important to explicitly mine the sequence-
similarity between them. Therefore, we propose a fine-grained
alignment pattern at the sequence level as illustrated in Figure 2,
aiming at learning more robust uni-modal representations.

Specifically, a cross-attention module 𝐶𝐴𝑀 (·, ·, ·) [18] is first
employed to capture the receptive field-to-token relevance between
the input image and markup:

c = 𝐶𝐴𝑀 (t, vs, vs), (1)

where c ∈ R𝑁×𝐷 is an evolved feature with the same length as t,
and t, vs and vs are the query, key, and value matrices, respectively.
Then, we define a fine-grained alignment loss to optimize the cor-
relation between the two modalities, where c𝑖 is encouraged to be
similar to t𝑖 with the same index and dissimilar to t𝑗 with different
indexes (𝑖 ≠ 𝑗 ). As cosine similarity 𝑐𝑜𝑠 (·, ·) is employed to measure
the sequence-similarity, the fine-grained cross-modal alignment

loss L𝑓 𝑎 can be formulated as:

L𝑓 𝑎 =
1
𝑁

𝑁∑︁
𝑖=1

[1 − 𝑐𝑜𝑠 (c𝑖 , t𝑖 ) +
1

𝑁 − 1

𝑁∑︁
𝑗=1, 𝑗≠𝑖

𝑐𝑜𝑠 (c𝑖 · t𝑗 )] . (2)

The optimization of L𝑓 𝑎 allows us to better learn the inter-modal
sequence similarity between rendered images and markups, thereby
obtaining more robust uni-modal representations.

3.3 Contrast-augmented Diffusion Model
Given a variable 𝑦0, most of the diffusion models (DMs) maximize
the evidence lower bound (ELBO) of log 𝑝 (𝑦0) on the Markov chain
𝑞(𝑦1, ...𝑦𝑇 |𝑦0) =

∑𝑇
𝑡=1 𝑞(𝑦𝑡 |𝑦𝑡−1):

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 log (𝑦0) ≥E𝑞 log
𝑝 (𝑦0:𝑇 )
𝑞(𝑦1:𝑇 |𝑦0)

=E𝑞 [log 𝑝 (𝑦0 |𝑦1) − 𝐷𝐾𝐿 (𝑞(𝑦𝑇 |𝑦0) | |𝑝 (𝑦𝑇 ))]

−
𝑇∑︁
𝑡=1

𝐷𝐾𝐿 (𝑞(𝑦𝑡−1 |𝑦𝑡 , 𝑦0) | |𝑝 (𝑦𝑡−1 |𝑦𝑡 ))

=L𝑒𝑙𝑏𝑜 (𝑦0),
(3)

where 𝑞 denotes the probabilistic distribution of real data, and 𝑝 is
an approximate probability distribution of 𝑞. 𝐷𝐾𝐿 (·| |·) is Kullback-
Leibler Divergence, which is widely used to measure the difference
between two distributions. On this basis, our approach introduces
contrastive learning into the diffusion model, which exposes the
model to both positive and negative samples to improve the gen-
eralization ability as well as alleviate the exposure bias problem.
Specifically, we explicitly consider the expected states of positive
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sample 𝑦′0 and negative sample 𝑦0 based on the original variational
inference, which maximizes the log-likelihood of 𝑦′0 as well as mini-
mizes the log-likelihood of 𝑦0, as shown in the following objective:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 log𝑝 (𝑦0, 𝑦
′
0) − 𝜆 log 𝑝 (𝑦0), (4)

where 𝜆 is a balanced weight. It is very difficult to directly solve
Equation 4, and thus we optimize it to maximize the variational
lower bound as follows:

log𝑝 (𝑦0, 𝑦
′
0) − 𝜆 log𝑝 (𝑦0)

≥L𝑒𝑙𝑏𝑜 (𝑦0, 𝑦
′
0) − 𝜆L𝑒𝑢𝑏𝑜 (𝑦0),

(5)

where 𝑒𝑢𝑏𝑜 represents the evidence upper bound. Specifically, we
use mild augmentation [1] and same-batch sampling strategies [5]
to create a positive sample 𝑦′0 and several negative samples 𝑦0 for
each 𝑦0, respectively. Below, we will describe the process of solving
these two log-likelihood boundaries.

ELBO of Positive Log-likelihood. Since 𝑦′0 is another view
of 𝑦0, we propose to model them in a logarithmic joint likelihood
log 𝑝 (𝑦0, 𝑦′0) and take into account 𝑦𝑡 generated at each step 𝑡 dur-
ing the diffusion process (see Appendix A.1 for details):

log𝑝 (𝑦0, 𝑦
′
0) = log

∫
𝑦′1,...𝑦

′
𝑡−1

∫
𝑦1,...,𝑦𝑡−1

𝑝 (𝑦0, 𝑦𝑡 , 𝑦
′
0, 𝑦

′
𝑡 )𝑑𝑦𝑡𝑑𝑦′𝑡

⩾E𝑞 (𝑦𝑡 ,𝑦′𝑡 |𝑦0,𝑦
′
0 ) log[

𝑝 (𝑦0, 𝑦𝑡 , 𝑦′0, 𝑦
′
𝑡 )

𝑞(𝑦𝑡 , 𝑦′𝑡 |𝑦0, 𝑦′0)
]

=L𝑒𝑙𝑏𝑜 (𝑦0) + L𝑒𝑙𝑏𝑜 (𝑦′0) + E𝑦𝑡 ,𝑦′𝑡 [𝑀𝐼 (𝑦𝑡 , 𝑦
′
𝑡 )],

(6)

where𝑀𝐼 (·, ·) is mutual information [25]. From Equation 6, it can
be seen that one of the goals is to maximize the mutual informa-
tion between 𝑦𝑡 and 𝑦′𝑡 , which enables the model to emphasize the
similarity relationships between samples. By training on these rela-
tionships, our model learns to better capture the essential features
of similar samples, thereby improving generalization ability.

EUBO of Negative Log-likelihood. EUBO has favorable prop-
erties: it has a mass covering effect advantageous in the approxi-
mation of the posterior, and thus provides a tighter bound for the
variational evidence. Equation. 5 can be optimized (see Appendix
A.2 for details) by using the method [11]:

log𝑝 (𝑦0) ≤ 𝐶𝑈𝐵𝑂𝜒2 =
1
2

logE𝑞 (𝑦𝑡 ) [(
𝑝 (𝑦0, 𝑦𝑡 )
𝑞(𝑦𝑡 )

)
2
]

≜ 𝑒𝑥𝑝 (2𝐶𝑈𝐵𝑂𝜒2 ) = E𝑞 (𝑦𝑡 |𝑦0 ) [(
𝑝 (𝑦0, 𝑦𝑡 )
𝑞(𝑦𝑡 |𝑦0)

)
2
]

= E𝑞 (𝑦𝑡 |𝑦0 ) (𝑒
2 log 𝑝 (𝑦̄0,𝑦̄𝑡 )

𝑞 (𝑦̄𝑡 |𝑦̄0 ) ) = 𝑒2L𝑒𝑙𝑏𝑜 (𝑦0 ) .

(7)

Different from [48] only using negative samples to increase the
lower bound, our model explicitly considers the impact of both
positive and negative logarithmic likelihoods by placing evidence
between tighter upper and lower bounds, resulting in better varia-
tional inference for performance improvement.

Training.We jointly train all the components in FSA-CDM, and
the final loss function is expressed as:

L𝐹𝑆𝐴−𝐶𝐷𝑀 =𝛽L𝑓 𝑎 − L𝑒𝑙𝑏𝑜 (𝑦0) − L𝑒𝑙𝑏𝑜 (𝑦′0)

+ 𝜆𝑒2L𝑒𝑙𝑏𝑜 (𝑦0 ) − E𝑦𝑡 ,𝑦′𝑡 [𝑀𝐼 (𝑦𝑡 , 𝑦
′
𝑡 )],

(8)

where 𝛽 is the weight of fine-grained sequence alignment loss
in Equation. 2. For the mutual information term, we adopt the
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Input Image Input Markup

Figure 3: Context-aware Cross Attention Module (CCAM),
which consists of a self-attention module, a character-aware
attention module, and a context-aware attention module.
The green and yellow paths represent visual and markup
features, respectively.

contrastive loss L𝑐𝑙 to efficiently approximate it as follows:

L𝑐𝑙 = log
exp(𝑦𝑇𝑡 · 𝑦′𝑡/𝜏)∑
exp(𝑦𝑇𝑡 · 𝑦𝑡/𝜏)

, (9)

where 𝜏 is a temperature parameter. As a result, Equation. 8 can be
rewritten as:

L𝐹𝑆𝐴−𝐶𝐷𝑀 = 𝛽L𝑓 𝑎 −L𝑒𝑙𝑏𝑜 (𝑦0) −L𝑒𝑙𝑏𝑜 (𝑦′0) +𝜆𝑒
2L𝑒𝑙𝑏𝑜 (𝑦0 ) −L𝑐𝑙 .

(10)

3.4 Context-aware Cross Attention Module
The information conveyed by an input markup and its correspond-
ing image mainly includes characters and their contextual correla-
tions. Motivated by this, we design a Context-aware Cross Attention
Module (CCAM) to better fuse visual and markup representations
during the denoising process.

The structure of CCAM is shown in Figure 3, which mainly con-
sists of three parts: self-attention (SA), character-aware attention
(ChA), and context-aware attention (CoA). The SA is used to cap-
ture the internal dependencies between elements of visual features,
and its output vsais fed into parallel ChA and CoA. In ChA, we
transform vsa into the queries 𝑄𝑐𝑎 ∈ R𝑁×𝑑𝑞 , and markup repre-
sentations t into keys 𝐾𝑐𝑎 ∈ R𝑁×𝑑𝑘 and values 𝑉𝑐𝑎 ∈ R𝑁×𝑑𝑣 . The
intuition is that the content of a rendered image is discrete, and
thus we need to suppress unrelated parts in vsa and accurately
construct connections between referring characters in vsa and the
corresponding entities in t. Therefore, we perform ChA as:

𝐶ℎ𝐴(𝑄𝑐𝑎, 𝐾𝑐𝑎,𝑉𝑐𝑎) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑐𝑎𝐾

𝑇
𝑐𝑎√︁

𝑑𝑘

)𝑉𝑐𝑎 . (11)
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Besides the exploration of characters, it is also necessary to have
a deep understanding of the contextual information formed among
characters. For instance, ”\𝑓 𝑟𝑎𝑐” is often followed by the numerator
and denominator strings in order, which could help the model better
understand the contextual semantics. For this purpose, we develop
the CoA, which is combined with ChA to finely learn multi-modal
features. First, we obtain a relation matrix R = 𝑟𝑖 𝑗 based on vsa

by using the approach proposed in [3] with a low computational
overhead, where 𝑟𝑖 𝑗 describes the contextual relationship between
image region 𝑖 and region 𝑗 . We linearly project (denoted as Ψ(·))
the relation matrix R as queries, denoted as 𝑄𝑐𝑢 ∈ R𝑁×𝑑𝑞 :

v → R = 𝑟𝑖 𝑗 , 𝑄𝑐𝑢 = Ψ(R) . (12)

Afterward, we concatenate (denoted asΦ(·, ·)) the visual andmarkup
features at the sequence level and send them into two different linear
layers to obtain the sequence memory keys 𝐾𝑐𝑢 ∈ R(𝑁+𝐻𝑊 )×𝑑𝑘

and values 𝑉𝑐𝑢 ∈ R(𝑁+𝐻𝑊 )×𝑑𝑣 , which contain potential cross-
modal semantics:

𝐾𝑐𝑢 = Ψ(Φ(v, t)),𝑉𝑐𝑢 = Ψ(Φ(v, t)) . (13)

Finally, we take the cross-attention operation to capture the intra-
and inter-modality semantic relationship, to help the model better
understand contextual information:

𝐶𝑜𝐴(𝑄𝑐𝑢 , 𝐾𝑐𝑢 ,𝑉𝑐𝑢 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑐𝑢𝐾

𝑇
𝑐𝑢√︁

𝑑𝑘

)𝑉𝑐𝑢 . (14)

Compared to the traditional cross-attention used in the denois-
ing process, our approach could simultaneously capture notable
characters and the potential contextual information among them,
and thus could better output noises to support image construction.

4 EXPERIMENTS
4.1 Datasets
We conduct experiments on datasets from four domains:

Math is a large collection of real-world mathematical expres-
sions written in LaTeX markups and their rendered images. There
are a total of 55, 033 training, 6, 072 validation, and 1, 024 testing
text-image pairs, where the image size is 64 × 320 and the input
markup contains 113 characters on average.

Simple Tables were collected based on the 100k synthesized
HTML snippets and the corresponding rendered webpage images.
There are 80, 000 training, 10, 000 validation, and 1, 024 testing pairs,
where the image size is 64 × 64 with an average of 481 characters
in markup text.

Sheet Music adopts LilyPond files as its markup language, and
generates 32, 880 markup-image pairs, including 30, 902 for training,
989 for validation, and 988 for testing. The image size is 192 × 448
with an average of 240 characters in markup text.

Molecule from the chemistry domain contains 19, 925 2Dmolecules
images specified by SMILES strings. It is divided into 17, 925 train-
ing, 1, 000 validation, and 1, 000 testing samples. Different from the
other three datasets, the rendered image in Molecules is colored
with a size of 128 × 128 and an average length of 30 in markup text.

4.2 Implementation Details
Experimental Settings. Following [8], we initiate the markup
encoder with GPT-Neo-175M [13] for Math, Simple Tables, and
Sheet Music datasets and ChemBert-77M-MLM [7] for Molecules
dataset. For input images, we build a lightweight ResNet as the im-
age encoder. The relevant settings of our diffusion scheduler refer
to the HuggingFACE diffusers library1, where the noise estimator
is a U-Net with five CCAMs and eight conventional cross-attention
layers. We use mild augmentation strategy [1] to create a positive
sample that maintains semantic consistency for each training sam-
ple. And five negative samples are sampled from the same batch
[5], which have different semantics from the positive sample. The
weights 𝜆 and 𝛽 are set to 0.005 and 0.02, respectively. We set the
batch sizes for Math, Simple Tables, Music and Molecules are 16,
24, 8 and 16, respectively, and we train all models for 100 epochs
using the Adam optimizer with the learning rate 0.0001 on 4 Nvidia
RTX A6000 with 48 GPU VRAM. The learning rate is decreased by
the cosine decay strategy with 500 warmup steps.

Metrics. For the markup-to-image task, the generated image
should be consistent with the ground truth image at the pixel
level, which is different from other popular image-generation tasks.
Therefore, we adopt Dynamic Time Warping (DTW) and Root
Squared Mean Error (RMSE) as our main evaluation metrics fol-
lowing [8]. RMSE compares two images at the pixel level, and it
penalizes the generated image with smaller character offsets, even
if it is semantically equivalent to the ground truth image. DTW
calculates pixel-level similarity by treating an image as time series
through binarization and allows minor offsets of the generated
image, which fits the markup-to-image task. Structural similarity
index measure (SSIM), peak signal-to-noise ratio (PSNR), erreur
relative globale adimensionnelle de synthèse (ERGAS), and relative
average spectral error (RASE) serve as supplements for the above
two main metrics to report performance more comprehensively.

4.3 Comparison with state-of-the-art methods
We compare the proposed method with several SOTA methods,
including XMC-GAN [43], SS-DM [8], and CDCD [48] on Math,
Simple Tables, Sheet Music, and Molecules datasets. All the ap-
proaches except SS-DM are replicated by using the optimization
parameter settings.

Quantitative Analysis. We calculate six evaluation metrics
mentioned above and show the results in Table 1. Benefitting from
the stable training of the diffusion model, SS-DM achieves better
performance as compared to XMC-GAN, and CDCD further im-
proves the performance due to the introduction of negative samples
by using contrastive learning during the denoising process. Com-
paratively, our FSA-CDM achieves the best performance with a
significant improvement on all the metrics because FSA-CDM in-
troduces a robust feature learning module and contrastive positive
and negative samples for the diffusion model, generating stronger
generalization ability. In addition, we discover that the DTW im-
provement by FSA-CDM is greater than the RMSE improvement.
This is because DTW is a relaxed pixel-level similarity and is consis-
tent with our encoding process, which divides a text-image pair into
a sequence of visual and textual tokens with the alignment on the
1https://github.com/huggingface/diffusers
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Table 1: Evaluation results of four advanced approaches on four datasets, where DTW and RMSE are the main evaluation
metrics, supplemented by SSIM, PSNR, ERGAS, and RASE. “Params” and “Throughput” denote the parameter complexity (M)
and inference speed (seconds/Img), respectively, where all DMs perform 1000 denoising steps for inference.

Dataset Approach Main Metrics Complimentary Inference
DTW↓ RMSE↓ SSIM↑ PSNR↑ ERGAS↓ RASE↓ Params Throughput

Math

XMC-GAN 20.05 38.56 0.77 16.93 2367.48 592.55 174 <1
SS-DM 18.81 37.19 0.79 17.25 2247.41 561.85 209 48
CDCD 17.98 36.47 0.79 17.04 2164.14 550.31 195 44

FSA-CDM 15.76 34.52 0.81 18.14 1996.54 496.23 253 53
Improvements +12.34% +5.35% +2.53% +6.46% +7.74% +9.83% - -

Simple Tables

XMC-GAN 6.15 23.08 0.90 38.14 2523.83 657.46 174 <1
SS-DM 5.64 21.11 0.93 40.20 2285.83 571.46 209 46
CDCD 5.47 20.63 0.94 41.03 2176.21 557.76 195 43

FSA-CDM 5.03 19.78 0.95 42.35 2024.16 508.14 253 51
Improvements +8.04% +4.12% +1.06% +3.22% +6.99% +8.90% - -

Sheet Music

XMC-GAN 80.77 45.21 0.67 15.14 3036.52 761.09 174 <1
SS-DM 79.76 44.70 0.68 15.20 2978.36 744.59 209 137
CDCD 78.93 44.26 0.69 15.35 2937.57 733.05 195 127

FSA-CDM 76.79 43.41 0.71 15.73 2866.71 707.24 253 151
Improvements +2.71% +1.92% +2.90% +2.48% +2.41% +3.52% - -

Molecules

XMC-GAN 25.04 38.22 0.60 16.60 2496.33 623.58 174 <1
SS-DM 24.80 37.92 0.61 16.69 2467.16 616.79 209 126
CDCD 24.31 36.86 0.63 16.87 2415.08 600.32 195 117

FSA-CDM 23.69 36.14 0.63 17.06 2386.35 574.57 253 139
Improvements +2.55% +1.95% +0.00% +1.12% +1.19% +4.29% - -

token level. What is more, the improvements in the Math and Ta-
bles domains are more significant than that in Music and Molecules
since Music and Molecules have a long dependence chain of sym-
bols, which is too difficult to be captured. Despite the success, DM-
based approaches are much slower than GAN-based approaches
like XMC-GAN since they require multiple denoising steps. Our
FSA-CDM is inferior to CDCD and SS-DM in terms of parameters
and inference speed. The increase in model parameters stems from
the feature extraction module and CCAM, and the inference time
is mainly affected by CCAM during the denoising process. The
introduction of contrastive samples has no effect on the inference
time. Fortunately, the delay is tolerable and can be alleviated by
reducing the denoising steps at the expense of accuracy [16].

Qualitative Analysis. Figure 4 presents several markup images
generated by SOTA methods and the corresponding ground truth,
qualitatively comparing the performance of markup-to-image gen-
eration. All the methods exhibit different adaptations to the four do-
mains with varying degrees of difficulty. Specifically, these methods
perform well in math and simple tables domain, and our FSA-CDM
achieves the best visual effects for human eyes. For the music do-
main, due to the bottleneck of the long dependence chain of symbols
from left to right, it is difficult for the model to maintain accuracy
after generating the top few symbols due to the limited number of
denoising steps. The molecules image generated by FSA-CDM is
the closest to the ground truth, considering the non-uniqueness of
the molecules’ layout and orientation.

4.4 Ablation Study
This experiment verifies the effectiveness of the proposed three
components, including the fine-grained sequencemodule (FSA.), the
contrast-augmented diffusion model (Con-aug.), and the context-
aware cross attention module (CCAM.). Table 2 demonstrates the
comparison results on four benchmarks, where we remove the

components of FSA., Con-aug. and CCAM. as our baseline model.
From the table, we can draw the following conclusions: First, the
introduction of FSA. decreases DTW by 3.03%, 2.59%, 1.47%, and
1.03% than the baseline model on Math, Simple Tables, Sheet Music,
and Molecules, respectively, which indicates that the sequence
alignment capturing between markups and images by our encoding
is effective, yielding robust uni-modal representations at a fine-
grained level. Second, compared with the baseline network, we
explicitly introduce contrastive positive and negative samples in the
denoising process, bringing 12.02%, 8.80%, 2.73%, and 2.93% DTW
improvements on four benchmarks, respectively. This superior
performance gain proves that contrastive samples can encourage
the diffusion model to capture more similar and discriminative
information during training to improve its generalization ability.
Moreover, when Con-aug. is combined with FSA., it can achieve
an average DTW improvement of 8.84% compared to the baseline
model. Third, benefiting from a deeper exploration of character and
contextual correlations, the proposed CCAM achieves 6.95%, 6.21%,
2.05%, and 1.77% DTW improvements, respectively. Finally, our
approach combining the three proposed components decreases the
average DTW and RMSE by 10.21% and 6.35%, which is significantly
better than the baseline model.

4.5 Analysis of Contrastive Variational Loss
The balanced weight 𝜆 in contrastive variational loss is a sensitive
parameter. To show how 𝜆 affects the performance of markup-
to-image generation, we set different values of 𝜆 to observe the
performance change on Math and Molecules datasets as shown
in Table 3. When 𝜆 is equal to 0, i.e. ignoring the optimization
of the variational evidence bound by negative samples, we can
observe that the performance is the worst. As 𝜆 increases from 0 to
0.005, the performance is consistently improved, which proves the
effectiveness of negative variational loss since negative samples can



MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. G. Zhong, J. Yuan, P. Wang and K. Yang, et al.

Math
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Simple Tables Sheet Music Molecules

CDCD

FSA-CDM

SS-DM

XMC-GAN

Figure 4: Qualitative results on four datasets. The columns from left to right are Math and Simple Tables, Sheet Music,
and Molecules, respectively. And the rows from top to bottom are ground truth, XMC-GAN, SS-DM, CDCD, and FSA-CDM,
respectively.

Table 2: Evaluation results of ablation studies on four
datasets.

Dataset Different Setting Main Metrics
FSA. Con-aug. CCAM DTW↓ RMSE↓

Math

- - - 19.12 37.54
✓ - - 18.54 36.85
- ✓ - 16.82 35.47
- - ✓ 17.79 36.44
✓ ✓ - 16.23 34.96
✓ ✓ ✓ 15.76 34.52

Simple Tables

- - - 5.79 21.34
✓ - - 5.64 20.96
- ✓ - 5.28 20.29
- - ✓ 5.43 20.67
✓ ✓ - 5.11 19.96
✓ ✓ ✓ 5.03 19.78

Sheet Music

- - - 79.85 44.92
✓ - - 78.68 44.35
- ✓ - 77.67 43.79
- - ✓ 78.21 44.07
✓ ✓ - 77.17 43.58
✓ ✓ ✓ 76.79 43.41

Molecules

- - - 24.91 38.05
✓ - - 24.67 37.64
- ✓ - 24.18 36.83
- - ✓ 24.47 37.26
✓ ✓ - 23.85 36.42
✓ ✓ ✓ 23.69 36.14

provide dissimilar information for our model to learn differential
features between positive and negative samples, thereby improving
generalization ability. However, the further increase of 𝜆 would
lead to a performance drop because a too-large value of 𝜆 would
overshadow the utility of positive samples, which are the dominant
elements in the denoising process.

Table 3: Evaluation results of contrastive variational loss
with different weights 𝜆 on Math and Molecules datasets.

𝜆 0 0.002 0.005 0.01 0.02
DTW on Math 16.34 16.07 15.76 15.94 16.29
RMSE on Math 35.18 34.90 34.52 34.77 35.05

DTW on Molecules 24.38 24.02 23.69 23.76 24.06
RMSE on Molecules 37.21 36.65 36.14 36.32 36.68

5 CONCLUSIONS
In this work, we propose a novel “Contrast-augmented Diffusion
Model with Fine-grained Sequence Alignment” (FSA-CDM) for
markup-to-image generation. Beyond the existing diffusion mod-
els, our approach first incorporates positive and negative samples
with a novel contrastive variational objective to offer a tighter
bound to improve the model’s generalization ability, which gener-
ates important theoretical values. In addition, different from nat-
ural image generation, our approach considers the characteristics
of markup images, including the sequence correlations by using
the fine-grained sequence alignment and the complex context by
designing the context-aware cross attention module. Extensive ex-
periments on four benchmark datasets confirm the effectiveness of
the proposed approach. However, it still has limitations in terms of
long dependency chains and inference speed. In future work, we
will further explore these issues and attempt to apply the proposed
theory to other generation tasks.
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A APPENDIX
A.1 Derivation of ELBO Term
Given the normal sample 𝑦0, positive sample 𝑦′0, and the interme-
diate variables {𝑦𝑡 }𝑇𝑡=1 and {𝑦′𝑡 }𝑇𝑡=1 from the diffusion process, we
present the full derivation of the evidence lower bound of them:

log 𝑝 (𝑦0, 𝑦
′
0) = log

∫
𝑦′1,...𝑦

′
𝑡−1

∫
𝑦1,...,𝑦𝑡−1

𝑝 (𝑦0, 𝑦𝑡 , 𝑦
′
0, 𝑦

′
𝑡 )𝑑𝑦𝑡𝑑𝑦′𝑡

= logE𝑞 (𝑦𝑡 ,𝑦′𝑡 |𝑦0,𝑦
′
0 ) [

𝑝 (𝑦0, 𝑦𝑡 , 𝑦′0, 𝑦
′
𝑡 )

𝑞(𝑦𝑡 , 𝑦′𝑡 |𝑦0, 𝑦′0)
]

⩾E𝑞 (𝑦𝑡 ,𝑦′𝑡 |𝑦0,𝑦
′
0 ) log[

𝑝 (𝑦0, 𝑦𝑡 , 𝑦′0, 𝑦
′
𝑡 )

𝑞(𝑦𝑡 , 𝑦′𝑡 |𝑦0, 𝑦′0)
]

=E𝑞 (𝑦𝑡 ,𝑦′𝑡 |𝑦0,𝑦
′
0 ) log[

𝑝 (𝑦0 |𝑦𝑡 )𝑝 (𝑦′0 |𝑦
′
𝑡 )𝑝 (𝑦𝑡 , 𝑦′𝑡 )

𝑞(𝑦𝑡 |𝑦0)𝑞(𝑦′𝑡 |𝑦′0)
]

=E𝑞 (𝑦𝑡 |𝑦0 ) log[𝑝 (𝑦0 |𝑦𝑡 )] + E𝑞 (𝑦′𝑡 |𝑦′0 ) log[𝑝 (𝑦′0 |𝑦
′
𝑡 )]

+ E𝑞 (𝑦𝑡 ,𝑦′𝑡 |𝑦0,𝑦
′
0 ) log[

𝑝 (𝑦𝑡 , 𝑦′𝑡 )
𝑞(𝑦𝑡 |𝑦0)𝑞(𝑦′𝑡 |𝑦′0)

]

=E𝑞 (𝑦𝑡 |𝑦0 ) log[𝑝 (𝑦0 |𝑦𝑡 )] + E𝑞 (𝑦′𝑡 |𝑦′0 ) log[𝑝 (𝑦′0 |𝑦
′
𝑡 )]

+ E𝑞 (𝑦𝑡 ,𝑦′𝑡 |𝑦0,𝑦
′
0 ) log[

𝑝 (𝑦𝑡 , 𝑦′𝑡 )
𝑝 (𝑦𝑡 )𝑝 (𝑦′𝑡 )

]

+ E𝑞 (𝑦𝑡 ,𝑦′𝑡 |𝑦0,𝑦
′
0 ) log[

𝑝 (𝑦𝑡 )𝑝 (𝑦′𝑡 )
𝑝 (𝑦𝑡 |𝑦0)𝑝 (𝑦′𝑡 |𝑦′0)

]

=E𝑞 (𝑦𝑡 |𝑦0 ) log[𝑝 (𝑦0 |𝑦𝑡 )] + E𝑞 (𝑦′𝑡 |𝑦′0 ) log[𝑝 (𝑦′0 |𝑦
′
𝑡 )]

+ E𝑞 (𝑦𝑡 ,𝑦′𝑡 |𝑦0,𝑦
′
0 ) log[

𝑝 (𝑦𝑡 , 𝑦′𝑡 )
𝑝 (𝑦𝑡 )𝑝 (𝑦′𝑡 )

]

− 𝐷𝐾𝐿 [𝑞(𝑦𝑡 |𝑦0) | |𝑝 (𝑦𝑡 )] − 𝐷𝐾𝐿 [𝑞(𝑦′𝑡 |𝑦′0) | |𝑝 (𝑦
′
𝑡 )]

=E𝑞 (𝑦1 |𝑦0 ) log𝑝 (𝑦0 |𝑦1) + E𝑞 (𝑦′1 |𝑦′0 ) log𝑝 (𝑦′0 |𝑦
′
1)

−
𝑇∑︁
𝑡=1

𝐷𝐾𝐿 (𝑞(𝑦𝑡−1 |𝑦𝑡 , 𝑦0) | |𝑝 (𝑦𝑡−1 |𝑦𝑡 ))

−
𝑇∑︁
𝑡=1

𝐷𝐾𝐿 (𝑞(𝑦′𝑡−1 |𝑦
′
𝑡 , 𝑦

′
0) | |𝑝 (𝑦

′
𝑡−1 |𝑦

′
𝑡 ))

− 𝐷𝐾𝐿 [𝑞(𝑦𝑡 |𝑦0) | |𝑝 (𝑦𝑡 )] − 𝐷𝐾𝐿 [𝑞(𝑦′𝑡 |𝑦′0) | |𝑝 (𝑦
′
𝑡 )]

+ E𝑞 (𝑦𝑡 ,𝑦′𝑡 ) log[
𝑝 (𝑦𝑡 , 𝑦′𝑡 )
𝑝 (𝑦𝑡 )𝑝 (𝑦′𝑡 )

] .

(15)
It is hard to directly solve E𝑞 (𝑦𝑡 ,𝑦′𝑡 ) log[ 𝑝 (𝑦𝑡 ,𝑦′𝑡 )

𝑝 (𝑦𝑡 )𝑝 (𝑦′𝑡 )
], and here we

assume that 𝑝 (𝑦𝑡 , 𝑦′𝑡 ) = 𝑞(𝑦𝑡 , 𝑦′𝑡 ), 𝑝 (𝑦𝑡 ) = 𝑞(𝑦𝑡 ) and 𝑝 (𝑦′𝑡 ) = 𝑞(𝑦′𝑡 )

as suggested by [38], then the last term can be written as follows:
log 𝑝 (𝑦0, 𝑦

′
0) ≥ E𝑞 (𝑦1 |𝑦0 ) log𝑝 (𝑦0 |𝑦1) + E𝑞 (𝑦′1 |𝑦′0 ) log 𝑝 (𝑦′0 |𝑦

′
1)

−
𝑇∑︁
𝑡=1

𝐷𝐾𝐿 (𝑞(𝑦𝑡−1 |𝑦𝑡 , 𝑦0) | |𝑝 (𝑦𝑡−1 |𝑦𝑡 ))

−
𝑇∑︁
𝑡=1

𝐷𝐾𝐿 (𝑞(𝑦′𝑡−1 |𝑦
′
𝑡 , 𝑦

′
0) | |𝑝 (𝑦

′
𝑡−1 |𝑦

′
𝑡 ))

− 𝐷𝐾𝐿 [𝑞(𝑦𝑡 |𝑦0) | |𝑝 (𝑦𝑡 )] − 𝐷𝐾𝐿 [𝑞(𝑦′𝑡 |𝑦′0) | |𝑝 (𝑦
′
𝑡 )]

+𝑀𝐼 (𝑦𝑡 , 𝑦′𝑡 )
(16)

A.2 Derivation of EUBO Term
Given the negative sample𝑦0 and the intermediate variables {𝑦𝑡 }𝑇𝑡=1
from the diffusion process, we present the full derivation of the
evidence upper bound of them:

log 𝑝 (𝑦0) ≤𝐶𝑈𝐵𝑂𝜒2 =
1
2

logE𝑞 (𝑦𝑡 ) [(
𝑝 (𝑦0, 𝑦𝑡 )
𝑞(𝑦𝑡 )

)
2
]

≜𝑒𝑥𝑝 (2𝐶𝑈𝐵𝑂𝜒2 ) = E𝑞 (𝑦𝑡 |𝑦0 ) [(
𝑝 (𝑦0, 𝑦𝑡 )
𝑞(𝑦𝑡 |𝑦0)

)
2
]

=E𝑞 (𝑦1:𝑇 |𝑦0 )𝑒𝑥𝑝 [log ( 𝑝 (𝑦0:𝑇 )
𝑞(𝑦1:𝑇 |𝑦0)

)
2
]

=E𝑞 (𝑦1:𝑇 |𝑦0 )𝑒𝑥𝑝 [2 log
𝑝 (𝑦0:𝑇 )
𝑞(𝑦1:𝑇 |𝑦0)

]

=E𝑞 (𝑦1:𝑇 |𝑦0 )𝑒𝑥𝑝 [2 log
𝑝 (𝑦𝑇 )

∏𝑇
𝑡=1 𝑝 (𝑦𝑡−1 |𝑦𝑡 )∏𝑇

𝑡=1 𝑞(𝑦𝑡 |𝑦𝑡−1)
]

=E𝑞 (𝑦1:𝑇 |𝑦0 )𝑒𝑥𝑝 [2 log
𝑝 (𝑦𝑇 )𝑝 (𝑦0 |𝑦1)

∏𝑇
𝑡=2 𝑝 (𝑦𝑡−1 |𝑦𝑡 )

𝑞(𝑦𝑇 |𝑦𝑇−1)
∏𝑇−1
𝑡=1 𝑞(𝑦𝑡 |𝑦𝑡−1)

]

=E𝑞 (𝑦1:𝑇 |𝑦0 )𝑒𝑥𝑝 [2 log
𝑝 (𝑦𝑇 )𝑝 (𝑦0 |𝑦1)
𝑞(𝑦𝑇 |𝑦𝑇−1)

+ 2 log
𝑇−1∏
𝑡=1

𝑝 (𝑦𝑡 |𝑦𝑡+1)
𝑞(𝑦𝑡 |𝑦𝑡−1)

]

=𝑒𝑥𝑝 [E𝑞 (𝑦1 |𝑦0 )2 log𝑝 (𝑦0 |𝑦1) + E𝑞 (𝑦𝑇 −1,𝑦𝑇 |𝑦0 )2 log
𝑝 (𝑦𝑇 )

𝑞(𝑦𝑇 |𝑦𝑇−1)

+
𝑇−1∑︁
𝑡=1
E𝑞 (𝑦1:𝑇 |𝑦0 ) log

𝑝 (𝑦𝑇 )
𝑞(𝑦𝑇 |𝑦𝑇−1)

]

−
𝑇−1∑︁
𝑡=1
E𝑞 (𝑦1:𝑇 |𝑦0 )2𝐷𝐾𝐿 (𝑞(𝑦𝑡 |𝑦𝑡−1) | |𝑝 (𝑦𝑡 |𝑦𝑡+1))]

=𝑒𝑥𝑝 [E𝑞 (𝑦1 |𝑦0 )2 log𝑝 (𝑦0 |𝑦1)
− E𝑞 (𝑦𝑇 −1 |𝑦0 )2𝐷𝐾𝐿 (𝑞(𝑦𝑇 |𝑦𝑇−1) | |𝑝 (𝑦𝑇 ))

=𝑒2L𝑒𝑙𝑏𝑜 (𝑦0 ) .
(17)
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