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ABSTRACT
Volumetric video emerges as a new attractive video paradigm in
recent years since it provides an immersive and interactive 3D view-
ing experience with six degree-of-freedom (DoF). Unlike traditional
2D or panoramic videos, volumetric videos require dense point
clouds, voxels, meshes, or huge neural models to depict volumetric
scenes, which results in a prohibitively high bandwidth burden for
video delivery. Users’ behavior analysis, especially the viewport
and gaze analysis, then plays a significant role in prioritizing the
content streaming within users’ viewport and degrading the re-
maining content to maximize user QoE with limited bandwidth.
Although understanding user behavior is crucial, to the best of our
best knowledge, there are no available 3D volumetric video viewing
datasets containing fine-grained user interactivity features, not to
mention further analysis and behavior prediction.

In this paper, we for the first time release a volumetric video view-
ing behavior dataset, with a large scale, multiple dimensions, and
diverse conditions. We conduct an in-depth analysis to understand
user behaviors when viewing volumetric videos. Interesting find-
ings on user viewport, gaze, and motion preference related to differ-
ent videos and users are revealed. We finally design a transformer-
based viewport prediction model that fuses the features of both
gaze and motion, which is able to achieve high accuracy at various
conditions. Our prediction model is expected to further benefit
volumetric video streaming optimization.

Our dataset, along with the corresponding visualization tools
is accessible at https://cuhksz-inml.github.io/user-behavior-in-vv-
watching/
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1 INTRODUCTION
The confluence of video and the recently booming 3D representa-
tion technology embraces a new video paradigm, i.e., the volumetric
video (VV). Different from traditional 2D video that has mature
codecs based on frames and pixels, volumetric video is still in its
infant stage with various representation formats, such as point
cloud [11, 34], voxel [33], mesh [34], and even neural representa-
tions [23]. Volumetric video is envisioned as a fundamental service
that is able to facilitate various new applications such as extended
reality (XR) andMetaverse, empowering entertainment [20], health-
care [7], and education [2], etc. The global industry VV market is
expected to reach 22.5 billion USD by 2024 [21].

Unlike traditional or 360-degree videos that only provide flat
or curved 2D experience, volumetric video captures the scene and
objects in 3D format, providing 6 degree-of-freedom (DoF) viewing
experience, including three dimensions of position (X, Y, Z) and
three dimensions of orientation (yaw, pitch, roll). This new view-
ing paradigm revolutionizes the way we consume video content,
offering an unprecedented full immersive and interactive experi-
ence. Such interactivity between the user and the 3D video already
demonstrates great value in various fields, e.g., revealing mental
activity, inferring user preference, and even identifying different
users.

Due to the extreme complexity in volumetric video representa-
tion, e.g., extensive points or meshes using point cloud or 3D mesh
formats, or huge neural models using implicit neural representation,
the size of a volumetric video is usually much larger (up to 100x)
than the 2D representation in the same condition. Thus, streaming
volumetric video through the current network infrastructure tends
to become a key challenge. Users’ behavior analysis, especially the
field of view (FoV) and gaze analysis, then plays a significant role
because we can prioritize the content streaming within FoV and
reduce or even ignore the content out of FoV to maximize user’s
QoE with limited network transmission capacity [8].
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Table 1: User Information

Gender Female Male
27 23

Age 16-20 20-24 24-30 30+
25 17 5 3

VR Exp (Times) Never 1-5 6-10 10+
32 9 6 3

VV Exp (Times) Never 1-5 6-10 10+
41 3 3 3

Although understanding user behavior is crucial, to our best
knowledge, there is no available 3D volumetric video viewing
datasets containing fine-grained user interactivity features. Pio-
neer researchers in the community of multimedia have contributed
some 3D datasets on objects or scenes [9, 26], but they never focus
on the analysis and understanding of user behavior in volumetric
video. Thus, an open dataset in this context is in urgent need to
reveal the viewing characteristics, optimize the video streaming,
and further facilitate the research in the related community.

In this paper, we propose the first large-scale user behavior
dataset on volumetric video viewing with rich dimensions across
various scenes, including the six DoF viewport, gaze, and motion
features. We next conduct a comprehensive data analysis to deeply
understand the user behavior, fully capture the potential correla-
tions among viewport, gaze, and motion trajectory, and further
reveal the future viewing activity. We find that VV users exhibit
distinct regions of interest and display varying movement patterns
based on different scenarios and personalities. Based on our obser-
vations and findings, we conduct a pilot study on viewport adaptive
3D volumetric video streaming. We design a transformer-based
model to well capture the inherent relationship between the mo-
tion and gaze, and further achieve an accurate and robust viewport
prediction for video streaming optimization.

The contributions of our work are summarized as follows:
▷ We for the first time release a volumetric video viewing behav-

ior dataset, with large scale (50 users), multiple dimensions (8
attributes), and diverse conditions (including both static and
dynamic scenes, both single and multi-user activities).

▷ We conduct an in-depth analysis to understand user behaviors
when viewing volumetric videos. Interesting findings on user
viewport, gaze, and motion preference related to different videos
and users are revealed.

▷ We design a transformer-based viewport prediction model that
fuses the features of both gaze and motion, which is able to
achieve high accuracy and strong robustness.
The rest of this paper is organized as follows. Section 2 gives an

overall description of the dataset, including how data is collected as
well as the video and dataset attribute description. Section 3 gives an
initial visualization of the dataset, plotting headset movement and
gaze direction. Section 4 introduces our analysis of user behavior
in detail, and also reveals some interesting findings based on our
observation. Motivated by these, section 5 proposes a transformer-
based viewport prediction for six DoF volumetric video viewing.We
further give some potential applications in section 6 and conclude
this work in section 7.

2 DATASET
In this section, we introduce the details of our dataset regarding
the collection procedure, dataset description, and user information.

2.1 Data Collection Procedure
For convenience, we select volumetric videos from the current
most appropriate public volumetric dataset FSVVD [9] related to
our context, which contains 26 volumetric videos represented by
point cloud covering multiple common scenarios such as education,
exercise, daily life, and entertainment. We seek 50 volunteers to
participate in this dataset collection. These volunteers are given
enough time and guidance to get familiar with the 3D volumetric
environment. Videos are preloaded and played through Unity1
when a volunteer is wearing a Meta Quest Pro2 headset. People are
able to freely navigate the 3D scenes and watch the activities from
any viewing angle and any position within a 5x5 square meters
space, as required by the FSVVD video dataset.

The VR headset has a built-in accelerometer and we are able to
easily calculate the current headset position (X,Y,Z) and the rotation
of the headset (yaw, pitch, and roll). Besides, gaze information is
also important as it provides more fine-grained features [12]. For
the gaze data collection, we rely on the built-in eye tracker in the
headset with a sample rate of 144 Hz. The collected data consisted
of 8 dimensions, including 3 rotational angles corresponding to
the position of each eye, plus the confidence level. Since there are
subtle differences (usually less than 3◦) in the gaze data between
the two eyes, we use the weighted average of the two eyes as the
gaze in our later analysis.

2.2 Viewer Selection
Different viewers can also have quite personalized preferences on
the same video content and conduct diverse behaviors. Therefore,
we try our best to choose volunteers with different backgrounds,
majors, hobbies, ages, genders, and familiarity levels with VR. De-
tailed information is listed in Table 1. Once the recording ends,
the volunteers are asked to fill out a questionnaire about these
information, and the overall experience of watching volumetric
videos.

2.3 Video Selection
We argue that the video content should have a significant impact
on the viewer’s behavior feature. A viewer’s attention can largely
change if provided with different video content. To analyze the im-
pact of video content on users, we selected 6 different scenes aiming
to cover more representative scenarios. Specifically, we mainly eval-
uate the impact of actor numbers and the movement level of the
actors. We divide the movement of target actors as spatial move-
ment (e.g., moving from one position to another) and self-movement
(e.g., body movement without obvious position change). Table. 2
indicates the detailed taxonomy of our selected video.

1https://unity.com/
2https://www.meta.com/quest
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(a) Pulling Trolley (b) Sweeping (c) Cleaning Whiteboard (d) Chatting

Figure 1: Example of used VV: ‘Pulling Trolley’, ‘Sweeping’, ‘Cleaning Whiteboard’, and ‘Chatting’
Table 2: Description of selected volumetric videos:

Name #Actors Spatial Movements Body Movements Environment Interaction #Frame
Chatting 2 Small Small - 300

Cleaning Whiteboard 1 Static Large ✓ 300
News Interviewing 2 Small Small - 300
Pulling Trolley 1 Large Small ✓ 300
Presenting 2 Static Small - 300
Sweeping 1 Middle Middle ✓ 300
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Figure 2: The aerial view for movement trajectory heatmap of different volumetric scenes. The lighter yellow color indicates a
longer dwelling time and vice versa for the darker blue color.

2.4 Dataset Description
Our collected dataset consists of 28 dimensions, including the frame
number and time stamp of each sample, the spatial movement (the
spatial coordinates of X, Y, and Z axes), the rotational orientation
(rotation angles of Yaw, Pitch, and Roll) information of the headset
and two wireless controllers, and the gaze information of both eyes
with two confidence indexes.

3 VISUALIZATION
To help better understand our dataset and promote further study,
we first give a visualization of the dataset and provide preliminary
analysis on headset movement and gaze information. We select
four representative scenes for observation and subsequent analysis,
i.e., pulling trolley, sweeping, cleaning whiteboard, and chatting.

3.1 Headset Movement Trajectory
We first observe the user movement, represented by the headset
movement trajectory in our dataset. Among all the participating
volunteers, we randomly select one and compare his/her movement
trajectory. According to our observation, the values at the Z axis
almost keep stable. This is because people rarely crouch down and
stand up, which follows our intuition about people’s behaviors.

Thus, we select to use an aerial view to better depict the trajectory.
Fig. 2(a) shows the heatmap of movement trajectory across different
scenes from a randomly selected user. Some interesting findings
can be obtained. For ‘Pulling Trolley’ in Fig. 2(a) and ‘Sweeping’
in Fig. 2(b), the movement trajectories are relatively uniform and
concentrated, indicating a slow movement within a small region.
This matches our findings that for volumetric videos with large
movement, viewers tend to follow the moving object and
are prone to pay more attention therein. While for ‘Cleaning
Whiteboard’ in Fig. 2(c) and ‘Chatting’ in Fig. 2(d), the trajectory
is more dispersive. This indicates that for small-movement or
even static scenes, viewers may go around and observe the
object more from different angles.
3.2 Gaze Direction
Users’ gaze information is also a significant indicator of user VV
interactivity. We then try to visualize the gaze direction in our
dataset. However, different from the traditional 2D video, the gaze
can be simply projected onto the video surface, in 3D volumetric
scene, the starting point of the gaze is changing along with the
movement. Therefore, we need to combine these two together.

Since the rotational angles returned from the headset are rep-
resented using degrees in Euler angles, for the convenience of
subsequent calculation and visualization, we transform the data
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Figure 3: Gaze Direction with Movement Trajectory. The blue line represents the movement trajectory and the red arrows
indicate the gaze direction.

(a) Original Trajectory (b) Gaze Intersection Points

Figure 4: Illustration of the intersection between movement
trajectory and gaze ray. The left figure shows the original
user movement trajectory, and the right figure indicates the
point where themovement trajectory coincides with the gaze
ray.

into a rotation matrix. We convert the angle into radians to compute
the viewport area, where 𝛼 , 𝛽 , and 𝛾 stand for yaw, pitch, and roll,
respectively.

As denoted in Eq. 1, matrix 𝑅 comprises the product of the rota-
tion matrices about the yaw, pitch, and roll axes to represent the
rotation matrix of users’ headset movement and gaze movement.

𝑅 =


1 0 0
0 cos𝛾 − sin𝛾
0 sin𝛾 cos𝛾



cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽



cos𝛼 sin𝛼 0
sin𝛼 cos𝛼 0
0 0 1


(1)

Using the above transformation formula, we get the rotation
matrix of both the gaze and the headset. To transform the gaze di-
rection from the local coordinate system of the headset to the global
coordinate system, we apply a rotation matrix using the orientation
data provided by the headset, representing the transformation from
the local coordinate system of the headset to the global coordinate
system. The above transformation could be represented as:

𝑅𝑔 = 𝑅ℎ ∗ 𝑅𝑒 (2)
where 𝑅𝑔 represents the global gaze orientation matrix, 𝑅ℎ and
𝑅𝑒 represent the headset and local gaze (eye) orientation matrix
respectively.

The combination of gaze direction and the headsets’ movement
trajectory is visualized in Fig. 3. The blue line indicates the user’s
motion trajectory and the red arrows attached to the blue line
indicate the gaze direction at the corresponding position. Not sur-
prisingly, we can find that users’ gaze often follows the activity
of the object inside the video. Specifically, they can be divided
into two categories. On the one hand, for volumetric scenes with
relatively large movement, users’ gaze tends to precede users’
movement by a short period of time. This phenomenon can be
observed from Fig. 3 (a) and Fig. 3 (b), where the trolley and dustpan
follow a regular movement. Then users’ gaze can be focused on
these objects and appear to have a similar movement feature. On
the other hand, for volumetric scenes with small movements,
the gaze may move back and forth with irregular movement,
but it generally still focuses on the target object. Fig. 3 (c) and
Fig. 3 (d) verify this observation that the endpoints of the gaze
arrows mostly locate at the target objects.

Fig. 4 reaffirms this observation. The left figure shows the original
aerial view heatmap of the movement trajectory, and the light
part of the right figure indicates the point where the movement
trajectory coincides with the gaze ray. It demonstrates a strong
correlation that a large portion of the movement trajectory and the
gaze ray indeed have interaction.

4 ANALYSIS ON USER BEHAVIOR
In this section, we conduct a comprehensive analysis of user behav-
iors based on the dataset, aiming to reveal the implicit correlations
between various observed features, and further provide insight for
future user behavior prediction. We mainly focus on user attention
and movement features.
4.1 Volumetric ROI Calculation
Users’ region of interest (ROI) is the most important feature when
viewing volumetric videos. However, different from 2D or 360-
degree videos where ROI can be directly obtained, ROI calculation
in volumetric video is not so intuitive given its 3D nature. On one
hand, there can be multiple objects alongside a user’s eyesight and
it is hard to uniquely determine the interested object. On the other
hand, users are moving most of the time and the viewing angles
are constantly changing. Thus, we define the volumetric ROI level,
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(a) Pulling Trolley (b) Sweeping (c) Cleaning Whiteboard (d) Chatting

Figure 5: The volumetric ROI level together with 4 representative scenes. Here the light green color indicates a higher ROI level
and the dark red color indicates a lower ROI level.
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Figure 6: The distribution of the volumetric ROI level of four scenes. X-axis indicates the ROI levels, and Y-axis indicates the
number of cubes with the corresponding ROI.

as a quantitative indicator, to represent how much attention a user
pays to a region.

Calculating the volumetric ROI level includes the following steps:
▷ Scene segmentation. We first divide the whole volumetric

scene into small blocks, where each block is a cube after slicing
the space from x, y, and z dimensions. Since most of the cubes do
not contain any points or only contain very few points, we set a
threshold to filter out those near-empty cubes and only preserve
those representing practical objects. Note that users’ sensitiv-
ity to the point cloud density decreases with the increase of
observing distance [8], we also vary such threshold accordingly.

▷ Gaze frustum calculation. By exploiting the pre-processed
headset trajectory and gaze data, we are able to calculate the
viewing directions of the user at every position. Normally, peo-
ple’s effective viewing angle is about 30° [27, 29, 32], we therefore
define a virtual viewing frustumwith an angle of 30°. And objects
within this frustum will be viewed by the user.

▷ Intersection calculation. The ROI level of one cube can be
calculated as how frequently this cube is covered by the gaze
frustum of the user. In practice, we calculate the direction vector
formed by the coordinates of the headset and the center of the
cubes and then compare the angle between the direction vector
and the gaze direction vector obtained from previous processing.
The cube is counted once every time the angle is less or equal
to 30°. By going through all of the effective cubes, we obtain the
total counts for the whole volumetric video.

▷ Volumetric ROI level calculation. Inspired by the ROI mech-
anism used in 360 videos [5], we propose to calculate the volu-
metric ROI level 𝐹𝑎 of a cube according to the density weight,
the appearance frequency, and the distance between the user’s

eyes and the cube. The calculation formula is given as:

𝐹𝑎 =
𝜌𝑐 ∗ 𝑓𝑔
𝐷𝑐

(3)

𝑓𝑔 =

∑𝑁
𝑖=1 𝑁𝑔 (i)
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

(4)

where 𝜌𝑐 is the point cloud density of the cube, 𝑓𝑔 is the frequency
of each cube falling into the viewing frustum, 𝐷𝑐 is the distance
between the headset and the cube center,𝑁𝑔 (i) is the total counts
of the current cube, and 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 is the total number of user
behavior samples.

4.2 Analysis on User Attention
We next analyze users’ attention (which can be directly reflected by
the ROI level) when they are viewing different volumetric videos.
Fig. 5 visually shows the different ROI levels for different volumetric
video scenes. Here we randomly select 5 viewers and illustrate
their average ROI level. We can find that users’ attention is highly
correlated with the volumetric content, and is particularly on the
actors and the objects they are manipulating. For example, in
the ‘Chatting’ scene, most attention is focused on the right person.
In the ‘Sweeping’ scene, the dustpan instead attracts even more
attention than the person.

Another interesting finding lies in the personalized preference,
i.e., users may pay higher attention to their preferred object
or person. Like in Fig. 5(d), the right person obviously has a higher
ROI level than the left person, which is largely due to the user’s
personalized preference.
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(d) Chatting

Figure 7: Movement Distance of X, Y, Z axes
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Figure 8: The total movement distance of different scenes. Here the colored line and the black line indicate each user’s total
movement distance and the average respectively along the video playback progress, the dotted line with a number represents
the average value.

We next consider the distribution of user attention in different
volumetric scenes. Fig. 6 plots the distribution of cubes with dif-
ferent volumetric ROI levels together with the mean value (Mean)
and the standard deviation (Std. dev.). Note that we already remove
those rarely-watched cubes. Comparing the different volumetric
scenes, we can obtain several interesting findings: 1) The ROI dis-
persion level of different volumetric videos is quite diverse,
depending on the scene content. For example, the ROIs of the
‘Sweeping’ scene concentrate with the range from 0 to 60, while
the ROIs of the ‘Chatting’ scene mainly spread between 0 to 15.
This means that users are more focused when watching the for-
mer more ‘dynamic’ video while they are more distracted when
watching the latter more ‘static’ one. And it further reaffirms that
people’s attention is more easily captured by moving objects. 2)
Only a small portion of cubes have relatively high ROI levels.
This is because a volumetric scene can have a lot of effective cubes,
while only a small portion of them, especially those representing
the target actors or objects, will gain enough attention.

4.3 Analysis on User Movement
We conduct a more in-depth analysis of user movement to examine
the correlations between movement behavior and video content.
We first define the movement mode. Taking the user’s headset as the
origin, moving along the lateral direction of the body is indicated
as the x-axis, along the vertical direction of the body is indicated
as the y-axis, and the z-axis represents the up-down movement.

Fig. 7 shows the average moving distance along video playback
progress in the three directions as well as the total distance of the 4
volumetric scenes. Naturally, moving laterally means that the user
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prefers to observe from different angles while moving vertically
means that users would like to follow the moving objects. From this
figure, we can find that the vertical distance is clearly larger than
the lateral distance in the ‘Pulling Trolley’ and ‘Sweeping’ scenes,
and vice versa for the rest two scenes. This observation matches
exactly with our previous finding that people tend to follow the
moving object while observing the static object from various
angles.

We also investigate the movement features from the perspective
of different users. Fig. 8 shows the cumulated moving distances of
five randomly selected users. We find that the first two dynamic-
scene videos have an average moving distance of 7.0m and 9.57m,
respectively, while the rest two static-scene videos reach an aver-
age moving distance of 12.53m and 13.82m. Thus we can verify
that users tend to perform more spatial movements in static
scenes compared to dynamic scenes to explore more areas in
volumetric scenes.
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Figure 11: Transformer-based viewport prediction model.

In Fig. 9, we show the average data to observe the difference
in rotational acceleration for different scenes. From the figure, we
find that in more static scenes, users change their orientation more
frequently at a faster rate. According to the CDF plot, for even
more than 30% sampling points the head moving speeds exceed
100 degree/𝑠2 in the ‘cleaning whiteboard’ scene. In contrast, for
the relatively dynamic scene ‘Pulling Trolley’, there are about 80%
sampling points with moving speed less than 20 degree/𝑠2. Diver-
sity across different users is shown in Fig. ?? and Fig. ??, which
depicts the specific rotational acceleration speed of 5 randomly se-
lected users and their average for the scenes of ‘Pulling Trolley’ and
‘Cleaning Whiteboard’. Observation from these figures reaffirms
the finding that user movement in static scenes is usually faster
than in dynamic scenes.

5 GAZE-ASSISTED VIEWPORT PREDICTION
FOR VOLUMETRIC VIDEO STREAMING

In this section, we give a case of the dataset application in volu-
metric video streaming. By fusing the correlated features between
video content and gaze information, we are able to improve the
accuracy of viewport prediction, further benefiting VV streaming.

5.1 Background and Motivation
Viewport adaptive video streaming together with tile-based parti-
tion strategy [8, 15] has been widely explored in traditional 2D and
recently 360-degree videos. By reducing the bitrate of the video
content outside users’ viewport, the whole transmitted video size
can be saved and thus relieving the network bandwidth pressure.
This idea is intuitive to move to the 3D scenario if the scene is
partitioned into small cubes for cube-based streaming. However,
though it applies well in 2D videos, a critical challenge arises when
it comes to 3D volumetric videos. The major difficulty lies in the
flexible six DoF spatial feature, where the significant uncertainty in
spatial position and viewing angle makes the viewport prediction
error easy to accumulate.

Several pioneer works have made attempts for six DoF view-
port prediction [6, 15, 25]. For example. ViVo [8] and Vues [19]
employ linear regression (LR) and multilayer perceptron (MLP) to
predict the viewport, and have also explored the use of advanced
deep learning models such as LSTM for prediction. Extending from
Parima [1], VolParima [18] utilizes 3D object detection and track-
ing techniques to achieve improved accuracy in viewport predic-
tion. However, these works either consider each DoF separately
or mainly focus on the video content, which cannot fully capture
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the implicit features in volumetric videos to yield accurate view-
port prediction towards various volumetric scenes. Motivated by
our previous observations and findings, we realize that the fea-
tures in user movement, gaze direction, and video content
are tightly correlated so that the multi-modal information,
as well as their mutual impacts, should be combined together
for consideration.

5.2 Design
We extract the multimodal features and present an architecture with
a bidirectional fusion model that facilitates the communication of
different features in Fig. 11. This is a paradigm for accurate view-
port predictions based on video content, interaction, and intention.
Followed by a variety of cross-modal transformers to transcend
information from multi-modality.
Cross-modal transformer. The cross-modal transformer [10] is
used to capture the interplay of several elements and to establish
communications among the multi-modal information.

Instead of extracting themulti-modal features independently[14],
we propose a pipeline to overall integrate the history viewport
feature, 3D gaze feature, and video features, which enhances the in-
between feature communication to mutually decrease their future
uncertainties on interaction and intention.
Video feature extraction. To learn the constraints (e.g. Surface
and topology of furniture) from the 3D video and retrain the net-
work for attention on locally interacted structures, we apply Point-
Net ++ [24], to extract both global (the video content) and local
video features (interacted region). We derive the per-point feature
and global descriptor of video as 𝐹𝑃 , 𝐹𝑜 .
Gaze feature extraction. The gaze point feature 𝑓𝑔 is retrieved
from the per-point video feature map 𝐹𝑃 into 𝐹𝑃 |𝑔 . Consequently,
the interacted gaze feature with corresponding video information
provides indications to infer the intention.
Viewport feature extraction. We use a linear layer to extract the
viewport feature embedding 𝑓𝑚 from multidimensional viewport
trajectories input. The viewport is well-aligned with the video
content. To endow the feature awareness of the 3D video content,
we further query the video features with the viewport features.
These interacted video features are then supplied to PointNet++ to
get the contextual video feature 𝑓𝑚−𝑣 of the current viewport.

In lieu of directly concatenating the features, which would bring
modalities features redundancy and impair the prediction accuracy
[16], we propose a model by deploying a cross-modal transformer
[22] to fuse the gaze, viewport, and video features.
Feature fusion. As an intermediary element, the viewport features
strive to be cognizant of the 3D video features and the subject’s
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intention inferred from the gaze features. First, we utilize the video
feature 𝑓𝑚−𝑣 acquired from the 3D environment as the query to
update the viewport feature 𝑓𝑚 in the viewport-video transformer.
Then, the output viewport embedding 𝑓𝑚−𝑠 is expected to be aware
of the 3D video, which results in the final viewport embedding 𝑓𝑚−𝑔 .
Inspired by [35], we handle the gaze embedding in a bidirectional
manner, i.e., the viewport embedding 𝑓𝑚 is also utilized as the query
to update the gaze features into 𝑓𝑔−𝑚 . The bidirectionally fused
multi-modal features are then assembled into holistic temporal
input representations to perform human viewport prediction. As
shown in Fig. 11, the updated gaze feature 𝑓𝑔−𝑚 , viewport feature
𝑓𝑚−𝑔 and the global video feature 𝐹𝑂 are used to predict the future
viewport trajectories from 𝑡 to 𝑇 by:

𝑉𝑇 :𝑇+𝑡 = ℜ
(
ℎpos, concat

(
𝑓𝑔−𝑚, 𝑓𝑚−𝑔, 𝐹𝑂

)
𝑇−𝑛:𝑇−1

)
(5)

where concat denotes operator of concatenation, and ℎpos is the
latent vector containing temporal positional encodings for the
output[24]. We evaluate our gaze-assisted viewport prediction
against representative VV system and methods ViVo, VolParima
and transformer-based Vanilla-TF (VTF) [31] using the Average
Mean Absolute Error Angle (MAEA) as a metric. We also do an
ablation study to compare the effect of each part.

As depicted in Figure 12, our proposed model is capable of
reducing MAED by 13.3%, 19.8%, and 34.5% in comparison with
VolParima, ViVo, and VTF, respectively. Furthermore, we conducted
experiments to evaluate the accuracy of our gaze-assistedmodel and
performed an ablation study comprising three variations: without
gaze (w/o g), without PointNet ++ (w/o p), and without a cross-
modal transformer (w/o cm). The results indicate that each compo-
nent has a positive contribution to the overall performance. Our
model, which effectively integrates and utilizes video content and
gaze information, is demonstrated to produce more accurate pre-
dictions than the previous methods.

6 OTHER APPLICATIONS
In addition to our proposed viewport prediction systems, we provide
several potential application cases that could be derived from our
dataset.

6.1 User Identification for VV
User identification is a crucial task in 360-degree video, yet it poses
a new challenge for volumetric video. Such a technique has the
potential to improve user experience or enhance privacy.

For headset-movement-based identification, Li et al. [17] achieved
an identification accuracy of 95.57% while participants nodded
when listening to music. Gaze data could also be used for identifi-
cation, Sluganovic et al. [28] proposed gaze-based authentication
using a gaze-tracking device, their system his system achieves an
error rate of 6.3% at an authentication time of 5 seconds.

Given that our dataset on VV user behavior encompasses a wider
range of attributes, an identification method utilizing both headset
and gaze data could be developed to enhance accuracy.

6.2 Personalized Content Delivery
Many works have been conducted for content recommendation
traditional in 2D video [3, 4] and 360-degree video [30], but for volu-
metric video, such field is still undefined. By analyzing the behavior
of the users, developers can gain insights into users’ preferences
and adapt personalized content to better suit their needs.
Content Recommendation. Based on the historical movement
pattern of the users and the viewing history, developers can build
user portraits for each user, in order to deliver new VV contents
that are more likely to be of interest to the user.
Adaptive Content Using the insights gained from analyzing the
users’ behavior, developers are able to dynamically adjust the VV
experience in real time. For example, the lighting could be adjusted
when the users tend to change their viewport frequently to mini-
mize motion sickness.

6.3 Healthcare
VV user behavior analysis has the potential to play a role in psy-
choanalysis, particularly in the area of virtual reality therapy.

By analyzing changes in users’ behavior and movement patterns
before and after virtual reality therapy, therapists can evaluate the
effectiveness of the treatment. For example, if a patient with a fear
of heights spends more time looking down from a virtual high-rise
building after therapy than before, this suggests that the treatment
has been effective.

7 CONCLUSION
In this paper, we focused on understanding user behavior patterns
when watching volumetric videos. We released the first large-scale
volumetric video user behavior dataset, including movement infor-
mation, headset direction, user gesture, and user gaze information.
This dataset involved data from 50 users with strong diversity and
covered multiple representative volumetric scenes. We then con-
ducted a comprehensive analysis aiming to reveal the behavior
features. We defined the volumetric ROI level calculation mecha-
nism in this context and focused on the feature analysis on user
attention and user movement. Some interesting findings were there-
fore derived. Further, based on our analysis and observation, we
designed a transformer-based volumetric video viewport prediction
model, which fused all the correlated features and outperformed
the state-of-the-art baseline solutions.
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