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ABSTRACT

With the recent progress in large-scale vision and language repre-

sentation learning, Vision Language Pre-training (VLP)models have

achieved promising improvements on various multi-modal down-

stream tasks. Albeit powerful, these models have not fully leveraged

world knowledge to their advantage. A key challenge of knowledge-

augmented VLP is the lack of clear connections between knowledge

and multi-modal data. Moreover, not all knowledge present in im-

ages/texts is useful, therefore prior approaches often struggle to

effectively integrate knowledge, visual, and textual information.

In this study, we propose REtrieval-based knowledge Augmented

Vision Language (REAVL), a novel knowledge-augmented pre-

training framework to address the above issues. For the first time,

we introduce a knowledge-aware self-supervised learning scheme

that efficiently establishes the correspondence between knowledge

and multi-modal data, and identifies informative knowledge to im-

prove the modeling of alignment and interactions between visual

and textualmodalities. By adaptively integrating informative knowl-

edge with visual and textual information, REAVL achieves new

state-of-the-art performance uniformly on knowledge-based vision-

language understanding and multi-modal entity linking tasks, as

well as competitive results on general vision-language tasks while

only using 0.2% pre-training data of the best models. Our model

shows strong sample efficiency and effective knowledge utilization.
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•Computingmethodologies→Computer vision;Natural lan-
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1 INTRODUCTION

Recent Vision-Language Pre-training (VLP) models, such as ALBEF

[21], BLIP [20] and SimVLM [35], learnmulti-modal representations

from large-scale image-text pairs via well-designed pre-training ob-

jectives. However, despite the strong performance of these models,

they generally cannot well incorporate external world knowledge

in pre-training, requiring increasingly larger networks or data to

cover more facts with huge computational costs. Meanwhile, large

knowledge graphs (KGs), such as Wikidata [31] and ConceptNet

[28], can provide structured world knowledge to multi-modal data

by representing entity descriptions and their relationships, which

is implicit in vision/text but comprises complementary information

[33, 38]. Therefore, leveraging structured knowledge and multi-step

reasoning in KGs can really complement multi-modal learning.

However, building connections between knowledge and multi-

modal data remains a stiff challenge. While previous studies such as

KEPLER [33], and DRAGON [38] have incorporated knowledge into

pre-training models explicitly, most of them are restricted by the

knowledge behind the textual modality, neglecting a large amount

of knowledge in other modalities like images. They often require

entity-linking tools to build connections between knowledge and

text. More importantly, these models have not fully leveraged world

knowledge to their advantage because there is no ground truth indi-

cating which knowledge is helpful for multi-modal representation.

MuRAG and REVEAL [5, 13] proposed to assess the usefulness of re-

trieved knowledge from images for language generation modeling,

but they still struggle with redundant and useless knowledge. Con-

sequently, existing works may limit their potential to incorporate

informative knowledge into multi-modal data.
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To this end, we propose aREtrieval-based knowledgeAugmented

Vision-Language Pre-training (REAVL)model, which retrievesworld

knowledge fromKGs and leverage them to improve themulti-modal

representations. REAVL has two core components: a knowledge re-

triever that retrieves the informative knowledge given multi-modal

data, and a knowledge-augmented model that fuses multi-modal

data and knowledge. Concretely, we take multi-modal data and

a KG as the input data, and first retrieve the related knowledge

from the KG via the knowledge retriever. Then we use a knowledge-

augmented model to encode these inputs into fused representations,

where the multi-modal features are fused with knowledge features

through the cross-attention layer in an adaptive way.

To efficiently incorporate informative knowledge into multi-

modal representations, we pretrain our model by introducing a

knowledge-aware self-supervised learning scheme including four

different types of modules: masked language modeling (K-MLM),

masked vision modeling (K-MVM), image-text contrastive learning

(K-ITC), and KG link prediction (LinkPred). Specifically, K-MLM and

K-MVM are the knowledge-aware masked data modeling objectives,

where the original signal is reconstructed by using its maskedmodal

inputs and the corresponding retrieved knowledge. The masked

learning signals help to reward helpful knowledge and penalize

uninformative ones during knowledge retrieval. And K-ITC focuses

on aligning images and text in multi-modal data. Furthermore,

LinkPred makes the model use the KG structure jointly with the

corresponding multi-modal data to reason about missing links in

KG. We conduct ablation studies and show the effectiveness and

complementarity of individual self-supervised tasks.

We benchmark REAVL on multiple vision-language benchmarks,

including general, knowledge-based, and multimodal entity link-

ing (MEL) tasks. REAVL achieves state-of-the-art performance on

knowledge-based and MEL tasks. Notably, on knowledge-based

VQA benchmarks, REAVL achieves new state-of-the-art results

while utilizing fewer parameters and less knowledge than previ-

ous works. This demonstrates the superiority of our approach for

retrieving and augmenting knowledge in multi-modal representa-

tions. On general tasks, REAVL also scores the best within models

trained with a similar amount of data, competitive to models trained

on billions of images while using only 0.2% of their data, showing

the strong sample efficiency of our methodology.

To summarize, we make the following contributions:

• We proposed a novel retrieval-augmented pre-training frame-

work that explicitly leverages large-scale knowledge graphs to

assist vision-language pre-training.

• We are the first to introduce a knowledge-aware self-supervised

learning scheme that efficiently identifies informative knowledge

to improve the multi-modal modeling.

• We achieved new state-of-the-art performance uniformly on

knowledge-based vision-language understanding andmulti-modal

entity linking tasks, as well as competitive results on general tasks

while only using 0.2% pre-training data of the best models.

2 RELATEDWORK

2.1 Vision-Language Pre-training Model

Vision-Language Pre-training has been developing rapidly in recent

years. Most existing work focuses on modeling the interactions

between images and text with transformer-based encoders[20, 21,

43]. Andmultiple well-designed cross-modal pre-training objectives

have been proposed, for example, image-text matching, masked

data modeling, and contrastive learning. They have achieved their

impressive performance by scaling up the dataset with noisy image-

text pairs collected from the web. For example, BLIP [20] effectively

utilizes the noisy web data by bootstrapping the captions, where a

captioner generates synthetic captions and a filter removes the noisy

ones. Recent methods such as SimVLM [35], OFA [32], CoCa [39],

and PaLi [6] unified the multi-modal pre-training model and self-

supervised tasks to obtain state-of-the-art performance on various

downstream tasks. These methods or frameworks benefit from their

learning ability on the increasing web-collected pre-training data

[3, 14], which also creates the challenge of huge computational

costs, and thus complicates the optimization procedure.

Our work, by contrast, focuses on incorporating world knowl-

edge into multi-modal representations, which have been demon-

strated helpful and necessary for various downstream tasks. By

introducing knowledge into multi-modal learning, our model can

achieve better performance with low-resource pre-training data.

2.2 Knowledge Augmented Language Model

Knowledge integration is active research for improving language

models. One line of research aims to add entity features into lan-

guage models (LMs) [4, 33, 40]. For example, ERNIE [40] enhanced

the text representations with their corresponding named entity

mentions at the text token level while KB-VLP [4] augmented the

knowledge from image-text pairs based on entity-linking tools and

object detection models. A recent method DRAGON [38] bidirec-

tionally fuses text and KG via a deep cross-modal model and learns

joint reasoning over text and KG. These methods usually require

entity linking tools to link text and KG entities before training, and

the retrieved knowledge is not updated during training.

Another line of work is retrieval-augmented LMs [8, 11, 18],

which retrieve relevant text from a corpus and integrate it into

LMs as additional knowledge. For example, REALM [11] integrates

Wikipedia passages as a knowledge base to benefit downstream

knowledge-intensive tasks. However, current retrieval-augmented

methods are often restricted to using text-only knowledge, neglect-

ing an amount of knowledge in other modalities like images, which

contain much information not covered by text. Compared to them,

MuRAG [5] is the first retrieval model that is capable of retrieving

knowledge presented in multiple modalities while REVEAL [13]

construct a large-scale memory by encoding various sources of

multimodal world knowledge, including Wikipedia passage and

web images with alt-text captions.

To improve on the above works, we propose to effectively re-

trieve informative knowledge frommultiple modalities and to incor-

porate knowledge with multi-modal representations by knowledge-

aware self-supervision learning. The fundamental rationale of our

method is that it improves the retrieval steps through well-designed

self-supervised learning tasks, which improves the correspondence

between knowledge and multi-modal data. Another distinction is

that the existing retrieval-based models typically focus on adding

entity- or triplet-level knowledge rather than the subgraphs around

the retrieved entity to enable richer knowledge fusion.



Retrieval-based Knowledge Augmented Vision Language Pre-training MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

2.3 Knowledge Graph representation learning

In recent years knowledge embeddings have been extensively stud-

ied by predicting missing links in graphs. Link prediction is a fun-

damental task in KGs [16, 42], and various works study methods

to learn KG entity and relation embeddings for link prediction,

such as TransE, DistMult, and RotatE [2, 23, 30, 37]. Several works

additionally use textual data or pre-training LMs to help learn KG

embeddings and link prediction. While these works focus on the

KG-side representations, we extend the scope and use the KG-side

objective (link prediction) jointly with multimodal-side objectives

to train a knowledge-augmented vision-language model.

3 METHODS

In this section, we first briefly introduce the model architecture of

our approach in Section 3.1 and Figure 1. Then we describe the pro-

posed Knowledge Retrieval, followed by the GNN Encoder for the

retrieved knowledge (Section 3.2-3.3). In Section 3.4, we show how

to effectively incorporate multi-modal data with knowledge by the

Knowledge-Augmented Model. Lastly, we describe the pre-training

objectives with corresponding self-supervised tasks (Section 3.5).

3.1 Model Architecture

At the core of our method is the idea of incorporating multi-modal

representations with KGs. To achieve this, We defined the image-

text pairs as D = {(𝐼 ,𝑇 ) |𝐼 ∈ I,𝑇 ∈ T }, and the KG is a multi-

relational graph G = {(V, E,R)} where V is the set of entity

nodes, E is the set of edges (triplets) and R is the set of relation

types in the KG.

We first employ a vision encoder 𝑓𝑣 and a text encoder 𝑓𝑡 to

produce the representations of the input image 𝐼 and text 𝑇 . For

the vision encoder, we use a 12-layer visual transformer ViT-B/16

[10]. An input image 𝐼 is first divided into 16 × 16 patches and

encoded into a sequence of patch embeddings𝜐 = {𝜐1, ..., 𝜐𝑁 }where
𝑁 is the number of image patches. The text encoder, a 12-layer

transformer, is initialized using the pre-trained BERT𝑏𝑎𝑠𝑒 [9] model

and transforms an input text 𝑇 into a sequence of embeddings

𝑡 = {𝑡𝑐𝑙𝑠 , 𝑡1, ..., 𝑡𝑁𝑡
}, where 𝑁𝑡 is the number of text tokens and 𝑡𝑐𝑙𝑠

is the encoding of the start token of a sentence.

The patch embeddings 𝜐 from image 𝐼 are then used for knowl-

edge retrieval, which is to find the nearest entities behind the image.

The set of retrieved entities is defined as𝑀 ⊂ V . We then add their

one-hop neighbor nodes to construct the entity subgraph 𝐺 ⊂ G
and feed them into the GNN Encoder. Therefore, we could obtain

the retrieved entity embedding 𝑒 = {𝑒1, ..., 𝑒𝑘 } after aggregating
their neighbor information.

Finally, the image and text embedding as well as entity embed-

ding are further processed by the knowledge-augmented model.

The knowledge-augmented model is initialized by the first and last

layer of the BERT, which enhances multi-modal representation by

interacting with other modalities through cross-attention blocks.

3.2 Knowledge Retrieval

Instead of directly linking entity mentions in the input text to

entity nodes in KGs [38], we followed the strategy of REALM [11]

by explicitly asking the model to decide what knowledge to retrieve

and incorporate.

In the retrieval step, the image patches with fine-grained descrip-

tions are helpful for understanding image content and retrieving

possibly helpful entities𝑀 from the KG G. Therefore, with the 𝑁

patches of the input image 𝐼 , the vision encoder 𝑓𝑣 is applied to

map each patch to a dense representation 𝜐 = {𝜐0, 𝜐1, ..., 𝜐𝑁 }. For
knowledge entries in KGs𝑚 ∈ V (V is the set of entity nodes),

we apply the backbone encoder 𝑓𝑒 to encode the entity𝑚 with its

description. Formally, we define the relevance score between the

image patch 𝑣𝑖 and the entity𝑚 as:

𝑠𝑖𝑚(𝑣𝑖 ,𝑚 𝑗 ) = 𝑓𝑣 (𝑣𝑖 )𝑇 𝑓𝑒 (𝑚 𝑗 ) (1)

In total, we retrieve the top 𝑁 × 𝐾 knowledge entries relevant

to image 𝐼 . We keep top-k knowledge entries ranked by similarity

scores as the set of retrieved entities𝑀 = {𝑚1,𝑚2, ...,𝑚𝑘 }.
In practice, we use CLIP model [25] to encode all of the entity

descriptions as the candidate memory and index them using FAISS

[15] to find the top-K nearest neighbors for each image patch.

For each resulting set of retrieved entities, we further add their

one-hop neighbor nodes from KG to construct the entity subgraph

𝐺 . The subgraph contains richer entities and relations, enabling

our model to obtain more information about world knowledge.

3.3 GNN Encoder

After extracting the 2-hop entity subgraph around the image-text

pair, we applied a GNN encoder to model the representation of

informative entities by aggregating their neighbor information

and strengthening the relational information, inspired by [26, 38].

To represent the graph, we first obtain initial node embeddings

{𝑒 (0)
1
, ..., 𝑒

(0)
𝑘

} for the retrieved entities using the entity encoder.

The initial embedding of the relations in the subgraph is also ini-

tialized by their description embeddings.

Then, in each layer of the GNN, the current representation of the

node embeddings {𝑒 (𝑙−1)
1

, ..., 𝑒
(𝑙−1)
𝑘

} is fed into the layer to perform
a round of information propagation between nodes in the graph

and yield pre-fused node embeddings for each entity:

{𝑒 (𝑙 )
1
, ..., 𝑒

(𝑙 )
𝑘

} = GNN({𝑒 (𝑙−1)
1

, ..., 𝑒
(𝑙−1)
𝑘

}) (2)

where GNN corresponds to a variant of graph attention networks

and 𝑙 corresponds to the layer of GNN. The GNN computes node

representations for each node via message passing between neigh-

bors on the graph:

𝑒
(𝑙 )
𝑖

= 𝑓𝑛
©­«

∑︁
𝑒 𝑗 ∈N𝑒𝑖

∪𝑒𝑖
𝛼𝑖 𝑗 · 𝑓𝐴𝑖 𝑗

ª®¬ + 𝑒 (𝑙−1)𝑖
(3)

where 𝑓𝑛 is a linear transformation, N𝑒𝑖 represents the neighbor-
hood of an entity node 𝑒𝑖 , and 𝑓𝐴𝑖 𝑗

denotes the message passing

function from its neighbors 𝑒 𝑗 to 𝑒𝑖 . The 𝛼𝑖 𝑗 is an attention weight

that scales the message function 𝑓𝐴𝑖 𝑗
, which could be calculated as:

𝛽𝑖 𝑗 =
𝑓𝑞 (𝑒 (𝑙−1)𝑖

)𝑇 𝑓𝑘 (𝑒
(𝑙−1)
𝑗

, 𝑟𝑖 𝑗 )
√
𝐷

(4)

𝛼𝑖 𝑗 =
𝑒𝑥𝑝 (𝛽𝑖 𝑗 )∑

𝑒𝑘 ∈N𝑒𝑖
∪𝑒𝑖 𝑒𝑥𝑝 (𝛽𝑖𝑘 )

(5)
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Figure 1: Illustration of the REAVL model. Given multi-modal data and a large knowledge graph (KG), we utilize a Knowledge

Retriever to retrieve knowledge from KG from multi-modal data and then incorporate the retrieved knowledge in multi-modal

representation learning with a Knowledge-Augmented Model. We also unify four types of knowledge-aware self-supervised

tasks (i.e. Masked Language Modeling) to encourage multi-modal data and KG to mutually inform each other.

where 𝑓𝑞 and 𝑓𝑘 are linear transformations and 𝑟𝑖 𝑗 is a relation

embedding for the relation connecting 𝑒𝑖 and 𝑒 𝑗 .

The message passing function 𝑓𝐴𝑖 𝑗
could be computed in the

following manner:

𝑓𝐴𝑖 𝑗
= 𝑓𝑚 (𝑒 (𝑙−1)

𝑗
, 𝑟𝑖 𝑗 ) (6)

where 𝑓𝑚 is linear transformations and 𝑟𝑖 𝑗 is the same as above.

3.4 Knowledge Augmented Model

After using a visual transformer layer, a text transformer layer, and

a GNN layer for vision, text, and entities respectively, we use a

knowledge-augmented model to let the two modalities fuse the

knowledge information through a 2-layer cross-modalities trans-

former [17, 41].

In principle, we concatenate the pre-fused embeddings including

visual embeddings 𝜐, text embeddings 𝑡 , and entity embeddings

𝑒 as the input elements in the BERT model. The input sequence

always starts with a special classification element ([CLS]), then

goes on with visual patch embeddings, then follows up with text

token elements, and ends with the retrieved entities. A special

separation element ([SEP]) is inserted between the visual and text

elements, and between the text and entity elements. Therefore, four

types of input elements are involved, namely, visual, textual, entity,

and special elements for disambiguating different input formats.

Finally, the multi-modal features are fused with knowledge features

through the cross-attention block at each layer.

Let 𝑥 = {𝑥1, ..., 𝑥𝑝 } be the input elements, which are embed-

ding features of the visual, textual, and entity elements. They are

processed by a multi-layer bidirectional Transformer, where the

embedding features of each element are transformed layer-by-layer

in the fashion of aggregating features from the other elements with

adaptive attention weights. The features of the (𝑙 + 1)-th layer,

𝑥 (𝑙+1) , is computed by:

ℎ̂
(𝑙+1)
𝑖

=

𝑀∑︁
𝑚=1

𝑊
(𝑙+1)
𝑚

©­«
𝑁∑︁
𝑗=1

𝐴𝑚𝑖,𝑗 ·𝑉
(𝑙+1)
𝑚 𝑥𝑙𝑗

ª®¬ (7)

ℎ
(𝑙+1)
𝑖

= LayerNorm

(
𝑥𝑙𝑖 + ℎ̂

(𝑙+1)
𝑖

)
(8)

𝑥
(𝑙+1)
𝑖

=𝑊
(𝑙+1)
2

· GELU
(
𝑊

(𝑙+1)
1

ℎ
(𝑙+1)
𝑖

)
(9)

𝑥
(𝑙+1)
𝑖

= LayerNorm

(
ℎ
(𝑙+1)
𝑖

+ 𝑥 (𝑙+1)
𝑖

)
(10)
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where 𝑚 in Eq.7 indexes over the attention heads, and 𝐴𝑚
𝑖,𝑗

=

exp[(𝑄 (𝑙+1)
𝑚 𝑥𝑙

𝑖
)𝑇 (𝐾 (𝑙+1)

𝑚 𝑥𝑙
𝑗
)] denotes the attentionweights between

elements 𝑖 and 𝑗 in the𝑚-th head, and𝑊
(𝑙+1)
𝑚 , 𝑄

(𝑙+1)
𝑚 , 𝐾

(𝑙+1)
𝑚 and

𝑊
(𝑙+1)
1

,𝑊
(𝑙+1)
2

are learnable weights for𝑚-th attention head and

(𝑙 + 1)-th layer.

3.5 Pre-training objective

To ensure that the multi-modal and KG mutually inform each other,

we unify four knowledge-aware self-supervised tasks: masked lan-

guage modeling, masked vision modeling, KG link prediction, and

image-text contrastive learning.

3.5.1 Knowledge-awareMaskedLanguageModeling (K-MLM).
MLM is a common pre-training task used for language models. Fol-

lowing the strategy of REALM [11], we use Span Masking Modeling

to focus on the span 𝑠 that may require world knowledge to predict

the masked tokens. Let 𝑇 denote a masked text, and 𝑝𝑚𝑠𝑘 (𝐼 ,𝑇 , 𝐸)
denote the model’s predicted probability for a masked token. We

adopt the strategy of [20], which minimizes a cross-entropy loss:

L𝑀𝐿𝑀 = E(𝐼 ,𝑇 ,𝐸 ) [𝐻 (𝑦𝑚𝑠𝑘 , 𝑝𝑚𝑠𝑘 (𝐼 ,𝑇 , 𝐸))] (11)

where 𝑦𝑚𝑠𝑘 is a one-hot vocabulary distribution where the ground-

truth token has a probability of 1.

3.5.2 Knowledge-aware Masked Vision Modeling (K-MVM).
For image masking, unlike MAE [12], we aim to reconstruct the

invisible patches features with visible image, text, and entity fea-

tures to facilitate multi-modal information and knowledge fusion.

Concretely, we propose to apply a reconstruction loss to facilitate

the aggregation of multi-modal and knowledge features. Formally,

the reconstruction loss is defined as:

L𝑀𝑉𝑀 = E(𝐼̂ ,𝑇 ,𝐸 ) [𝐻 (𝑦𝑚𝑠𝑘 , 𝑝𝑚𝑠𝑘 (𝐼̂ ,𝑇 , 𝐸))] (12)

where 𝐼̂ denotes the masked patches and 𝑝𝑚𝑠𝑘 (𝐼̂ ,𝑇 , 𝐸)) denotes the
predicted probability for masked image patch features.

3.5.3 Knowledge-aware Image-Text Contrastive Learning
(K-ITC). Image-Text Contrastive Learning aims to learn better uni-

modal representations before fusion. Inspired by ALBEF [21], for

each image and text, we calculate the softmax-normalized image-

to-text and text-to-image similarity as:

𝑠 (𝑖2𝑡 ) (𝐼 ,𝑇 ) = 𝑒𝑥𝑝 (𝑠 ⟨𝐼 ,𝑇𝑚⟩/𝜏)∑𝐾
𝑘≠𝑖

𝑒𝑥𝑝 (𝑠 ⟨𝐼 ,𝑇𝑚⟩)
(13)

𝑠 (𝑡2𝑖 ) (𝐼 ,𝑇 ) = 𝑒𝑥𝑝 (𝑠 ⟨𝐼𝑚,𝑇 ⟩/𝜏)∑𝐾
𝑘≠𝑖

𝑒𝑥𝑝 (𝑠 ⟨𝐼𝑚,𝑇 ⟩)
(14)

L𝐼𝑇𝐶 =
1

2

E
(
[𝐻 (𝑦𝑖2𝑡 , 𝑠𝑖2𝑡 (𝐼 ,𝑇 )) + 𝐻 (𝑦𝑡2𝑖 , 𝑠𝑡2𝑖 (𝐼 ,𝑇 ))

)
(15)

3.5.4 KG Link Prediction (LinkPred). While the MLM and

MVM task predicts for the multi-modal and knowledge side, link

prediction holds out some edges and predicts them for the input

KG. As our approach takes a joint image-text and KG entities pair

as input, we expect that link prediction can encourage the model to

learn to use the KG structure jointly with the textual context and

visual regions to reason about missing links in the KG.

Concretely, we hold out a subset of edge triplets from the input

KG 𝑆 = {(ℎ, 𝑟, 𝑡)} ⊂ 𝐸. Then we maps each entity node (ℎ or 𝑡 )

and relation (𝑟 ) in the KG to a vector, ℎ, 𝑡 , 𝑟 , and defines a scoring

function 𝜙𝑟 (ℎ, 𝑡) to model positive/negative triplets. Herein, we

consider a KG triplet scoring function 𝜙𝑟 (ℎ, 𝑡) as DistMult [37]:

𝜙𝑟 (ℎ, 𝑡) =< ℎ, 𝑟, 𝑡 >. < ·, ·, · > denotes the trilinear dot product. A

higher 𝜙 indicates a higher chance of (ℎ, 𝑟, 𝑡) being a positive triplet
(edge) instead of negative (no edge). For training, we optimize the

objective:

L𝐿𝑖𝑛𝑘𝑃𝑟𝑒𝑑 =
∑︁

(ℎ,𝑟,𝑡 ) ∈𝑆
−log𝜎 (𝜙𝑟 (ℎ, 𝑡) + 𝛾)

+ 1
𝑛

∑︁
(ℎ′ ,𝑟 ,𝑡 ′ )

log𝜎 (𝜙r (h
′
, t

′
+ 𝛾)

(16)

where (ℎ′
, 𝑟 , 𝑡

′ ) are 𝑛 negative samples corresponding to the posi-

tive triplet (ℎ, 𝑟, 𝑡), 𝛾 is the margin, and 𝜎 is the sigmoid function.

4 EXPERIMENT SETUP

4.1 Data

For the image-text data, following UNITER [7], we construct our

pre-training data using twoweb datasets (Conceptual Captions, SBU

Captions) and two in-domain datasets (COCO and Visual Genome).

The total number of unique images is 4.0M, and the number of

image-text pairs is 5.1M.We useWikidata5M [33], a general-domain

knowledge graph designed to capture background world knowl-

edge for the KG data. It has 4M nodes and 20M edges in total. For

each entity in Wikidata5M, we use its description collected from

Wikipedia to produce entity embeddings.

4.2 Implementation Details

Our model consists of a BERT-base with 123.7M parameters and

a ViT-B/16 with 85.8M parameters. We pre-train the model for

10 epochs using a batch size of 32 on 8 NVIDIA A100 GPUs. For

optimization, we use the AdamW [22] optimizer with a learning

rate of 5e-5 and a weight decay of 0.02. We use DistMult [37] for

KG triplet scoring for the link prediction objective, with a negative

exampling of 128 triplets and a margin of 𝛾 = 0.05. To pretrain the

model, we perform MLM with a token masking rate of 25%, MVM

with a patch masking rate of 25%, and link prediction with an edge

drop rate of 15%. Appendix A provides the details of the external

knowledge memory and cost.

4.3 Downstream evaluation tasks

We finetune and evaluate our models on the vision-language un-

derstanding tasks (OK-VQA, AOK-VQA, VQA-v2, and SNLI-VE)

[1, 24, 27, 36] and entity linking tasks (WikiDiverse and WikiPer-

son) [29, 34]. For the vision-language understanding task, we follow

the original setting and splits used by prior works [19]. Appendix

B provides the full details on these tasks and data.
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Table 1: Results for vision-language pre-trainingmethods on popular VL benchmarks.We report accuracy for OK-VQA and SNLI-

VE and vqa-score for AOK-VQA and VQA-v2. The best and second-best results are marked number and number, respectively.

The gray number indicates that the model is trained with a significantly larger number of data than our models.

Task Dataset Method Knowledge Sources Results

dev test

Knowledge-based Task

OK-VQA

Supervised

KAT Wikidata + Frozen GPT-3 53.1

REVIVE Wikidata + Frozen GPT-3 56.6

Pre-training

ALBEF # image 12M 54.7

BLIP # image 129M 55.4

REVEAL𝐵𝑎𝑠𝑒 CC12M + Wikidata + WIT + VQA-v2 55.2

REAVL (ours) # image 4M + Wikidata 57.7

AOK-VQA

Pre-training

ALBEF # images 12M 54.5 -

BLIP # images 129M 56.2 50.1

REVEAL𝐵𝑎𝑠𝑒 CC12M + Wikidata + WIT + VQA-v2 - 50.4

REAVL (ours) # images 4M + Wikidata 58.4 52.7

General Task

VQA-v2

Base Data-Size

VL-BERT # images 3.3M 71.16 -

UNITER # images 4M 72.70 72.91

OSCAR # images 4M 73.16 73.44

UNIMO # images 4M 75.06 75.27

ALBEF # images 4M 74.54 74.70

REAVL (ours) # images 4M + Wikidata 77.62 77.79

Large Data-Size

ALBEF # images 12M 75.84 76.04

BLIP # images 14M 77.54 77.62

BLIP # images 129M 78.25 78.32

SimVLM𝑏𝑎𝑠𝑒 # images 1.8B 77.87 78.14

SNLI-VE

Base Data-Size

UNITER # images 4M 79.39 79.38

UNIMO # images 4M 81.11 80.63

ALBEF # images 4M 80.14 80.30

REAVL (ours) # images 4M + Wikidata 82.41 82.53

Large Data-Size

ALBEF # images 12M 80.80 80.91

SimVLM𝑏𝑎𝑠𝑒 # images 1.8B 84.20 84.15

5 EXPERIMENT RESULTS

5.1 Evaluation on V+L understanding tasks

To examine the quality of multi-modal representation learning, we

first compare REAVL on four downstream V+L tasks with state-of-

the-art methods, as shown in Table 1. It is clear that our method

REAVL achieves state-of-the-art performance, outperforming all

existing models including supervised models (KAT, REVIVE) and

VLP models (ALBEF, BLIP) on the knowledge-based task. For ex-

ample, on the OK-VQA dataset, REAVL achieves a 1.94% and 4.15%

relative accuracy gain over the baseline REVIVE and BLIP respec-

tively. These improvements are consistent in the AOK-VQA dataset,

demonstrating our hypothesis that large knowledge graphs can

provide complementary information to multi-modal data.

Particularly, compared to the strong baseline REVEAL, which

also exploits much knowledge to improve multi-modal representa-

tion, our model shows superior performance under the same size

of parameters with fewer knowledge resources, demonstrating the

superiority of our self-supervised learning scheme for the retrieval

of informative knowledge. This is in line with our expectations

as our self-supervised learning scheme could efficiently identify

informative knowledge from large-scale knowledge memory and

integrate them with visual and textual information.

For the general V+L tasks, our model REAVL achieves relative

improvements of 3.34% on VQA-v2 and 2.36% on SNLI-VE, with
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Table 2: Entity Linking Results on WikiDiverse and WikiPerson. R@K represents the recall of the TopK retrieved entities. The

best and second-best results are marked number and number, respectively.

WikiDiverse WikiPerson

R@10 R@50 R@100 R@1 R@5 R@10

ViT+BERT 61.76 71.30 73.87 60.56 72.43 78.72

BLINK+CLIP_N_D 66.96 77.18 80.53 - - -

ResNet+CLIP_N 77.64 81.21 85.69 68.24 79.83 82.65

ResNet+CLIP_N_D 80.64 84.33 87.56 73.70 83.47 84.45

CLIP 82.37 87.82 91.04 74.55 84.42 85.15

REAVL 83.20 88.42 89.59 77.58 85.27 88.38

Table 3: Ablation Study on OK-VQA.

Training Task / Architecture OK-VQA

w/o Knowledge Retriever 52.71

w/o GNN Aggregation 54.33

w/o Knowledge Augmented Model 56.61

Retrieval From Textual 53.27

Retrieval From Vision (Final) 57.72

MLM 54.38

MLM+MVM 55.60

MLM+MVM+ITC 57.24

MLM+MVM+ITC+LinkPred 57.72

4M pre-training images. When comparing with the models that are

trained with a significantly larger number of data, our model also

shows competitive performances. For example, our model outper-

forms ALBEF and BLIP pre-trained on >10M data on both datasets.

The performance supports our view that the results of the SOTA

model under larger pre-training data can be achieved through the

fusion of smaller data scales and knowledge. And the slightly lower

performance compared to SimVLM is expected since larger data

(1.8B) can provide more information than knowledge graphs.

Similar results have been shown on other general vision-language

tasks such as Image Captioning, as shown in Appendix C.1. With

a small amount of data, our model achieves improvements over

BLIP of 4.39% on COCO Captions and 1.62% on NoCaps. When com-

paring with the models that are trained with a significantly larger

number of data, our model also shows competitive performances.

5.2 Evaluation on Entity Linking tasks

REAVL is also capable of linking the visual mentions in the im-

age to the corresponding named entity in knowledge graphs. To

demonstrate the ability, we compared REAVL with the existing

multi-modal entity linking models. We followed the evaluation set-

tings used by [34] and [29] to report the comparison results with

existing methods in Table 2. Considering the format of entities in

KBs, we only consider the visual (image) to textual (descriptions

and names) entity linking.

As we can see, ViT+BERT has achieved reasonably good perfor-

mance for R@10 (i.e., 61.76 atWikiDiverse and 78.72 atWikiPerson),

which demonstrates the effectiveness of the pre-training model.

Moreover, we can see that the CLIP, which is pre-trained with about

400M image-caption pairs, has achieved the strongest baseline per-

formances, which demonstrates the effectiveness in combining both

visual description and textual description. Our model has outper-

formed the CLIP model on 5 out of 6 metrics across the two datasets,

proving that our pre-training objectives on multi-modal data such

as MLM and MVM have promoted the training of the knowledge

retriever. The slightly lower performance in R@100 is expected as

we select candidate entities within the Top-50 for training due to

the limitation of the length of the knowledge-augmented model.

5.3 Ablation Study

Here, we will ablate the properties of REAVL to investigate factors

that influence the model performance, as we discuss below. Table 3

and Appendix C.3 show the ablation experiment results.

5.3.1 Incorporating Knowledge Graphs with Multi-modal
data. The first key contribution of our model (w.r.t. existing VLP

methods) is that we incorporate knowledge graphs for V+L pre-

training. We find that this significantly improves the model’s per-

formance for knowledge retrieval and integration. Compared to the

REAVL without the KG retriever, jointly training the KG retriever

and V+L learning substantially improves the model’s performance

on the OK-VQA task. Furthermore, adding the proposed GNN Ag-

gregation and the knowledge-augmented model both enhance the

model performance. This is in line with our expectation as GNN

Aggregation could extract more related entities and relations while

the knowledge-augmented model is designed to fuse knowledge

and multi-modal data in an efficient way.

5.3.2 Knowledge retrieval on multi-modal data. Another ad-
vantage of our model is its ability to retrieve knowledge from multi-

ple modalities like images. In order to study the necessity of visual

knowledge retrieval, we perform an ablation study to see the im-

pact of knowledge retrieval. As can be seen, the performance drop

of textual retrieval is more severe on the OK-VQA dataset. This is

understandable because images contain more information that is

not covered by text, especially in the downstream tasks. Thus, it

is necessary to retrieve knowledge from images to better facilitate

the fusion of knowledge and multi-modal data.

5.3.3 Effect of pre-training objectives. In order to study the

contributions of different pre-training objectives, we investigated



MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Jiahua Rao, Zifei Shan, Longpo Liu, Yao Zhou, and Yuedong Yang

Table 4: Case Study on OK-VQA dataset.

Question Image Ground-Truth Prediction Supporting

(a) What is the person

in the photo wearing?

[wetsuit, suit,

wet suit, trunk]

REAVL: wetsuit ✓

Retrieved Entities:

{boardsport, surfer, big wave

surfing, wetsuit, dry suit, ...}

(b) What kind of flowers

are on the table?

[rose] REAVL: rose ✓

Retrieved Entities:

{dinnerware, Duchess of

Abrantes, cake plate, tea,

rose petals}

(c) Which liquid seen here

comes from a citrus fruit?

[orange juice, orange] REAVL: juice ✕

Retrieved Entities:

{plateau, placemat, fruit

juice, monkey bread, citrus

juice, ...}

(d) Can you guess the location

where the airoplane is seen?

[arizona, new zea-

land, us, tarmac]

REAVL: airport ✕

Retrieved Entities:

{Canadair Regional Jet,

forward-swept wing, yellow

line, non-towered airport, ...}

(e) What type of

temperature is this?

[cold, cold, cold,

cold, cold, cold,

cold, cold, pleasant,

pleasant]

REAVL: cold ✓

BLIP: cool ✕

REVIVE: warm ✕

Retrieved Entities:

{Strawberry train, Nankai

Electric Railway (Japanese

railway company), rail

transport in Walt Disney Parks,

cherry blossom}

the four pre-training objective combinations. We report their fine-

tuned results on the OK-VQA dataset in Table 3. As can be seen, only

with MLM, our model only achieves an accuracy of 54.38, which

slightly lags behind the baseline models (ALBEF and BLIP). Adding

MVM and ITC both substantially improves the pre-trained model’s

performance. And the proposed LinkPred further enhances the

model by reasoning complex world knowledge. Finally, our model

achieves a 1.94% and 4.15% relative accuracy gain over the baseline

REVIVE and BLIP respectively. The ablation study demonstrates

the effectiveness and complementarity of each self-supervised task.

5.4 Case Study

We conduct case studies on the behavior of REAVL’s knowledge

retrieval and knowledge augmentation, where we analyze the con-

tribution of retrieved entities to question answering (Table 4). We

can observe that our approach can accurately retrieve informative

entities after training the knowledge retriever. For instance, REAVL

can retrieve useful knowledge from images (e.g., wetsuit and rose

petals) to generate the correct answer in example (a)(b). From the

error cases, we can see that the model still generates reasonable

answers for such scenarios. For example (c), we have retrieved the

informative entity citrus juice from the image, but failed to under-

stand the problem well. Example (d) is quite difficult to answer but

our model still could generate a reasonable answer airport. When

comparing the existing methods, we selected the case that has been

reported by REVIVE. Although the question is more complex, our

model could accurately predict the answer, but existing models,

BLIP and REVIVE, struggle to predict the correct answers, which

can demonstrate the potential of our proposed method.

6 CONCLUSION

In this paper, we presented REAVL, a novel vision-language pre-

training framework to incorporate world knowledge into multi-

modal representations. It not only exploits the multi-modal data

for better knowledge retrieval but also fuses knowledge and multi-

modal data with a knowledge-augmented model. Our experiments

on knowledge-based tasks show the superiority of our approach,

as it outperforms existing VLP baselines with low-resource pre-

training data. At the same time, the performance on entity linking

tasks also shows its excellent ability in retrieving informative knowl-

edge from massive knowledge graphs. One limitation of REAVL is

that it also constitutes large computational costs due to knowledge

retrieval, and an important future research will be to extend it to

make it faster and apply it to larger datasets.
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A KNOWLEDGE DETAILS

A.1 Knowledge Retriever.

We initialized our visual encoder 𝑓𝑣 by CLIP. And for the retriever,

we just build the MIPS index once for simplicity and do not update

the entity embedding 𝑓𝑒 at the retriever. Note that we still fine-tune

the visual embedding 𝑓𝑣 , so we do not perform the asynchronous

index refresh as in REALM fine-tuning. It is possible that refreshing

the index would further improve performance. And we update our

entity embedding 𝑓𝑒 at the GNN and knowledge-augmented model.

A.2 Knowledge Extra Cost

The extra cost of the knowledge-augmented REAVL model is most

from the knowledge retriever. And we use an efficient retrieval

method thanks to the FAISS. During the pre-training, we took 8

days for pre-training on 8NVIDIAA100GPUswith a batch size of 32

and an epoch of 20, which is slightly slower than baseline methods

(ALBEF and BLIP) using the same machine. As for inference, our

model took 2s per sample for VQA answer generation, compared

to 1.8s of the baseline method BLIP on the same machine.

B DATA

B.1 V+L understanding tasks

requires a cooperative knowledge of vision and language. We fine-

tune and evaluate four vision-language understanding benchmarks,

including knowledge-base tasks (OK-VQA [24] and AOK-VQA [27])

and general tasks (VQAv2 [1] and SNLI-VE [36]). Specifically, we

feed the embeddings of a given question (text), an image, and the

retrieved entities into the knowledge-augmented model and use a

12-layer transformer decoder to generate the answer.

For the VQA-v2, OK-VQA, and AOK-VQA, we followed the prior

work [19, 21] and formulate the task as a classification problem

over the most frequent answers in the training set. OK-VQA and

AOK-VQA is the knowledge-based VQA benchmark that requires

external knowledge to answer its questions, that is, the knowledge

that is not directly present in the image input.

B.2 Multi-modal Entity Linking

aims at linking mentions with multi-modal contexts to the referent

entities from a knowledge base (e.g., Wikipedia), is an essential

task for many multi-modal applications. We consider two datasets

for multi-modal Entity Linking: WikiDiverse [34] and WikiPerson

[29]. WikiDiverse is a high-quality human-annotated MEL dataset

with diversified contextual topics and entity types from Wikinews,

while WikiPerson is a high-quality human-annotated visual person-

linking dataset from VisualNews. Herein, we finetuned the dual

encoder of image and entity with the contrastive loss function

of mention-entity samples to demonstrate the superiority of our

retrieval process.

C ADDITIONAL EXPERIMENTS

C.1 Experiments on Image Captioning Task.

We also evaluated our model on other general vision-language tasks

such as Image Captioning. The results are consistent with the VQA

and VE datasets in trend, as shown in Table 6. With a small amount

of data, our model REAVL achieves improvements over BLIP of

4.39% on COCO Captions and 1.62% on NoCaps. When comparing

with the models that are trained with a significantly larger number

of data, our model also shows competitive performances.

C.2 Zero-shot Learning on entity linking task.

We add the experiments of the zero-shot tasks on the WikiPerson

dataset to demonstrate the ability of the retriever, as shown in Table

7. The results demonstrate the zero-shot ability of our model and

the improvement over CLIP also illustrates that our knowledge

retriever has been learning in the correct direction.

C.3 Ablation study

C.3.1 Ablation study on the number of retrieved knowledge entries.
We have conducted the ablation study on the impact of the number

of retrieved knowledge entries (Top-K). As the number of retrieved

knowledge entries increases, the performance of REAVL increases

rapidly thanks to the more informative knowledge. Subsequently,

the performance slowly descends as K continues to increase, indi-

cating that an overlarge of retrieved knowledge entries will bring

redundant and harmful information.

C.3.2 Analysis on Knowledge Retriever. As shown in Table 8, we

analyzed the prediction results on OK-VQA to determine whether

they were caused by the error of the retriever. For instance, we

compared the CLIP model with our knowledge retriever when

answering the question "What is the person in the photo wearing?".

CLIP model could recognize multiple objects in the image, such

as waterist, wave energy, and even a company in Nepal. But the

retrieved knowledge is incorrect as it does not relate to the question

text, resulting in the wrong answer. In contrast, our knowledge

retriever, with the help of the proposed knowledge-aware task,

makes an accurate prediction by focusing on the person in the image

wearing a "wetsuit" or "dry suit". It again verified the importance

of our proposed knowledge-aware self-supervised tasks.

For the GNN Aggregation and Knowledge Augmented module,

as shown in example (e) in Table 4, to answer the question "What

type of temperature is this?", the knowledge from the input image

and question is not sufficient for answering. And our methods could

retrieve the entity "cherry blossom" from an image and predict the

correct answer "warm" based on the climate in which cherry blos-

soms usually bloom. Interestingly, the useful knowledge does not

directly come from the retrieved entity but rather from its neigh-

boring knowledge ("Blooming season"). In contrast, the baseline

method REVIVE without the GNN Aggregation module cannot

predict the correct answer. It again verified the importance of our

proposed GNN Aggregation and Knowledge Augmented module.

C.3.3 Model Scalability. We have demonstrated that our model

can be scaled to more data. Table 9 shows the performance compar-

ison of different data sizes. The significant improvement demon-

strates the scalability of our model. We also compared the ALBEF

model with our KG modeling using the same 1.3M (in-domain,

COCO+VG) dataset. Both models were trained with a batch size

of 32 using the same number of machines. The 8% improvements

presented in the table below demonstrate the superiority of our KG

modeling in the same data regime.
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Table 5: Knowledge Extra Cost

# instance # triplets storage (initial-embedding) storage (faiss-index)

Wikidata5M 4,594,485 20,614,279 8.76GB 2.19GB

Table 6: Results for vision-language pre-training methods on popular image captioning benchmarks. We report CIDEr for

COCO Captions and NoCaps. The best and second-best results are marked number and number, respectively. The gray number

indicates that the model is trained with a significantly larger number of data than our models.

Model Knowledge Resources COCO Caption NoCaps

Base Data-Size

BLIP # image 14M 129.7 105.1

REVAL # image 4M + Wikidata5M 135.4 106.8

Large Data-Size

SimVLM-base # image 1.8B 134.8 94.8

SimVLM-large # image 1.8B 142.6 108.5

SimVLM-huge # image 1.8B 143.3 110.3

Table 7: Additional Results for the entity linking task. (a) Compared with the text-based methods on WikiDiverse; (b) Zero-shot

learning result on WikiPerson.

Recall@10 Recall@50 Recall@100

BLINK 63.63 73.15 76.03

REAVL 83.20 88.42 89.59

Zero-Shot R@1 Zero-Shot R@5 Zero-Shot R@10

CLIP 54.41 68.42 75.32

REVAL 55.13 69.24 76.39

Table 8: Case study of Knowledge retriever.

Model Question Image Retrieved Knowledge

CLIP

What is the person

in the photo wearing?

{"wave energy", "wakeboarding resort",

"Dibyashwori Hydropower Ltd. ",

"Surfer Riding a Wave"

"waterist", }

REVAL

What is the person

in the photo wearing?

{"boardsport", "surfer", "big wave

surfing", "wetsuit", "dry suit"}

Table 9: Model Scalability

Model Pretraining-Data-size OK-VQA

ALBEF CC(in domain 1.3M) 40.7

REAVL CC(in domain 1.3M) 48.6

REAVL CC4M 53.4

Table 10: Ablation study on the number of retrieved

knowledge entries (Top-K).

Model WikiDiverse

R@10

REAVL (K=10) 78.39

REAVL (K=20) 80.57

REAVL (K=50) 83.20

REAVL (K=100) 82.96
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