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ABSTRACT
A key to personalized online learning is presenting content at an
appropriate difficulty level; content that is too difficult can cause
frustration and content that is too easy may result in boredom. Ap-
propriate content can improve students’ engagement and learning
outcome. In this research, we propose a computer vision enhanced
problem selector (COVES), a deep learning model to select a person-
alized difficulty level for each student. A combination of visual infor-
mation and traditional log data is used to predict student-problem
interactions, which are then used to guide problem difficulty se-
lection in real time. COVES was trained on a dataset of fifty-one
sixth-grade students interacting with the online math tutor Math-
Spring. Once COVES was integrated into the tutor, its effectiveness
was tested with twenty-two seventh-grade students in controlled
experiments. Students who received problems at an appropriate
difficulty level, based on real-time predictions of their performance,
demonstrated improved engagement with the math tutor. Results
indicate that COVES leads to higher mastery of math concepts,
better timing, and higher scores, thus providing a positive learning
experience for the participants.
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1 INTRODUCTION
Learners need challenging tasks to promote maximum cognitive
growth; they perform best when tasks are just beyond their capabil-
ities or out of their ability range [13, 22]. To ensure that students’
mastery level continues to rise, teachers or "more knowledgeable
others” should provide ongoing, scaffolded support and new oppor-
tunities so learners work slightly beyond their current skill level.
To describe what learners can achieve with guidance and encour-
agement from a skilled partner and what they can do without help,
Vygotsky [22] defined the “zone of proximal development” (ZPD).
The term “proximal” refers to exposing learners to skills that have
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a possibility of being mastered, and the term "zone" to a set of activ-
ities that are most beneficial, when tasks are just beyond learners’
capabilities. Vygotsky noted that good teachers should not present
material that is too difficult and support students to succeed by
solving problems with help [4].

Within the context of intelligent tutoring systems, previous al-
gorithms that select appropriate learning activities have mostly
been based on heuristics. For instance, the "Effort Based Tutoring"
problem selection algorithm [1] for MathSpring, an intelligent tu-
tor for fourth-grade and above (mathspring.org), attempts to keep
students in the ZPD with a rule-based algorithm that reasons about
students’ recent actions, in terms of attempts, hints and time spent
[15]. We, however, questioned whether the tutor’s response might
be improved if it interpreted the face and gesture of its online stu-
dents. Recent advances in computer vision [18] enable tutoring
systems to observe students’ facial features, Figure 1. Students ex-
press complex cognitive-affective states as they interact with online
systems that can enrich the bandwidth of communication between
tutor and learners, with the potential to better understand learning.

Our main research questions are: Can analysis of students’ facial
expressions with computer vision improve on the state-of-the-art
in educational content selection? How can we design a machine
learning model that improves the choice of the next math problem
by looking at the students’ facial features, and thus optimize student
engagement? We address these questions using the intelligent tutor
MathSpring (its interface is shown in Figure 2) as a real-time testing
platform for our proposed machine learning model. We call our
model COVES for computer vision enhanced problem selector. It
is a deep learning model that personalizes difficulty levels of math
activities by attempting to optimize each student’s engagement
state. It takes on the role of a “knowledgeable other" (e.g., a teacher)
who has knowledge about learners and what might be best for
them [13]. The model takes as inputs the student’s video feed and
information about the student’s current online problem solving
performance. The model estimates how the student will perform
on the next problem and uses this to predict the difficulty level
of the next math problem that the tutor should select. Based on
COVES, the MathSpring tutor selects the math problem in real time
that is best suited for the student at that point during the online
interaction. The goal is for students to remain in a positive/engaged
learning state (solving problems correctly, after hints, or after a
single incorrect attempt) and to keep them away from negative
behavior/disengagement (quick-guessing, not reading, skipping
problems, or giving up), see Effort Chart, Figure 1, right.

The main challenge we face then is how to accurately predict
a student’s problem solving performance or outcome on the next
problem. Previous methods of automatic problem solving outcome
prediction in intelligent tutors have focused on analyzing student
videos using facial expression recognition techniques [10, 18, 19].
While prior work has shown the potential for accurate outcome
prediction based on visual data alone, these methods lack the con-
text and complementary information provided by student log data,
which is commonly used by human teachers to interpret student
behavior. In this work, we propose a novel multimodal analysis
approach that combines state-of-the-art visual affective analysis
with student log data (i.e., information about how the students per-
formed previously and the difficulty levels of the problems) using

an attention-based fusion module. To the best of our knowledge, we
are the first to integrate these two sources of information to improve
the accuracy of student problem solving outcome prediction.

We trained our outcome prediction model on the MathSpring
Children Dataset [18], a dataset of fifty-one sixth-grade students
interacting with the MathSpring intelligent tutor. We integrated
COVES into MathSpring and conducted a real-time classroom ex-
periment with twenty-two seventh-grade students. We randomly
divided participants into “treatment" and “control" groups, where
learners in the treatment group used MathSpring with the COVES
math problem selector, and learners in the control group used Math-
Spring’s legacy “Effort Based Tutoring" problem selector [1]. Thus,
our work “closes the loop" for computer-vision-based real-time se-
lection of problem difficulty in tutoring systems; that is, computer
vision is used not only for post-experiment analysis of student per-
formance, as in previous work [10, 18, 19], but, to the best of our
knowledge, for the first time, incorporated into an online tutor for
real-time decision making by the tutor.

To protect student privacy, COVES conducts the analysis of
student videos only locally, in the front end of the web-based soft-
ware. No student videos are stored on the web. To achieve real-time
prediction locally with limited computation resources, we applied
several optimization techniques: We downsampled the video, used
model quantization to speed up the algorithm, and reduced the
model size.

In summary, this paper makes three main contributions to the
literature:

• We propose COVES, a novel deep learning model for se-
lecting personalized difficulty levels for each student in an
intelligent tutor, based on predicting student problem solving
outcomes.
• We introduce an attention-based deep fusion model that
combines visual and non-visual data for improving the per-
formance of problem solving outcome prediction.
• We demonstrate the real-time incorporation of our COVES
model into an online tutor and conduct classroom experi-
ments using the COVES-enhanced tutor. Statistically signif-
icant results indicate that COVES leads to higher mastery
of math concepts, better timing, and higher scores, thus pro-
viding a positive learning experience for the participants.

2 RELATEDWORK
2.1 Difficulty Selection in Intelligent Tutors
Presenting content at an appropriate difficulty level is a key goal
of intelligent tutoring systems. Some existing implementations
are based on deterministic selection rules [1, 5, 20]. For example,
Sampayo-Vargas et al. [20] adaptively adjusted content difficulty
level following simple rules such as decreasing one level of difficulty
for three consecutive incorrect answers. CIRCSIM-Tutor [5] con-
sidered both students’ self-report and prior performance (student’s
cumulative score on past problems). More recent approaches have
employed reinforcement learning to model the difficulty selection
process [12, 17, 21, 23, 24]. They used multi-armed bandits frame-
work to learn an exploration-exploitation policy to select difficulty
levels in order to maximize learning gains. While these stochastic
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Figure 1: Example face-cropped images showing the evolution of student expressions and gestures with the corresponding
problem sovling outcomes. The top four rows indicate positive learning outcome and the bottom two rows indicate negative
learning outcome. In the top two rows the student solved the problem on the first attempt (SOF), in rows 3-4 the student solved
the problem with hints (SHINT) and in the bottom two rows the student tried but ultimately skipped the problem (GIVEUP).

Figure 2: The Practice Area interface of an existing tutor,
MathSpring. Hints are available from the “Hints” button on
the left, which are supplemented with audio for any text dis-
played. Worked-out examples, tutorial videos, and formulas
are also accessible. Jake (right) is a learning companion that
talks to students about the importance of effort and perse-
verance, in the precise moment that they make mistakes.

approaches are robust to noise compared to deterministic ones,
they can be difficult to tune in practice.

The legacy MathSpring "Effort Based Tutoring" (EBT) problem
selector decides to increase/decrease content difficulty based on
previous student behavior (correctness, hints requested, and time
spent on the last math problem). For example, disengaged behavior,
see Figure 1 GIVEUP, produces a reduction in problem difficulty,
based on the assumption that if students are not working hard
enough on the current problem, they probably will not work hard
on a similar or more difficult problem. However, once EBT decides
to increase problem difficulty, which one (of all) more difficult
problems to select relies on a simple function that always selects the
problem at the 50th percentile among a problem-difficulty-sorted
list of available problems (of math problems harder than the one
on which the student just worked). By contrast, in the new COVES
algorithm, when the EBT problem selector decides to increase the
difficulty, instead of directly selecting the one at the 50th percentile,

the algorithm selects a difficulty level using its deep learning model
that attempts to maximize the probability of a positive problem
solving outcome (SHINT–solved with hints; SOF–solved on first
try; ATT–solved after one incorrect attempt).

2.2 Problem Solving Outcome Prediction
In prior research, the problem of predicting student learning out-
comes in intelligent tutors has been studied [10, 18, 19]. Joshi et al.
[10] first introduced a labeled video dataset of student interactions
with MathSpring and predicted outcomes using traditional facial
affect signals such as head pose, gaze, and facial action units (AUs).
Ruiz et al. [19] augmented the video dataset and developed a trans-
fer learning approach to leverage a deep affect representation for
outcome prediction, achieving state-of-the-art performance. Ruiz
and Yu et al. [18] further extended the analysis by including student
engagement prediction, enabling exploration of how engagement
and learning outcomes correlate. Different from the previous re-
search that considers video information only, the research described
in this paper combines the state-of-the-art visual representation
with log data to predict problem solving outcome.

3 METHODS
The proposed COVES math problem selector replaces the legacy
"Effort Based Tutoring" (EBT) problem selector, discussed above. It
establishes the desired difficulty level for the next problem that has
the most likelihood of keeping students engaged (or re-engaged).
MathSpring then chooses the problem with the closest difficulty
available to this "desired" problem level. This is challenging given
all the variables that might impact student performance and moti-
vation, see Fig 3 and Section 3.1. It is also difficult to evaluate this
multi-dimensional process because real-time conditions keep chang-
ing in an adaptive tutor and evaluative reference points evolve.

3.1 Complexity of Student Data in Tutor Session
As an indication of the complexity of data available at themoment of
making real-time decisions about selecting next problem difficulty,
we present Figure 3. This illustration demonstrates just some of the
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Figure 3: Complexity in problem selection. This visualization shows the time (vertical axis, minutes) that a real student spent
working on twelve problems (horizontal axis), as well as the corresponding problem difficulty (black) and mastery levels
(orange) (vertical axis, level). Student mastery (orange) kept increasing showing that the student was learning. Problem difficulty
level (black) increased after a sequence of positive outcomes but then decreased since the student skipped problem 8 and gave
up on problem 9. The problem difficulty only increases again after the student solves problem 10 on the first attempt.

degrees of freedom at work in this complex environment. It shows
one student’s actual mastery level (orange), in relation to the choice
of problem difficulty (black). The tool shows a student’s solution
for twelve problems (horizontal axis) about one mathematics topic
and minutes spent (vertical axis) along with attempts, performance
(mastery) and problem difficulty values.

The graphic in Figure 3 shows that student mastery (orange)
kept increasing, thus, the student appears to be learning. Problem
difficulty level (black) increased after a sequence of positive out-
comes but then decreased since the student skipped a problem and
gave up on another problem. The problem difficulty only increases
again after the student solves a problem on the first attempt.

3.2 The Proposed COVES Model
Given the large number of variables in selecting problem difficulty,
Figure 3, we used computer vision and machine learning (ML) to
predict student learning and then select the next problem. We devel-
oped a deep learning based model that predicts the possible problem
solving outcome given a student’s previous learning behavior and
the candidate difficulty level of the next problem. By analyzing a
student’s learning log data as well as current facial expressions and
gestures, COVES predicts the student’s problem solving outcome
as either positive or negative, Figure 1, right. The problem difficulty
level that yields a positive outcome will be selected based on predic-
tion results and a problem with a specific difficulty level presented
as the next problem to be solved.

Suppose for a student who just solved the 𝑘th problem in a
learning session, we have the student’s learning log data (𝑚𝑘 , 𝑑𝑘 )
where𝑚𝑘 is how well the student has mastered the exercises so
far and 𝑑𝑘 is the difficulty level of the 𝑘th problem, the candidate
difficulty level for the (𝑘 + 1)th problem 𝑑𝑘+1, and a video with 𝑇
frames 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑇 ) capturing the faces and gestures of
the student while solving the 𝑘th problem. For clarity, we denote
all the non-visual data as 𝐷 = (𝑚𝑘 , 𝑑𝑘 , 𝑑𝑘+1). 𝑚𝑘 , 𝑑𝑘 , 𝑑𝑘+1 are all

floating point numbers ranging from 0 to 1, and the larger number
represents the higher level of mastery or difficulty. MathSpring
calculates the mastery level based on the previous learning activi-
ties of the student, which involves factors such as the number of
problems attempted for a specific topic, the number of problems
solved correctly, the number of mistakes made, and the number of
problems solved with some assistance. The difficulty level of a prob-
lem is estimated from the three independent sources of evidence of
students’ effort to solve a problem: the correctness in terms of the
number of attempts to solve a problem, the amount of time spent
on the problem, and the amount of help required or requested to
solve the problem correctly [1].

Given 𝑋 and 𝐷 (for frames and non-visual data), our task is to
predict the possible problem solving outcome 𝑦 as either positive
or negative, if the problem with difficulty 𝑑𝑘+1 is presented as the
next problem. COVES consists of three main components (Figure
4), a video analysis module that encodes the visual information of
students (left), a fusion module that combines the visual input with
non-visual data to predict problem solving outcome (right), and a
difficulty level selection module (bottom, pink).

3.2.1 Video Representation Learning. Following Ruiz et al. [19],
we adopted three deep learning networks to encode and analyze
the videos of students’ who gave permission for videos of their
faces and gestures while they solve problems to be published, Fig-
ure 4. As facial expressions and gestures are important cues for
inferring outcomes (Figure 1), an affect network was trained using
in-the-wild images for facial expression recognition and leverage
transfer learning to learn an affect representation for each frame of
student videos 𝜌 (𝑋𝑖 ), 𝑖 = 1, . . . ,𝑇 (Figure 4, magenta). Meanwhile,
per-frame facial Action Unit (AU) presence and intensity, gaze direc-
tion, and head pose were extracted using a facial analysis network,
denoted as𝜓 (𝑋𝑖 ), 𝑖 = 1, . . . ,𝑇 (Figure 4, green). The outputs of the
two networks are concatenated as the final representation for each
frame and used in a unidirectional 2-layer long short-term memory
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Figure 4: The computer vision enhanced problem selector (COVES) model based on problem solving outcome prediction. The
model consists of three main components, a video analysis module that encodes the video of students using the tutor (left), a
fusion module that combines the video information with non-visual information to predict problem solving outcome (right),
and a difficulty level selection module (bottom, pink). The student image is of a MathSpring student who gave permission to
use their video for analysis and publication.

(LSTM) network [9] to process them frame by frame. The LSTM
network exploits the temporal patterns in the video and finally
generates a video representation 𝜙 (𝑋 ) (Figure 4, orange).

3.2.2 Fusion Module. Our methodological contribution here is to
use the affective video embeddings, computed as described in Sec-
tion 3.2.1, and combine them with embeddings computed for the
non-visual data in a fusion model. We first encode the non-visual
data using a non-visual embedding network, consisting of a linear
embedding layer 𝛼 that produces a non-visual embedding 𝛼 (𝐷)
with the same size as the video embedding 𝜙 (𝑋 ). Meanwhile, an at-
tention network [2] is learned from the non-visual data to highlight
the salient regions in the video representation (Figure 4, brown).
Concretely, the attention module takes 𝐷 as input to infer the at-
tention A(𝐷) through a fully connected layer, where A(𝐷) has
the same dimensions as the video representation 𝜙 (𝑋 ). We use the
same dimensions so that we can fuse the two types of embeddings,
based on visual and non-visual data, in a multiplicative way. More
specifically, to make the sum of the attention of each feature in
the video embedding 𝜙 (𝑋 ) equal to one, we first normalize the
attention using the softmax function. The attention-boosted video
representation is then

𝜙 ′ (𝑋 ) = softmax(A(𝐷)) ⊙ 𝜙 (𝑋 ),

where ⊙ denotes element-wise multiplication (Figure 4, lilac). We
then concatenate the attention-boosted video representation 𝜙 ′ (𝑋 )
and the non-visual embedding 𝛼 (𝐷) and use a linear outcome classi-
fier network C to predict problem solving outcome 𝑦 = C(𝜙 ′ (𝑋 ) ⊕
𝛼 (𝐷)) (Figure 4, blue). The reason to not just simply use 𝜙 ′ (𝑋 ) but

also 𝛼 (𝐷) as the input to the classifier is that we want to give the
classifier direct access to the non-visual data embeddings.

3.2.3 Difficulty Level Selection Module. Once we have a model
that can predict the problem solving outcome 𝑦 of a student given
any difficulty level 𝑑𝑘+1, we can use it to find an optimal difficulty
level that leads to a positive learning outcome for the next problem
(Figure 4, pink). Given a set of candidate difficulty levels for the next
problem𝑑

(1)
𝑘+1, 𝑑

(2)
𝑘+1, . . . , 𝑑

(𝑚)
𝑘+1 , we can run the model for each𝑑 (𝑖 )

𝑘+1 to
obtain the corresponding problem solving outcome 𝑦 (𝑖 ) (𝑖 ∈ [1,𝑚])
and select one with a positive outcome. For efficiency, we perform
a binary search on a sorted list of candidate difficulty levels. We
describe the detailed process in the Algorithm "Difficulty Level
Selection for Next Problem" on page 6.

3.2.4 Training of Deep Fusion Model.

Dataset. We trained the outcome prediction model on Math-
Spring Children Dataset [18], which consists of 968 videos of fifty-
one sixth-grade students interacting with MathSpring as well as
the outcome annotations and the log data. We retrieved students’
mastery levels and problem difficulty levels from the log data. Two
consecutive problem-solving interactions are a data sample. Overall,
793 data samples have been generated for training.

Loss Function. To train the model, we adopted two cross-entropy
losses, L𝑐𝑜𝑛𝑐𝑎𝑡 for the concatenated representation C(𝜙 ′ (𝑋 ) ⊕
𝛼 (𝐷)) and L𝑛𝑣 for the non-visual embedding C(𝛼 (𝐷)) only. We
have observed that with only one loss function for the concate-
nated representation the model tends to mostly rely on the video
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Algorithm: Difficulty Level Selection for Next Problem.
1 𝐴← sorted array of problem difficulties in ascending order;
2 DFM(video,𝑚𝑘 , 𝑑𝑘 , 𝑑𝑘+1)← deep fusion model predicting

outcome;
3 lowerBound← 0, upperBound← length(𝐴) - 1;
4 do
5 nextDifficulty← ( upperBound + lowerBound ) // 2;
6 outcome← DFM(video,𝑚𝑘 , 𝑑𝑘 , A[nextDifficulty]);
7 if outcome is positive then
8 return 𝐴[nextDifficulty];
9 else if outcome is negative then
10 upperBound← nextDifficulty - 1;
11 end
12 while lowerBound < upperBound;
13 return 𝐴[nextDifficulty];

representation to make predictions while failing to fully utilize the
non-visual information. This could be due to the visual features
being more salient or easier to learn.

Hence we add one additional loss function for the non-visual
information, which encourages themodel to focus on the non-visual
information and learn to incorporate their features more effectively.
The overall loss function

L = _1L𝑐𝑜𝑛𝑐𝑎𝑡 + _2L𝑛𝑣,
where _1, _2 are scale factors.

Implementation Details of Deep Fusion Model. We implemented
our models in PyTorch and conducted experiments on one NVIDIA
TITAN Xp GPU. For Facial Analysis Network, we used the official
implementation1 of OpenFace [3] to extract three-dimensional head
location and rotation, three-dimensional eye gaze, and the presence
and the intensity of 18 facial action units for each video. Overall,
a 49-dimensional feature vector was extracted for each frame. For
the Affect Network, we pre-trained a ResNet-50 [8] network on
50,000 randomly sampled images from a labeled facial expression
dataset, the AffectNet dataset [14] and validated on 5,000 randomly
selected images. We extracted the affect embedding from our videos
by performing inference of the Affect Network on each frame. The
dimensionality for both the video embedding and the non-visual
embedding is set to 200. Following [19], when training the model,
we downsampled the videos to three frames per second from the
original 30 frames per second, to reduce both processing time and
storage requirements. We trained the full model using the Adam
optimizer [11] with 𝛽1 of 0.9, and 𝛽2 of 0.999. We used a learning
rate of 3 × 10−5 for 100 epochs, and a batch size of 1 following [19].

3.2.5 Evaluation of Deep Fusion Model. To evaluate the perfor-
mance of the Deep Fusion Model of COVES, we implemented three
baseline methods for comparison. The majority vote classifier se-
lects the majority class in the dataset, “Positive.” The random guess
classifier randomly determines the outcome according to the fre-
quency distribution of the two classes in the dataset. The third
model of non-visual data trains a classifier on top of the non-visual

1https://github.com/TadasBaltrusaitis/OpenFace

embedding C(𝛼 (𝑁 )), considering non-visual data only. We also
reproduce the state-of-the-art method for outcome prediction, ATL-
BP [18], and report its performance on the dataset. As ATL-BP uses
visual information only and has an identical network structure to
the video analysis module of COVES, the result for ATL-BP also
shows the performance of the visual branch of our model without
multimodal fusion.

Following the experimental setup [18], we performed five-fold
cross-validation by randomly shuffling the data samples and con-
structing five testing and training sets, where the training set con-
tains 80% of the data and the testing set contains the rest, 20%
data. The accuracy, precision, recall, mean 𝐹1-score, and Cohen’s
Kappa coefficient are reported in Table 1. The COVES model consis-
tently improves over all the baselines and previous state-of-the-art
ATL-BP [18] for all the evaluation metrics.

We assessed how the difficulty level 𝑑𝑘+1 of the next problem
impacts the model prediction result. We changed the value of 𝑑𝑘+1
while keeping the values of other variables unchanged, and ob-
served how the model output changes. Intuitively, if a more diffi-
cult problem is given to the student, the outcome is expected to be
negatively affected. Similarly, an easier problem tends to positively
affect the outcome. The simulation results show a similar trend
with this assumption. By increasing 𝑑𝑘+1 to the highest level, the
prediction results of 85.4% of positive samples change to negative.
By decreasing 𝑑𝑘+1 to the lowest level, the prediction results of
60.9% of negative samples change to positive. If we increase the
level 𝑑𝑘+1 of the negative samples, all of them remain negative;
if we decrease the level 𝑑𝑘+1 of the positive samples, all of them
remain positive. This assessment verifies that the difficulty level
𝑑𝑘+1 largely contributes to the model output, which enables the
algorithm to select the difficulty level that yields a positive outcome.

3.3 Model Integration and Deployment
Finally, we integrated COVES into MathSpring. To protect student
privacy, the analysis of student videos is only conducted locally, in
the front end of the web-based software. No video is stored on the
web. The client will first download the parameters of the COVES
model from our server, and then start to analyze the real-time
video and learning log data of the student locally. No video data is
uploaded to the MathSpring server and only the selected problem
difficulty result is returned.

To achieve real-time prediction, COVES must perform with high
efficiency. We applied several optimization techniques to improve
model efficiency. We first reduced the frame rate of the video from
3 FPS to 1 FPS to speed up the analysis. We also used model quan-
tization to reduce the model size while accelerating the inference
time of the model. Specifically, model quantization executes some
of the operations in the model with reduced precision (8-bit in-
teger) rather than full precision (32-bit floating point) values. By
applying these two optimization techniques, the initial download-
ing time of the model is reduced from 40 seconds to less than 10
seconds, and the algorithm is able to achieve real-time processing.
Table 2 shows the performance of COVES after FPS reduction and
quantization. We can observe a slight performance drop (1% – 5%)
compared to the original model, which is a reasonable trade-off
between performance and efficiency.
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Table 1: Results for outcome prediction on the MathSpring Children Dataset using five-fold cross-validation.

Method Mean F-Score Accuracy Precision Recall Cohen’s Kappa
Majority Vote 0.365 57.5% 0.287 0.5 0
Random Guess 0.518 53.2% 0.520 0.519 0
Non-visual Data 0.587 60.3% 0.607 0.594 0.191
ATL-BP [18] 0.600 63.3% 0.623 0.603 0.216
Deep Fusion Model of COVES 0.645 65.2% 0.647 0.648 0.294

Table 2: Performance of the prediction model on the MathSpring Children Dataset using five-fold cross-validation after frame
rate reduction and quantization.

Method Mean F-Score Accuracy Precision Recall Cohen’s Kappa
Deep Fusion Model of COVES 0.645 65.2% 0.647 0.648 0.294
Deep Fusion Model of COVES After FPS Reduction 0.637 65.1% 0.642 0.638 0.278
Deep Fusion Model of COVES After Quantization 0.632 64.4% 0.636 0.633 0.267

Table 3: Activity time and mastery level for students in treatment and control groups. Results of ANOVA test for time, number
of attempts and mastery level for students using the COVES (treatment) and legacy EBT algorithm (control).

Dependent Variable 𝑝-value 𝐹 M: Control M: Treatment
Time Solving Problems < 0.05 17.97 120,088 62,127
Time Interacting with Tutor < 0.05 11.13 30.20 34.87
Time until First Hint 0.08 3.16 486,214 277,006
Time until First Attempt < 0.05 16.87 115,353 59,865
Number of Attempts < 0.05 5.07 1.53 1.17
Level of Mastery < 0.05 9.65 0.32 0.43
PostTest is Correct < 0.05 29.01 4.22 5.00

4 REAL-TIME CLASSROOM EXPERIMENT
With the COVES-integrated MathSpring platform, we were able to
“close the loop" for computer-vision-based tutoring systems and test
the tutor’s decision making in a real-time classroom experiment.

4.1 Design of Classroom Experiment
During the summer of 2022, N=22 seventh-grade students from a
national summer camp program participated in the study. The camp,
held at two colleges in North Eastern U.S., serves girls from low-
income families and provides opportunities to engage in building
skills and confidence to promote college and career readiness. The
students workedwithMathSpring for at least 30minutes during one
two-hour workshop. Students accessed MathSpring on a laptop and
solved problems based on common core math standards according
to their grade level. Before students began, one researcher provided
a tutorial on the software. Each student was randomly assigned to
either the "treatment group" (using COVES, N=13) or the control
group (using the legacy algorithm EBT, N=9). Students took math
tests before and after the 30-min tutor session, based on the content
with which they engaged.

4.2 Results of Classroom Experiment
Results of the classroom experiment show the post-test scores (M =
4.682; SD = 2.276) were higher than the pre-test scores (M = 4.091;
SD = 1.950) for all students. When comparing control and treatment
groups, the pre-test indicated that no significant difference existed
between them, suggesting that they were similar in terms of math

test scores prior to the intervention. Post-test scores (M = 5.000; SD =
2.081) for students in the treatment group were significantly higher
than the post-test scores (M = 4.222; SD = 2.587) for students in the
control group, indicating the COVES problem selector led to better
learning outcomes according to students’ math test performance.

Additionally, significant differences were found in the scores
between students in the treatment and control group for multiple
dependent variables including time solving problems, time inter-
acting with tutor, time until first attempt, number of attempts, and
level of mastery, see Table 3. Of note, participants in the treatment
group tended to spend less time per problem, while requiring fewer
attempts to solve problems correctly when compared to the control
group. While they spent less time per problem, participants in the
treatment group spent more time interacting with the MathSpring
pedagogical agent , a learning companion to support students’ affect
and learning process. Correlation analysis also indicated a positive
correlation between the amount of time spent with the agent and
the level of mastery in the treatment group (𝑅 = 0.28; 𝑝 < 0.05).
Additionally, participants in the treatment group needed fewer
attempts to solve problems than those in the control group.

The difference in time spent per problem, the time until the stu-
dent’s first attempt, and the variance in the total number of attempts
before a solution was achieved suggest that students in the treat-
ment group, who used COVES, received problems better adapted to
their ability than did students in the control group. We propose that
since students in the treatment group received problems at an ap-
propriate difficulty level, the tutor (more knowledgeable other) kept
students within the zone of proximal development (ZPD), leading
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to more student engagement and “flow” (i.e., total concentration
and absorption in the task at hand [6]).

Conversely, we propose that students in the control group may
have received problems that were too difficult, pushing them out-
side of their zone, leading to frustration and a lack of desire to
continue the interaction. Additional evidence that students in the
treatment group received more appropriate problems can be seen
in the difference in the mastery level; students in the treatment
group had a significantly higher mastery level than did students in
the control group (mean difference of 0.11 with a 𝑝 value of <0.05).
These results suggest that students in the treatment group felt more
comfortable, received problems that better kept them in the ZPD,
and overall had a more successful experience with the system.

5 DISCUSSION AND CONCLUSIONS
We developed and evaluated COVES, a deep learning model that
predicts a student’s ability to solve math problems and personalizes
content difficulty for the student in real time by analyzing a combi-
nation of visual information and log data. Specifically, we propose a
novel deep fusion model that combines visual affective analysis and
student log data with a deep attention-based fusion network The
deep fusion model predicts students’ engagement with problems as
either productive (solving problems correctly, after hints, or after a
single incorrect attempt) or unproductive (quick-guessing, giving
up, skipping the problem or rushing to answer). The problem diffi-
culty that yields a positive engagement outcome is selected based
on prediction results given a student’s previous behavior and the
difficulty of the candidate next problem.

The technical challenge in designing the deep fusion model was
for us to find a way to balance the interpretation of the visual
and non-visual information, so that both can effectively contribute
to the outcome prediction. The dimensionality of the video input
is significantly larger than that of the log data, so it had to be
significantly reduced. Furthermore, we created an attention module
to generate an attention-boosted video representation that we then
concatenated with a log data embedding of equal size. The overall
loss function used to train the deep fusion model is a combination
of two weighted cross-entropy losses, one for the fusion module,
the other for the non-visual embedding network.

We trained our deep fusion model on the MathSpring Children
Dataset consisting of 968 videos of fifty-one sixth-grade students
as well as their problem solving outcomes and log data. Evaluation
results indicate that the proposed deep fusion model achieves supe-
rior performance compared with baselines on outcome prediction.
We then integrated the COVES model back into the frontend of
the MathSpring tutoring system, by applying several optimization
techniques to improve model efficiency for real-time prediction.

By integrating COVES into the MathSpring platform, we were
able to “close the loop" for computer-vision-based tutoring systems
and demonstrate the potential for computer vision to be used not
just for post-experiment analysis, but as an integral part of the
real-time decision making by the tutor. To achieve real-time per-
formance of the tutor, we had to overcome the technical challenge
of processing video frames to compute attention-boosted visual
embeddings in real time. We were able to do that by reducing the
video frame rate and quantizing the model to integer precision.

We evaluated the effectiveness of the COVES-enhanced tutor
in a real-time classroom experiment. According to pedagogy re-
search [22], learners perform best when tasks are just beyond their
capabilities or out of their ability range, if they are helped by a “more
knowledgeable other.” The tutor embedded with COVES served as
such a knowledgeable other. The students who used the tutor em-
bedded with COVES received problems at an appropriate difficulty
level and were kept within a zone of proximal development, leading
to more student engagement, flow, and potential cognitive growth.
Conversely, students in the control group, who used the tutor with-
out COVES, may have received problems that were too difficult,
pushing them outside of their zone, leading to frustration and a
lack of desire to continue the interaction. Results of the classroom
experiment show that students had a higher mastery level when the
COVES model had access to their faces and gestures, suggesting
that COVES-selected problems were better adapted to students’
abilities than problems selected without COVES. Quantitative anal-
yses indicates that COVES led to higher levels of engagement, faster
problem solving, less time spent before a student’s first attempt
at a solution, less time before a student asked for a first hint, and
fewer attempts before a student chose the correct solution. These
results suggest that students in the COVES group received more
appropriate problems better adapted to their ability. This result
combined with the statistically significant difference in time spent
interacting with the tutor suggests that students in the treatment
group felt more comfortable, received problems that better main-
tained them in the zone of proximal development, and overall had
more successful experiences with the tutor.

ETHICAL IMPACT STATEMENT
Ethical dimensions exist in the design, development, and deploy-
ment of AI systems for education. Bias can permeate data collection,
data analysis and usage. Computer vision systems are highly de-
pendent on training datasets that might learn and amplify biases,
including prejudices against individuals or group defined on pro-
tected attributes (gender, ethnicity, race, sexual orientation) [7, 16].
We considered the research team’s own blind spots, since teams
often struggle to anticipate the sub-populations they might inad-
vertently miss. The girls and boys whose images are included in the
dataset used to train COVES (MathSpring Children Dataset [18])
are members of various ethnic and racial groups (African American,
Hispanic, Caucasian). The processing of videos of students was
done with the consent of students, parents and other stakeholders
(teachers, administrators). Many students readily offer much more
sensitive personal data to social media applications.

Increasingly widespread online instructional systems present
many challenges and have the potential to amplify social inequities
or even create new ones. It is difficult to collect enough data to
represent different contexts, cultures, and countries; different demo-
graphic groups might have different ways of responding to online
activities. We remain vigilant in selecting demographic groups to
consider and in building multi-disciplinary awareness of ethics.
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