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ABSTRACT
The rapid growth in demand for HPC systems has led to a rise in
carbon footprint, which requires urgent intervention. In this work,
we present a comprehensive analysis of the carbon footprint of high-
performance computing (HPC) systems, considering the carbon
footprint during both the hardware manufacturing and system
operational stages. Our work employs HPC hardware component
carbon footprint modeling, regional carbon intensity analysis, and
experimental characterization of the system life cycle to highlight
the importance of quantifying the carbon footprint of HPC systems.

CCS CONCEPTS
• Hardware → Impact on the environment.
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1 INTRODUCTION
High-performance computing (HPC) has become an essential tool
in scientific research, engineering, and many other fields [1–3].
The demand for HPC has experienced rapid growth in recent years.
According to the US International Trade Commission, in 2010, there
was reportedly 1.2 trillion gigabytes of new data created globally.
However, this number is estimated to increase to a staggering 175
trillion gigabytes by 2025 [4]. While the need for HPC resources is
expanding, there is a downside to this growth. As more and more
HPC systems are built and the size of these systems continues to
increase [5], this leads to a rise in carbon footprint. For example,
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the Summit supercomputer built in 2017 has a peak power con-
sumption of 13 MW, while in 2021, the next-generational Frontier
supercomputer has more than doubled the peak power to 29MW [6].

The carbon footprint of an HPC system cannot be accurately
characterized by power consumption alone. The energy source used
to power the system is also a key contributor to its environmental
impact. Renewable energy sources such as hydropower and solar
emit more than 20× less CO2 than traditional energy sources like
coal [7]. Furthermore, a significant amount of carbon emission is in-
curred during the manufacturing and packaging of the HPC system
components [8, 9] before the system is deployed into operation. It is
estimated that by 2030, datacenters and HPC systems may account
for up to 8% of the worldwide emissions if not intervened [10].
As a result, major technology companies have been heavily in-
vested in offsetting carbon emission in their datacenters [11–14],
while more and more research efforts have started to focus on the
carbon-friendliness of large-scale systems [15–18].

However, despite the current effort, there are still many unex-
plored and unanswered questions regarding HPC system sustain-
ability and the carbon footprint of our HPC systems – esp. from a
procurement and operational point of view. One key question is
how to quantify the carbon footprint of an HPC system holistically
where the carbon emissions from the hardware manufacturing to
the end of the system life cycle have all been accounted for. In
this work, we analyze the carbon footprint from both the
production and operational stages of an HPC system to ad-
dress a series of unexplored investigations (referred to as
Research Questions or RQs). For each RQ, we conduct detailed
modeling and characterization related to the question followed by
visualization, discussion, and summarized takeaways. The current
state of practice and available data, unfortunately, makes it very
challenging to collect/build/analyze a standardized and portable
model for carbon footprint accounting – this paper aims to raise
awareness and calls for a joint effort between vendors and HPC
facilities to address this challenge. The highlights of our analysis
include the following:

We perform modeling and analysis of the carbon emission dur-
ing the production stage of individual HPC hardware components
and compare their contributions. We highlight that performance
benchmarking alone is not sufficient to achieve environmental sus-
tainability. The contribution from the embodied carbon footprint
of memory and storage devices in HPC systems cannot be ignored -
while storage system has been traditionally viewed as a secondary
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optimization goal for performance and top 500 rankings, the car-
bon embodied in hard drives and solid storage drives presents a
serious challenge to sustainability. As the HPC centers prepare to
serve more memory-intensive scientific applications, they should
carefully consider the hidden carbon cost of these memory mod-
ules. Carbon-conscious HPC facilities should explicitly request the
embodied carbon specifications for all components from the chip
vendor as a part of their request for proposal (RFP).

Based on real-world carbon intensity data, we quantify the impor-
tance of regional carbon intensity when evaluating the operational
carbon emissions of large-scale HPC systems. We demonstrate, as ex-
pected, the average carbon intensity of energy sources varies across
different regions, but surprisingly, even the regions with the lowest
carbon intensity can have significant hourly temporal variations –
highlighting the significance of building cross-regional HPC sys-
tems. We identify a strong opportunity for systems researchers to
design, develop, and deploy carbon-intensity-aware job schedulers
to exploit temporal variations. Similar to core-hour accounting and
budgeting, we recommend that HPC system operators and alloca-
tion programs should allocate a carbon budget to HPC users and
some users could be prioritized to reduce their queue wait time if
the carbon footprint of their jobs has been economical.

From a holistic point of view, we integrate the two key aspects of
sustainability: the modeling of carbon emission during production and
the characterization of carbon emission during operation to analyze
the environmental impact throughout the HPC system life cycle. Our
analysis reveals that hardware upgrades are often attractive from
a performance point of view, but surprisingly, they can introduce
significant embodied carbon that may not be offset quickly, espe-
cially if the center already runs on renewable energy sources or
have low utilization. In the past, carbon-unaware system upgrades
have not quantified and considered these factors. We provide a
framework to help system practitioners make decisions on system
upgrades based on hardware, workload, regional carbon intensity,
performance, projected system lifetime, and user usage pattern.

Our end-to-end modeling and characterization of an HPC sys-
tem can serve as a stepping stone for future research in the carbon
footprint perspective of HPC systems. HPC system practitioners
can utilize our analysis to gain a better understanding of how sus-
tainable the current system is and the layout of next-generational
systems. To promote the idea of sustainable HPC and encourage
more research efforts toward carbon neutrality in the community,
our framework is available at https://zenodo.org/badge/latestdoi/
659090328.

We acknowledge that this work is naturally prone to certain ex-
pected threats to validity because of the limited (but evolving) avail-
ability of accurate and widely-accepted carbon footprint data for
various HPC components. As the community’s awareness around
carbon footprint increases, more robustness in modeling and char-
acterization of carbon footprint will naturally evolve. Nevertheless,
we hope that our study and analysis acts as the first step for raising
carbon awareness in HPC practitioners and researchers to evalu-
ate the carbon footprint of their systems, and help us grow as a
community.

2 BACKGROUND AND METHODOLOGY
To analyze the carbon footprint of a system, we need to do so from
two perspectives: the embodied carbon footprint and the opera-
tional carbon footprint. Embodied carbon refers to the carbon emis-
sions associated with one-time expenditures like the production,
transportation, and disposal of the materials and equipment used in
HPC systems. In this work, we focus on modeling the production
phase because the transportation and recycling of the component
have been reported to be not dominant [7] and tend to be consistent
across different generations of the system. On the other hand, the
embodied carbon’s complementary is the operational carbon foot-
print, which refers to the day-to-day operation of a system. This
includes the emissions associated with the electricity used to power
the servers and other equipment, as well as the emissions associated
with the cooling and ventilation systems used to keep the equip-
ment within safe operating temperatures. In our work, we denote
the overall carbon footprint, the embodied carbon footprint, and
the operational carbon footprint as 𝐶total, 𝐶em, 𝐶op, respectively.
We can calculate the carbon footprint of a system using Eq. 1.

𝐶total = 𝐶em +𝐶op (1)

2.1 Embodied Carbon Footprint Modeling
The modeling of embodied carbon footprint is critical for the sus-
tainability of semiconductor products [7, 8, 19]. We model the em-
bodied carbon footprint of the HPC system components using prin-
ciples similar to the ACT carbon modeling tool [7] and inspired by
early studies in the chip-level carbon modeling including Greenchip
and ACT modeling efforts [7, 20–22]; some of the carbon modeling
efforts related to manufacturing and fabrication were started as
early as 2010s. We provide conceptual coverage of embodied carbon
footprint modeling, but more details of the manufacturing carbon
modeling are also available in prior studies [7, 22]. Although these
prior studies do not systematically model, characterize, derive in-
sights, and identify challenges related to the carbon footprint of
HPC systems.

Embodied carbon footprint is categorized into manufacturing
carbon and packaging carbon. Manufacturing carbon refers to the
emissions created from the creation of electronic components, such
as transistors and resistors, from raw materials. Packaging carbon
refers to the assembly of these components into functional chips
and circuit boards. We summarize their relationships in Eq. 2.

𝐶em = Manufacturing Carbon + Packaging Carbon (2)

Modeling the manufacturing carbon footprint of different types
of components requires a different approach. To quantify the man-
ufacturing carbon of processors (i.e., CPUs, GPUs), we follow a
vendor-generic approach to collect the part-specific information on
die area (𝐴die), fab carbon emission per unit area (𝐹𝑃𝐴, related to
fab location and lithography), emissions from chemicals and gases
per unit area (𝐺𝑃𝐴, related to lithography), emissions from raw ma-
terials (𝑀𝑃𝐴, related to lithography), and fab yield (𝑌𝑖𝑒𝑙𝑑 , set to a
constant value of 0.875, consistent with [7]) to estimate the amount
of CO2 emitted during the manufacturing process. We obtain such
information from public product datasheets and sustainability re-
ports. The manufacturing embodied carbon footprint of a processor
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Table 1: Modeled individual components.
Type Component Part Name Release Date

GPU NVIDIA A100 NVIDIA A100 PCIe 40GB May 2020

GPU AMD MI250X AND INSTINCT MI250X November 2021

GPU NVIDIA V100 NVIDIA V100 SXM2 32GB March 2018

CPU AMD EPYC 7763 AMD EPYC 7763 CPU March 2021

CPU AMD EPYC 7742 AMD EPYC 7742 CPU August 2019

CPU Intel Xeon Gold 6240R Intel Xeon Gold 6240R CPU February 2020

DRAM DRAM 64GB SK Hynix 64GB DDR4 October 2020

SSD SSD 3.2TB Seagate Nytro 3530 3.2TB October 2018

HDD HDD 16TB Seagate Exos x16 16TB June 2019

unit (𝑀proc, unit: gCO2) can be calculated using Eq. 3:

𝑀proc =
(𝐹𝑃𝐴 +𝐺𝑃𝐴 +𝑀𝑃𝐴) · 𝐴die

𝑌𝑖𝑒𝑙𝑑
(3)

We estimate the manufacturing carbon of memory and storage
devices (DRAM, SSD, HDD) carefully in a vendor-specific way be-
cause these components have distinctive internal architectures. We
first determine the capacity (e.g., GB) of a memory/storage device,
and use publicly available sustainability reports of the vendor to es-
timate how much carbon is emitted per GB of the memory/storage
device manufactured, denoted as emission per capacity (𝐸𝑃𝐶). We
can calculate the manufacturing footprint of a memory/storage
device (𝑀m/s, unit: gCO2) as:

𝑀m/s = 𝐸𝑃𝐶 ·𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (4)

We estimate the packaging carbon by counting the number of
integrated circuit (IC) packages on the component and using an av-
erage packaging overhead of 150 gCO2 per IC according to industry
reports [7, 23]. The packaging carbon (gCO2) is:

Packaging Carbon = 150 · Number_of_ICs (5)

Note that Eq. 5 is only applicable to our processor and memory
components because this is non-trivial for storage components. To
mitigate this issue, we compile data from industry reports on the
packaging-to-manufacturing ratio from the vendor website [24].

Modeling of individual components. We perform embodied
carbon footprint modeling of individual components of an HPC
system. We have listed the hardware components modeled in Ta-
ble 1. In the table, we have selected the frequently deployed GPU
and CPU processors in the Top500 list [25] from three major pro-
cessor vendors: NVIDIA, AMD, and Intel. For example, the AMD
MI250X GPU is available in the Frontier and LUMI supercomputers.
We have chosen Sk Hynix and Seagate as the DRAM and storage
vendors due to the availability of sustainability reports from these
vendors [24, 26]. Based on the vendor information, we have set the
𝐸𝑃𝐶 of DRAM, SSD, and HDD to 65 gCO2/GB, 6.21 gCO2/GB, and
1.33 gCO2/GB, respectively.

Modeling of HPC systems. We conducted our study for state-
of-the-art high-performance computing (HPC) systems to analyze
the embodied carbon contribution of each component. Specifically,
we analyzed the Frontier, LUMI, and Perlmutter supercomputers,
as listed in Table 2. We selected these systems because they are
among the top 10 supercomputers in the Top500 list [25] and were
built in recent years. For each component present in the system,

Table 2: Studied HPC Systems
System Location CPU & GPU Cores Year

Frontier [27] Oak Ridge, TN
United States

AMD EPYC 7763,
AMD Instinct MI250X 8,730,112 2021

LUMI [28] Kajaani, Finland AMD EPYC 7763,
AMD Instinct MI250X 2,220,288 2022

Perlmutter [29] Berkeley, CA
United States

AMD EPYC 7763,
NVIDIA A100 SXM4 761,856 2021

Table 3: Independent system operators and regions.
Operator
Name

Country of
Operation

Region of
Operation

Kansai (KN) [31] Japan Kansai Region

Tokyo (TK) [32] Japan Tokyo Region

Electricity System Operator (ESO) [33] United Kingdom Great Britain

California Independent
System Operator (CISO) [34] United States California

Pennsylvania-New Jersey-Maryland
Interconnection (PJM) [35] United States Mid-Atlantic US

Midcontinent Independent
System Operator (MISO) [36]

United States,
Canada

Midwest US,
Manitoba

Electric Reliability
Council of Texas (ERCOT) [37] United States Texas

We calculate the𝐶em according to Eq. 2 and multiply it by the total
number of components available.

2.2 Operational Carbon Footprint
Characterization

The operational carbon footprint is characterized when workloads
are running on the system. It can be calculated using the carbon
intensity of the power plant that powers the system (𝐼sys, unit:
gCO2/kWh) and the system’s operational energy (𝐸op, unit: kWh).

𝐶op = 𝐼sys · 𝐸op (6)

Carbon intensity 𝐼sys is a metric of how many grams of 𝐶𝑂2 are
released into the atmosphere to produce a unit of energy. It depends
on the fuel mix from the power plant. Higher carbon intensity
means that the energy source generates more carbon emissions
when producing the same amount of energy. Sustainable sources
of energy such as wind or solar have a carbon intensity of less
than 50 gCO2/kWh while non-renewable sources like coal have
a carbon intensity of more than 800 gCO2/kWh. The operational
energy (𝐶op) is the product of the IC component energy and the
HPC system power-usage-effectiveness (PUE), which we set to a
constant across all systems we characterize. In this work, we use the
carbontracker [30] tool to measure a system’s operational carbon
footprint 𝐶op while running certain benchmark suites.

Geographical carbon intensity. According to Eq. 6, the oper-
ational carbon footprint is proportional to the carbon intensity
which highly depends on the time and the geographical location.
In our work, we study the carbon intensity across different geo-
graphical regions to get a better understanding of the operational
carbon footprint of a system. We have collected carbon intensity
data from multiple power system operators across the globe as
listed in Table 3. We obtain the ESO (UK) data from ESO’s public
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Table 4: Benchmarks performed and their respective models.
Benchmark Models

Natural Language
Processing (NLP)

BERT [40], DistilBERT [41],
MPNet [42], RoBERTa [43], BART [44]

Computer Vision (Vision) ResNet50 [45], ResNext50 [46],
ShuffleNetV2 [47], VGG19 [48], ViT [49]

CANDLE [50, 51] Combo, NT3, P1B1, ST1, TC1

Carbon Intensity API [38] and other regions’ carbon intensity from
Electricity Maps [39]. For all the regions in Table 3, we perform
carbon intensity analysis on hourly data (year 2021).

Benchmarking workloads. To calculate the operational carbon,
we also need to characterize the operational energy when the sys-
tem is running. In this work, we perform a benchmarking study on
real systems of different generations. By benchmarking on repre-
sentative workloads, we are able to compare the operational carbon
footprint of different systems and their respective performance.
We have listed the details of the benchmark sets in Table 4. These
benchmark sets represent the deep learning training workload
across different research fields. We choose deep learning training
because this is the target workload of today’s GPU systems. The
NLP benchmarks are provided by Huggingface, where we perform
the question-answering task on various language models. The Vi-
sion benchmarks are provided by Pytorch, andwe select models that
have highly varied architecture (e.g., residual network in ResNet50,
transformer in ViT) to perform image classification. The CANDLE
benchmarks are provided by Argonne National Laboratory (ANL),
with the initiative to address cancer research challenges with deep
learning. We select five benchmarks from the Pilot1 class which
represent problems in predicting drug response based on molecular
features of tumor cells and drug descriptors.

Next, we provide a holistic carbon footprint analysis from three
perspectives of HPC systems: (i) embodied carbon footprint, (ii) geo-
graphical carbon intensity variation, and (iii) total carbon footprint
and performance benchmarking of real-world workloads.

3 EMBODIED CARBON ANALYSIS
First, we analyze the relative embodied carbon footprint for dif-
ferent HPC system components. We have listed the details of our
modeled components in Table 1. These components appear fre-
quently on the top 500 supercomputer list, represent a wide diver-
sity in terms of vendors and time, and have their carbon-related
specifications accessible or derivable.

RQ 1. How does embodied carbon vary among different types
of GPUs, CPUs, and memory/storage? How does the embodied
carbon vary after being normalized to performance?

Result and Analysis. In Fig. 1, we compare the embodied carbon
footprint of the GPU components and CPU components we study
in Table 1. Fig. 1 (a) shows that each GPU devices have higher
embodied carbon than the CPU devices by up to 3.4×. On the
other hand, when we normalize the embodied carbon to the FP64
operation performance in Fig. 1 (b), the trend is reversed: each CPU
device has higher embodied carbon per FLOPS than any of the GPU
devices. This is because CPUs provide much lower performance
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Figure 1: Embodied carbon footprint of GPU/CPU devices,
and the footprint normalized to theoretical double-precision
floating point performance (TeraFLOPS).
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Figure 2: Embodied carbon footprint of DRAM/SSD/HDD
devices and the footprint normalized to bandwidth (GB/s).

despite containing less embodied carbon and hence, they are not
able to offset the lower performance with their embodied carbon
efficiency. We have also observed similar trends on other floating
point precisions such as the FP32.

The AMD MI250X GPU has the highest embodied carbon but
has the lowest embodied carbon per FLOPS among all devices. This
is because AMD has reported this GPU to have almost 5× higher
peak FP64 FLOPS than an NVIDIA A100 [52]. Note that we used
FLOPS simply because it is the most commonly documented and
used. However, our methodology is not specific or limited to FLOPS
only; other figures of merit can be used for normalization as well.

Observation 1. We observe that GPUs tend to have signifi-
cantly more embodied carbon than CPUs – this seems to be
true across multiple types of CPUs and GPUs that are used
in different top 500 supercomputers. Although GPUs tend to
have higher overall embodied carbon, the embodied carbon
normalized to raw performance (gCO2/FLOPS) is lower than
CPUs.

Next, we investigate the embodied carbon ofmemory and storage
devices in a system, as presented in Table 1. From Fig. 2 (a), we can
observe that each DRAM/SSD/HDD device has an embodied carbon
of 5 to 25 kgCO2, which is in a comparable range to the GPU/CPU
devices. Similar to the normalized analysis on GPUs/CPUs, we are
also interested in the embodied carbon per bandwidth (GB/s), which
is considered a key metric of memory/storage devices. The trend
we observe in Fig. 2 (b) indicates that the embodied carbon per
bandwidth of DRAM devices is significantly smaller than SSDs, and
is negligible compared to the HDD devices due to a much higher
DRAM bandwidth.

Observation 2. A typical single unit of memory and storage
device also tends to have a comparable amount of embodied
carbon as compute units (CPU/GPU), but it should be kept in
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Figure 3: Themanufacturing and packaging carbon footprint
of the embodied carbon varies with device types.

mind that the capacity of memory and storage devices can
affect the embodied carbon.

Implication. The implication is that carbon-conscious HPC
facilities should explicitly request the embodied carbon spec-
ifications for CPUs and other computer accelerators from the
chip vendor as a part of their request for proposal (RFP), in ad-
dition to performance benchmarking numbers. Performance
benchmarking alone is not sufficient to achieve environmen-
tal sustainability. The embodied carbon footprint of memory
and storage devices cannot be ignored either. While storage
system has been traditionally viewed as a secondary opti-
mization goal for performance and top 500 rankings, the
carbon embodied in hard drives and solid storage drives can
present a serious challenge to sustainability.

RQ 2. What is the breakdown of the embodied carbon for
different types of GPUs, CPUs, and memory/storage, in terms
of manufacturing and packaging carbon?

Result and Analysis. In Fig. 3, we quantify the carbon foot-
print associated with the manufacturing and packaging of various
computer hardware components. The manufacturing footprint is
incurred during the semiconductor wafer fabrication, assembly,
and testing, while the packaging footprint represents the emission
during the chip packaging process.

Specifically, we focus on the carbon footprint of GPU, CPU,
DRAM, SSD, and HDD. Our analysis is presented through a series
of ring charts, where each chart represents the carbon footprint
of one specific component. The charts are divided into two parts,
representing the manufacturing and packaging carbon footprint.

Interestingly, we found that the composition of the carbon foot-
print varied significantly between different components. For ex-
ample, while the embodied carbon footprint of SSD and HDD was
dominated by the manufacturing process, the packaging carbon
footprint of DRAM was found to be 42% of its overall embodied car-
bon footprint. This is due to the fact that DRAM chips are typically
smaller and require more precise and delicate packaging due to
their sensitivity to external factors such as temperature, humidity,
and electrostatic discharge whereas SSDs and HDDs are larger and
require less intricate packaging. The GPUs and CPUs have about
10% of their embodied carbon from packaging, less than DRAM as
potentially their manufacturing is more complex from factors such
as lower lithography and larger die areas.
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Figure 4: Increasing the number of GPUs in a node can im-
prove node performance, but it also leads to a higher embod-
ied carbon footprint. However, as expected, the performance
gains tend to plateau, but the carbon footprint continues to
increase.

Observation 3.As expected, themanufacturing carbon is the
most dominant part of the embodied carbon for most compo-
nents including GPUs, CPUs, HDDs, and SSDs. However, for
DRAM, packaging carbon contributes over 40% of the embod-
ied carbon – contributing toward a higher packaging-induced
embodied carbon.

Limitation of this study. We recognize that a complex HPC sys-
tem tends to have additional components. Specifically, network
interconnects such as HPE Slingshot [53] provide high-bandwidth,
low-latency communication between nodes; in a distributed file sys-
tem, storage devices are connected to storage servers that are in turn
connected to compute nodes [54]. In this work, these components
could not be modeled and characterized due to the unavailability
of open-access production carbon emission reports.

Implication. There is a critical shortage of carbon footprint
data related to different components including networking
equipments in HPC systems. HPC practitioners and vendors
should work together to build standardizedmodels for collect-
ing and sharing embodied carbon of different components.

RQ 3. How do the embodied carbon and performance vary
for different workloads as the number of GPUs increases in a
compute node?

Result and Analysis. In Fig 4, show how the embodied carbon
footprint and the system performance vary when we increase the
number of GPUs in a node. In our node, we have two Intel Xeon
Gold 6240R CPUs, and we vary the number of NVIDIA V100 GPUs
between 1, 2, and 4. We characterize the 1-GPU, 2-GPU, and 4-
GPU system performance using the three sets of benchmarks in
Sec. 2 (Table 4). We compare the performance against the embodied
carbon footprint of the node. We have kept the batch size per GPU
in these benchmarks consistent as we increase the number of GPUs.

As expected, the embodied carbon footprint increase is propor-
tional to the number of GPUs added. For all benchmark sets, when
we increase the number of GPUs to 2, both the embodied carbon
and the node performance are increased by approximately 30%
to 40% of the normalized carbon footprint and the corresponding
performance, meaning the performance-to-embodied-carbon ratio
is approximately 1. However, as we further increase the number
of GPUs to 4, the performance increase cannot keep up with the
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Figure 5: Carbon footprint contribution from different com-
ponents in three leadership supercomputers: Frontier, LUMI,
and Perlmutter.

embodied carbon footprint due to heavier communication over-
head between the GPUs, and the performance-to-embodied-carbon
ratio has dropped to approximately 0.88 for the NLP and CANDLE
benchmarks, and 0.79 for the Vision benchmarks.

Observation 4. Our experimental results demonstrate that
the carbon footprint per unit of achieved performance of a
workload may get worse as we increase the number of GPUs.
As expected, with increasing the number of GPUs, the perfor-
mance may not increase linearly, but the embodied carbon
increases linearly. Therefore, the overall carbon footprint per
unit of achieved performance may increase.

RQ 4. For leading supercomputers, does the contribution from
different components toward the overall embodied carbon
change? Which is the most dominant embodied carbon in to-
day’s supercomputers: GPU, CPU, memory, SSD, or HDD?

Result and Analysis. To better understand the sources and dis-
tribution of embodied carbon in supercomputing, we present a
comparative analysis of three of the world’s powerful supercomput-
ers: Frontier, LUMI, and Perlmutter that are ranked 1𝑠𝑡 , 3𝑟𝑑 , and 8𝑡ℎ
respectively in the latest Top-500 list as of November 2022 [25]. We
have listed a more detailed description of these systems in Table 2.

We note that the magnitude of the absolute carbon footprint
of each supercomputer is not listed because it is not our intent to
showcase that one is better than the other, or even compare them.
Instead, we want to highlight that the composition of a system
greatly affects the embodied carbon footprint breakdown.

In Fig. 5, each ring chart shows the proportion of carbon foot-
print contributed by different components of the system, including
the CPU, GPU, DRAM, SSD, and HDD. By examining the relative
contributions of these components, we can gain insights into the
amount of carbon emission embodied in the components when
building different supercomputer architectures. We recognize that
even the current systems can potentially undergo upgrades, the
carbon footprint estimates of their components are subject to in-
accuracy and limited to publicly available information, and these
can change over time/generations. Therefore, instead of absolute
numbers, we are more interested in projected estimates about how
system composition can shift the carbon bottlenecks - this also
guided our choice of selected supercomputers.

First, our analysis reveals interesting carbon footprint differ-
ences between the three selected supercomputers in terms of their
composition. For example, while Frontier and LUMI have signifi-
cantly more sizeable embodied carbon footprints due to their GPUs,

Perlmutter has a more balanced embodied carbon distribution be-
tween CPUs and GPUs. This is because Perlmutter has a large CPU
partition whereas LUMI has a relatively small CPU partition and
Frontier is also relatively GPU-heavy.

Second, the proportion of carbon emissions from storage devices
varies between the three systems, reflecting differences in their stor-
age architectures. Frontier has 695 PB of HDD storage that makes
up large embodied carbon footprint, while Perlmutter deploys an
all-flash file system. This is particularly important and highlights
that the carbon contributions from storage can be significant and
should be treated as a first-class citizen, even though they often
take the backseat in performance rankings.

Interestingly, when we compare the compute components (CPU
and GPU) against the memory and storage devices (DRAM, SSD,
HDD) in terms of their embodied carbon, the memory and stor-
age have made up approximately 60% of the carbon in Frontier
and Perlmutter, and almost 50% in LUMI. This indicates that al-
though these memory and storage devices do not consume as much
power as compute devices, they inherently have a higher embod-
ied carbon footprint, which cannot be neglected when building a
supercomputer. This is in alignment with multiple concurrent and
recent studies which have highlighted the importance of the carbon
footprint of storage devices [55–57].

Finally, in Fig. 5, the GPUs have consistently higher embodied
carbon footprint than CPUs in all three supercomputers, especially
in Frontier, where the embodied carbon in GPUs is more than 7×
that of the CPUs. This shows a trend that the GPUs are becoming
important in today’s supercomputers, not just from the performance
point-of-view, but also for their carbon footprint.

Observation 5. Our analysis reveals that the breakdown of
their embodied carbon differs significantly among different
supercomputers – even though, these supercomputers appear
to be comparable in peak raw performance (among the top
ten in the top 500 supercomputer list). Depending upon the
supercomputer architecture and organization, GPU, memory
or even SSD can be the most dominating factor. Surprisingly,
DRAM contributes significantly to overall embodied carbon
for all evaluated supercomputers. This is in contrast with an
earlier result, where we showed that a DRAM card’s embod-
ied carbon was lower compared to a single CPU/GPU. The
reason for an overall relatively higher contribution of DRAM
is because of the high number of DRAM cards in the system
– which adds up.

Implication. The implication is that HPC facilities should
explicitly document and understand which components are
contributing to their overall embodied carbon footprint. Cur-
rently, there is limited awareness of these factors in super-
computing center design. As energy sources powering the
supercomputers become “greener”, this aspect will become
the most dominant factor in the overall carbon footprint of
a supercomputing center. The memory footprint of compu-
tational science applications has been on rapid rise [58–60].
Many supercomputing centers provision a large among of
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Figure 6: The average carbon intensity of the energy sources
differs across geographical regions in Table 3, and a signifi-
cant temporal variation exists for each geographical region.

memory to serve such applications. As the HPC centers pre-
pare to serve more memory-intensive scientific applications,
they should carefully consider the hidden carbon cost of these
memory modules. Memory often has the largest failure rate
and gets replaced [61, 62], therefore, lack of attention around
minimizing or mitigating embodied carbon cost for DRAM
can be undesirable.

4 GEOGRAPHICAL CARBON INTENSITY
In Sec. 3, we delved into the analysis of embodied carbon, which
refers to the carbon emissions associated with the manufacturing
and packaging of individual devices. Now, in this section, we shift
our focus to operational carbon, which relates to the emissions
resulting from the day-to-day operation of a large-scale system.
It is worth noting that operational carbon strongly depends on
regional carbon intensity, which reflects the amount of carbon
emissions associated with electricity production in a given region.
This means that datacenters and supercomputers located in regions
with high carbon intensity will have a higher operational carbon
footprint than those located in regions with lower carbon intensity.
Therefore, it’s crucial to analyze the regional carbon intensity when
evaluating the operational carbon emissions of a system.

RQ 5. How does the carbon intensity vary across geographical
regions?

Result and Analysis. In Fig. 6, we illustrate the annual carbon
intensity in the year 2021 of seven different power system operators
distributed across different countries and regions.We have provided
more details of the system operators in Table 3. In Fig. 6 (a), we
use a box plot to compare the annual carbon intensity for different
regions, which display distinctive carbon intensity trends.

Overall, the ESO (Great Britain, UK) region has the lowest carbon
intensity among all regions, with a median carbon intensity of
less than 200 gCO2/kWh. The TK (Tokyo, Japan) region has the
highest carbon intensity among all regions, whose medium annual
carbon intensity is three times ESO’s. In recent years, there has
been a growing interest in assessing the environmental impact of
supercomputers, for example, the Green500 list [63]. However, it is
important to note that the carbon intensity of electricity generation
can vary significantly among different regions. Therefore, when
comparing the "greenness" of supercomputers, it is crucial to take
into account the geographical location of the facility. This is because
the electricity grid mix in one regionmay be heavily reliant on fossil

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of the Day

0

91

182

273

365

Nu
m

be
r o

f D
ay

s
wi

th
 th

e 
Lo

we
st

Ca
rb

on
 In

te
ns

ity

ESO (Great Britain) CISO (California) ERCOT (Texas)

Figure 7: Hourly variation in carbon intensity across three
most carbon-friendly regions. Although not shown explicitly,
season variations also naturally exist.

fuels, while in another region, it may be predominantly powered
by renewable energy sources. As such, a supercomputer located
in a region with a higher proportion of renewable energy in its
electricity grid mix would have a lower operational carbon footprint
than a supercomputer located in a region with a higher proportion
of fossil fuel-based electricity. Thus, in order to accurately evaluate
the environmental impact of supercomputers, it is important to
consider the carbon intensity difference among different regions.

Remarkably, Fig. 6 (b) shows a different side of the story when
we show the coefficient of variation (CoV) in %, which represents
the standard deviation as a percentage of the average carbon in-
tensity in the region. The two regions with the lowest medium
carbon intensity – ESO (Great Britain, UK) and CISO (California,
US), also have the most variations in their carbon intensity. On the
other hand, the regions with the highest medium carbon intensity
– TK (Tokyo, Japan) and KN (Kansai, Japan) have the least carbon
intensity variation among all regions. This means that while the
average carbon intensity of a region may be relatively low, there
may be significant fluctuations in carbon emissions over time. One
factor that contributes to variation in carbon intensity is the use of
intermittent renewable energy sources such as wind or solar power,
which may result in fluctuations in carbon emissions.

Insight 6. As expected, the average carbon intensity of the
energy sources differs across geographical regions. On av-
erage, the ESO (Great Britain, UK) region overall and the
California region within the USA has the lowest carbon in-
tensity. But, interestingly, the temporal variance in those
regions is among the highest. Therefore, simply building a
data center in the least-carbon intensity region is not an
optimal solution at all times – due to significant temporal
variation.

Implication. The implication is that the federal agencies
within a country and across countries should continue to
strongly consider deploying similar architecture supercom-
puters across multiple geographical regions. Incidentally, this
model has been followed in the past in the USA for other
reasons (programmability, staffing, science missions). Our
analysis reinforces that model from a carbon-aware com-
puting perspective – esp. in the collaborative international
context, too. When ranking supercomputers based on their
"greenness" (Green 500 ranking), we should also consider the
geographical location of the facility and energy-mix, and its
temporal variations – which is not currently practiced.
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RQ 6. Can the temporal variation in carbon intensity be ex-
ploited at finer timescale (e.g., hours)?

Result and Analysis. In Fig. 7, we pick the three operator regions
with the lowest medium carbon intensity and compare their car-
bon intensities during the same hour of the day. Since they are
distributed in different geographical locations, we account for the
difference between time zones (GMT, PST, CST) and convert them
to JST (UTC+9) time during the analysis. On the y-axis, we show
the number of days that the region experiences the lowest carbon
intensity among all regions during that hour. For example, for the
1𝑠𝑡 hour of the day, ESO (Great Britain) is the region with the low-
est carbon intensity in about 150 days out of a year while CISO
(California) is the lowest carbon intensity region in about 215 days
out of a year.

Fig. 7 reveals that the number of days that each region has the
lowest carbon intensity during a given hour varies significantly
throughout the year, with no region consistently having the lowest
carbon intensity for any given hour. This is due to the different
energy generation mixes and demands in different time zones in
different regions. The hours during which ESO (Great Britain) is
the region with the lowest carbon intensity, hour 8 to hour 20,
are the midnight to noon time in the UK when electricity demand
is expected to be low. Therefore, it would be beneficial to have
more jobs running in the HPC centers in the ESO to exploit the
availability of renewable energy. However, during other hours,
running the job in the ESO region ismore likely to yieldmore carbon
emissions as CISO (California) is a “greener” region during most of
the days. Overall, our analysis highlights the temporal variability in
the carbon intensity of different regions and underscores the need
for flexible and dynamic approaches to exploit the opportunity in
distributing jobs across regions.

While visually not depicted, we verified that even when two
regions have very similar carbon intensity (e.g. Mid-Atlantic US
and Texas), it is possible to optimize for carbon footprint further
by distributing jobs between data centers in these regions. This is
because the regions exhibit temporal variations and these variations
are aligned due to geographical characteristics – for example, when
wind power is more easily available in Texas, it may be not available
in New Jersey at the same time.

Insight 7. Our analysis reveals that even among the greenest
region, there is a significant hourly variation in carbon inten-
sity. This variation is strong enough that no single region is a
consistent winner for all hours of the day for all days in a year,
and the number of days they are a winner in a year also varies
– motivating a case for geographically distributed data cen-
ters where jobs can be distributed. However, exploiting this
opportunity is not trivial since the temporal variation on dif-
ferent days of the year varies. There are additional challenges
related to latency and the energy consumption associated
with data transfers when distributing the workload across
geographically distributed HPC centers. Therefore, workload
distribution policies should consider such a tradeoff.

Table 5: Different generations of nodes analyzed.

Name GPU CPU

P100 4× NVIDIA Tesla P100 PCIe 2× Intel Xeon CPU E5-2680

V100 4× NVIDIA Tesla V100 SXM2 2× Intel Xeon Gold 6240R

A100 4× NVIDIA A100 PCIe 40GB 4× AMD EPYC 7542

Table 6: Performance improvement from the node upgrade.

Upgrade
Option

NLP
Improv.

Vision
Improv.

CANDLE
Improv.

Average
Improv.

P100 to V100 44.4% 41.2% 45.5% 43.4%

P100 to A100 59.0% 60.2% 68.3% 62.5%

V100 to A100 25.6% 35.8% 44.4% 35.9%

Implication. An important implication around these obser-
vations is an incentive structure for end users to exploit these
fine-grained carbon intensity patterns. In particular, an incen-
tive structure and accounting methods to encourage users to
submit/run their jobs during low-carbon intensity would be
useful. Similar to core-hour accounting and budgeting, HPC
users should also be provided a carbon budget as a part of
their allocation, and they could be prioritized to reduce their
queue wait time if the carbon footprint of their jobs have
been economical. There is a strong need to design, develop,
and deploy carbon-intensity-aware job schedulers to exploit
these opportunities across geographically distributed HPC
centers. Currently, we already have some CloudBank-related
programs which allow users to submit their jobs to differ-
ent centers. However, robust system software support for
real-time and automatic distribution of jobs is needed.

5 OPERATIONAL AND EMBODIED CARBON
In previous sections, we have addressed two key aspects of sustain-
ability in HPC centers: embodied carbon in supercomputer com-
ponents and operational carbon, which is influenced by regional
carbon intensity. In this section, we aim to integrate these factors
and examine the total carbon footprint of supercomputer upgrades.
By taking a holistic view of embodied and operational carbon, we
can gain a more comprehensive understanding of the environmental
impact of these upgrades.

RQ 7.What are carbon footprint and performance trade-offs
as supercomputing facilities consider hardware upgrades, esp.
multi-generation GPU upgrades? Will the introduction of em-
bodied carbon due to upgrade be offset by savings in operational
carbon footprint due to more energy-efficient newer generation
hardware? Do these trade-offs depend on the “greenness” of the
energy mix?

Result andAnalysis. To investigate the impact of system upgrades
on performance and carbon footprint, we perform benchmarking
on three nodes of different generations, denoted as P100, V100, and
A100 nodes shown in Table 5. These three generations represent
NVIDIA’s three major datacenter GPU architectures released in the
past: Pascal, Volta, and Ampere.
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Figure 8: By upgrading a GPU system, one can reduce carbon
emission over time despite a large carbon footprint increase
initially. The amortization rate depends on the region’s car-
bon intensity.

We clarify that these experiments and analyses are primarily
based onGPUs for simplicity, as they are likely to be among themost
dominant contributing factors toward the overall carbon footprint
of the data center (embodied and operational).

Our evaluation considers three upgrade options between node
generations: P100 to V100, P100 to A100, and V100 to A100. To as-
sess performance improvements, we conducted benchmarks listed
in Table 4 and recorded the results for each benchmark set in Table 6.
The data indicates that all upgrade options delivered notable per-
formance improvements, as expected, with the largest gains when
upgrading from P100 to A100 due to a longer gap in time between
those generations. The performance improvements ranged from
25% to almost 70%. Notably, the CANDLE benchmark demonstrated
greater performance improvements than the other two benchmarks
across all three upgrade options. Overall, the performance gains
from the upgrades were significant. In the following section, we
explore the environmental impact of the upgrades in terms of their
carbon footprint and make a case that performance improvements
alone may not sufficient for considering the upgrade decision.

The figure shown in Fig. 8 presents the results of our analysis of
three upgrade scenarios, each represented by a row (P100 to V100,
P100 to A100, and V100 to A100), and different levels of average
carbon intensity, represented by columns (high, medium, and low).
Three lines on each subplot represent three different workloads
(NLP, Vision, and CANDLE).

We evaluated the carbon footprint savings achieved by upgrading
the system over a five-year period following the node upgrade.
The red region indicates when the upgraded option resulted in a
higher carbon footprint than not upgrading, while the green region
indicates the upgrade has resulted in carbon footprint savings.

First, we analyze the first column (that is, the carbon intensity
is held constant) of Fig. 8. As expected, all curves start from a

negative point because an upgrade immediately incurs embodied
carbon cost, and it takes some time before this “tax” can be paid.
Along the way, it is offset is by saving operational energy over
time (newer hardware is typically more energy efficient and hence,
results in lower energy consumption). This is why almost all curves
go toward the “green” region, albeit at a different rate.

The rate/steepness of the curve depends on the workload (NLP
vs. CANDLE) and upgrade tier (P100 to A100 vs V100 to A100). In
general, the energy efficiency improvements are the highest when
upgrading from P100 to A100, and hence, the embodied carbon
“tax” is paid quickly. NLP curve is typically below other Vision and
CANDLE workloads because NLP receives the least performance
improvement, and hence, the least energy improvement.

These findings align with the conventional wisdom that when
newer, faster, and more energy-efficient hardware is available, we
should upgrade the system. Our results partially support that from
a carbon-consciousness aspect too, albeit with a caveat that the
upgrades cannot be too fast and the window before the tax is offset
can vary depending upon the workload being run in the system.

Next, we analyze the effect of carbon intensity on the same
decisions. Across columns in Fig. 8, we evaluate the carbon footprint
reduction in three different carbon intensities: high intensity with
an average of 400 gCO2/kWh, medium intensity with an average of
200 gCO2/kWh, and low intensity with an average of 20 gCO2/kWh
which is the carbon intensity of hydropower [7].

We make an interesting observation that hardware upgrade ben-
efits can heavily depend on the energy source of the HPC center. At
high carbon intensity, it takes less than half a year to amortize the
embodied carbon incurred at system upgrade; at medium carbon
intensity, it takes less than a year to amortize the embodied car-
bon; but at low carbon intensity when the energy source is highly
renewable, the amortization time is about five years or more.

Overall, upgrading is beneficial in terms of performance, but
the carbon footprint perspective needs more consideration in the
carbon intensity and expected system service life. In regions with
high carbon intensity, upgrades can happen when the new gen-
eration is released since the new system will quickly amortize its
embodied carbon. In regions with an abundant amount of green
energy, upgrading would be carbon-friendly only if the system is
expected to serve for at least five years approximately. We note that
these periods are dependent on the embodied carbon and energy
consumption of these devices, and hence, they should be interpreted
in the context of the modeled situation.

Insight 8. Hardware upgrades are always attractive due
to significant performance improvements, but the upgrade
introduces significant embodied carbon which may not be
offset quickly – esp. if the center already runs primarily on
renewable energy sources, as could be the case in the future
for many centers. In such cases, extending the hardware
lifetime could be a worthy option. If the energy source is
less green, a quicker upgrade may be desirable. Although we
note that there are many other indirect side effects associated
with the upgrades, including monetary investment, potential
redesign of the data center, etc. which may further increase
the carbon footprint.
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Figure 9: Carbon saving curve after the GPU system upgrade
under different usage patterns.

RQ 8. Does carbon footprint trade-offs at supercomputing facil-
ities consider hardware upgrades depending upon the average
load or utilization of the current system, and the workload
being run?

Result and Analysis. HPC centers have high utilization levels,
but not all GPUs are utilized at all times. In fact, multiple HPC
and data centers have reported low GPU utilization levels [64–66].
Therefore, we investigate this aspect too.

In Fig. 9, we keep the average carbon intensity constant at 200
gCO2/kWh and vary the average GPU usage rate of the nodes,
which represents the percentage of time the GPU is being used. The
three carbon-saving curves in each subplot represent three different
GPU utilization levels. We first assume that all the GPU nodes are
allocated by users 100% of the time, and choose 40% GPU usage as
the medium usage to align with a production trace [64–66]. The
high and low usage numbers are selected based on 1.5× more and
less of the medium usage, respectively. Our previous analysis in
Fig. 8 is conducted with medium usage.

In Fig. 9, we show that depending on the user usage pattern, the
time it takes to amortize the embodied carbon varies. The difference
is not as significant as the carbon intensity, where it can be mul-
tiple years of difference. Nevertheless, it would still substantially
impact the saved carbon footprint at a certain point in time after
the upgrade. Using the NLP benchmark set as an example, when
we upgrade from the V100 system to the A100 system, after one
year, a high/medium usage pattern would result in approximately
20% carbon footprint reduction, whereas the low usage pattern has
just paid off the initial embodied carbon of the upgrade.

Insight 9. If the center has limited GPU utilization, extend-
ing the hardware lifetime could be a worthy option, but it
also depends upon the mix of workloads being run and their

energy consumption characteristics. If the GPU utilization is
high, a quicker upgrade may be desirable, since the savings
in operational carbon footprint could quickly offset the in-
troduction of embodied carbon. Nevertheless, this decision
is still heavily influenced by the “greenness” of the energy
source.

Implication. The HPC centers should consider carbon foot-
print in their hardware upgrade decisions. We recognize that
carbon awareness alone is not the determining factor – tradi-
tionally, cost and performance improvements have dictated
the timing of such decisions. However, as carbon net-zero
aims become more commonplace, the centers should have
methods, such as those introduced in this paper, to evalu-
ate the lifetime of a hardware generation and if extending it
would be useful. The HPC centers need to continuously mon-
itor and evaluate the carbon-intensity and GPU utilization
load to determine when to upgrade because carbon-intensity
and GPU utilization are among the most dominant factor in
the hardware-upgrade decision-making which attempts to
minimize carbon footprint. Assessing the carbon-friendliness
of HPC centers involves considering several factors. These
factors include the initial embodied carbon footprint, the
operational carbon that is linked to the regional carbon in-
tensity and user usage pattern, and the expected operating
lifetime of the HPC system. These factors are not standard
yet. Large-scale HPC applications would have a large opera-
tional carbon footprint due to the heavy computation carried
out across multiple nodes.

6 THREATS TO VALIDITY AND DISCUSSION
We recognize and acknowledge that our analysis is not immune to
threats to validity. For instance, while our current analysis models
the embodied carbon footprint of the hardware and operational
carbon footprint, it does not account for carbon emissions related to
other side effects of upgrading the system. Such emissions arise not
only during manufacturing and packaging but also during trans-
portation, installation, and recycling. System upgrades often require
increasing building capacity, changes in cooling infrastructure, ad-
ditional staffing, and acquisition of other compute/storage compo-
nents to match the increase in the compute capacity – these aspects
lead to additional carbon emission. Hardware cost is also an impor-
tant aspect, but we do not explicitly include it because hardware cost
may depend on many factors and vary across geographical regions,
the scale of the system, and may change over time. Unfortunately,
as a community, we are at a very early stage to have sufficiently
detailed and accurate modeling of these by-product effects. We are
hoping that this work will spur a new research direction in the HPC
community to standardize and document these aspects – which
have not been central for performance benchmarking, but will be
critical for HPC carbon benchmarking.

We acknowledge that fab yield differs across manufacturers and
lithography. Due to the lack of a standardized public database pro-
viding accurate yield data, we configured it to be based on prior
works. Similarly, the PUE metric, while challenging to estimate
with seasonal variation, can be approximated well with IT and
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cooling energy monitors available in most HPC datacenters. The
operational carbon can be calculated using Eq. 6 (e.g., energy from
power measurement tools (e.g., NVML, RAPL) multiplied by the
carbon intensity). Note that the embodied carbon relative to the
operational carbon varies across P100, V100, and A100 GPUs.

Our choice to select the three workloads from a broad range
of HPC-relevant benchmarks was because they cover a diverse
range of resource consumption characteristics, resulting in differ-
ent trends that capture the spectrum. Adding more benchmarks
makes the interpretation and presentation complex, but they should
be considered in the future as they can lead to more insights, esp.
given that HPC workloads are rapidly evolving with new AI and
quantum use cases. The operational carbon footprint of large-scale
applications is also an important consideration and potential threat
to validity, but these can be performed in-house by different HPC
systems as they may not always make their representative work-
loads publicly available. The key actions include but are not lim-
ited to, measuring the carbon footprint of large-scale applications
on different computing hardware and making carbon-aware HPC
scheduling and hardware upgrade decisions based on geographical
carbon intensity and application characteristics. The HPC site may
have a contract with a local power provider which needs to be
considered when accounting for the carbon footprint. Additionally,
migrating users to new architectures (e.g., GPUs) also incurs an in-
direct carbon footprint and has trade-offs in terms of performance,
esp. if the system is not being procured for a high FLOP count
but instead for running a specific workload. These aspects are not
explicitly accounted in this study.

The popular energy efficiency metric (FLOPS/Watt) alone does
not fully capture the environmental impact of an HPC system be-
cause it does not capture embodied carbon and carbon intensity
of the energy source. A system with higher energy efficiency does
not necessarily mean it has lower operational carbon footprint –
because operational carbon also depends on the carbon intensity of
the energy being fed (e.g., operation of system A (20GFLOPS/Watts)
may be “greener” than B (50GFLOPS/Watts) if A uses hydropower
while B uses gas).

We recognize that cost is an important consideration during
hardware upgrades. For example, some low-cost systems can indeed
have a carbon lower footprint as well, depending upon the load and
carbon intensity. However, hardware cost may depend on many
factors and vary (across geographical regions, scale of the system,
and may change over time, etc.), hence integrating it into the study
requires careful consideration with restrictive assumptions.

7 RELATEDWORK
Study of HPC system components. Various works have ad-
dressed the energy efficiency of CPU [67–69], DRAM [70–72], and
storage components [73–75] in a HPC system. GPUs have been
widely integrated into today’s HPC systems to accelerate deep learn-
ing applications, hence a variety of efforts have focused on improv-
ing the GPU device energy efficiency [76–81]. These works have
only focused on the energy efficiency of individual components,
not on the carbon emission during manufacturing and operation.
Green computing in large-scale GPU systems. The environ-
mental impact of HPC systems has been an important research

topic in the past. GPU-NEST [82] has examined the power and per-
formance behaviors of multi-GPU inference systems. Helios [83]
proposed a cluster energy-saving service for GPU datacenter run-
ning deep learning workloads. Patki et. al. [84] applied GPU power
and frequency capping in a scientific workflow to improve power
efficiency while preserving performance. Our work goes beyond
the investigation of energy consumption: we analyze the regional
carbon intensity to relate the energy consumption to the actual
carbon emission. Various works have investigated the operational
carbon footprint when running workloads such as bioinformatics
and astrophysics in large-scale systems [1, 85–87]. Our work is dis-
tinct from the previous ones as we combine the embodied carbon
footprint, operational carbon footprint, regional carbon intensity,
performance, system service life, and usage pattern to conduct a
holistic analysis. This study is complementary to various emerging
energy-efficient HPC network topologies [88, 89].
Carbon footprint modeling. Wang [19] and Totally Green [8]
proposed to take the production-operation-recycling product life
cycle into sustainability analysis. In regard to the production per-
spective, ACT [7] released an embodied carbon footprint modeling
tool that is useful for conducting embodied carbon analysis for mo-
bile devices. Our work is not limited to embodied carbon modeling
and we also model the operational carbon on systems of different
generations under different regional carbon intensities and usage
patterns for HPC systems. This is the first work to provide carbon
modeling methods and tools for HPC practitioners and identify
various areas of opportunities for HPC system facilities.

8 CONCLUSION
We present a carbon footprint analysis framework that addresses a
series of research questions related to HPC system sustainability.
We have conducted modeling of the embodied carbon footprint of
HPC system components, investigations into how regional carbon
intensity affects the system, and end-to-end characterizations of the
carbon footprint throughout the system life cycle. We hope that our
methodology, framework, and study encourage HPC researchers
to promote sustainable HPC and promote more research efforts
toward carbon neutrality in the community.
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ARTIFACT IDENTIFICATION
The paper addresses the challenges and unexplored questions re-
garding the sustainability and carbon footprint of high-performance
computing (HPC) systems. While the demand for HPC resources is
growing, it also leads to a rise in energy consumption and carbon
emissions. The paper builds a carbon footprint analysis framework
to address a series of unexplored investigations from both the pro-
duction and operational stages of an HPC system. The analysis
highlights the need to quantify the carbon footprint of an HPC
system holistically, where the carbon emissions from the hardware
manufacturing to the end of the system life cycle have all been
accounted for. The paper provides detailed modeling and character-
ization of carbon emissions during the production and operational
stages of an HPC system, emphasizing the importance of consid-
ering the carbon footprint of memory and storage devices in HPC
systems, the significance of regional carbon intensity when evalu-
ating the operational carbon emissions, and the embodied carbon
introduced by hardware upgrades.

The artifact we provide aligns with the structure of this paper.
Our artifact includes both the source data we collect to perform
embodied carbon modeling, the benchmarks we created to con-
duct carbon benchmarking, and the data visualization code written
in Jupyter Notebook using the Python matplotlib library. More
details are listed below following the three major sections of the
paper.

• Sec. 3 Embodied Carbon Analysis
In this section, we conducted embodied carbon analysis on
various components of an HPC system and performed em-
bodied carbon breakdown of three different supercomputing
facilities. In our artifact, we include all the source data that
we have collected for the embodied carbon modeling in
“.csv” formats and provide the source code to visualize the
data. The data includes the embodied carbon footprint we
modeled for each component listed below:

(1) GPU: NVIDIA A100, AMD MI250X, NVIDIA V100
(2) CPU: AMD EPYC 7763, AMD EPYC 7742, Intel Xeon Gold

6240R
(3) DRAM: SK Hynix 64GB DDR4
(4) SSD: Seagate Nytro 3530 3.2TB
(5) HDD: Seagate Exos x16 16TB
In the artifact, we also include the data we used for the HPC
system breakdown for three supercomputers listed below.

(1) Frontier (https://www.olcf.ornl.gov/frontier/)
(2) LUMI (https://lumi-supercomputer.eu/)
(3) Perlmutter (https://perlmutter.carrd.co/)
• Sec. 4 Geographical Carbon Intensity.

In this section, we analyzed the impact of geographical
carbon intensity on the carbon footprint of a system. Similar
to the artifact for Sec. 3, we include the annual carbon
intensity data across different regions in “.csv” formats and
provide the visualization script. The carbon intensity data is
collected hourly throughout the year 2021, we have listed
the regions that we analyze below.

(1) KN: Kansai, Japan
(2) TK: Tokyo, Japan
(3) ESO: Great Britain Electricity System Operator, United

Kingdom
(4) CISO: California Independent System Operator, United

States
(5) PJM: Pennsylvania-New Jersey-Maryland Interconnection,

United States
(6) MISO: Midcontinent Independent System Operator,

United States/Canada
(7) ERCOT: Electric Reliability Council of Texas, United States
• Sec. 5 Operational and Embodied Carbon
In this section, we study the impact of hardware generation
upgrades on the overall carbon footprint of the system. We
studied three tiers of hardware generations, as listed below:

(1) P100: 4 NVIDIA Tesla P100 GPUs + 2 Intel Xeon CPU
E5-2680

(2) V100: 4 NVIDIA Tesla V100 SXM2 GPUs + 2 Intel Xeon
Gold 6240R CPUs

(3) A100: 4 NVIDIA A100 PCIe 40GB GPUs + 4 AMD EPYC
7542 CPUs

Our analysis includes both embodied carbon and operational
carbon. For embodied carbon, we again provide the model-
ing details in “.csv” format. For operational carbon, we have
created three benchmark suites to model the performance
and operational carbon footprint of the three generations of
systems. The benchmark suites are listed below:

(1) Natural Language Processing (NLP) benchmarks: BERT,
DistilBERT, MPNet, RoBERTa, BART

(2) Computer Vision (Vision) benchmarks: ResNet50,
ResNext50, ShuffleNetV2, VGG19, ViT

(3) CANDLE benchmarks: Combo, NT3, P1B1, ST1, TC1
The NLP benchmark is implemented with Huggingface, the
Vision benchmark is implemented using Pytorch, and the
CANDLE benchmark is implemented using Tensorflow2.
We have provided the source code for these benchmarks as
well as the data we have collected from running them.

The artifact is accessible via Zenondo: https://zenodo.org/badge/
latestdoi/659090328

https://www.olcf.ornl.gov/frontier/
https://lumi-supercomputer.eu/
https://perlmutter.carrd.co/
https://zenodo.org/badge/latestdoi/659090328
https://zenodo.org/badge/latestdoi/659090328
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REPRODUCIBILITY OF EXPERIMENTS
We provide the following information for experimental repro-
ducibility:

A complete description of the experiment workflow. The ex-
periment workflow is straightforward for Sec. 3 and Sec. 4 of the
paper. We have included all the data needed to visualize, and the
readers only need to execute the Jupyter Notebook scripts on any
Linux machine. All the scripts are packaged into a Docker image.

For Sec. 5 of the paper, the reader has the option to execute
the benchmarks we provide by themselves. We have listed
the hardware to run these benchmarks on and provided the
corresponding benchmark suites in the Operational and Embodied
Carbon artifact description. Simply pull the image from docker
and run it on these three different systems. Once the benchmark
runs have been completed, we provide the visualization scripts to
generate the plots as shown in the paper. The reader may also skip
the benchmarking and use the data that we collect from our own
experiments to reproduce the paper figures.

An estimation of the execution time to execute the experi-
ment workflow. We estimate the time to execute the visualization
scripts to be less than 1 minute. If the reader chooses to run
all three benchmark suites (NLP, Vision, and CANDLE) on all
three generations of systems (P100, V100, and A100) sequentially,
we estimate the execution time to be less than 10 hours. If the
benchmarks are conducted in parallel, each benchmark suite would
take 1 hour on one system.

A complete description of the expected results and an
evaluation of them. The expected results will be figures that are
identical to Fig. 1 to Fig. 9 in the original paper.

How the expected results from the experiment workflow re-
late to the results found in the article. The results for Sec. 3
and 4 of the paper will be completely identical between the artifact-
generated figures and the figures presented in the paper. For Sec. 5,
if the reader chooses to run benchmarks on their own machines,
we would expect there to be a maximum of 5% difference observed
in Fig. 8 and 9 of the paper. If skipping benchmarking and use the
data we collected, the results for Fig. 8 and Fig. 9 will again be
completely identical.

ARTIFACT DEPENDENCIES REQUIREMENTS
Specified in repository.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
Specified in repository.
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