
Experiences Readying Applications for Exascale
Paul T. Bauman

paul.bauman@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

Reuben D. Budiardja

reubendb@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Dmytro Bykov

bykovd@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Noel Chalmers

noel.chalmers@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

Jacqueline Chen

jhchen@sandia.gov

Sandia National

Laboratories

Albuquerque, New Mexico

USA

Nicholas Curtis

nicholas.curtis@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

Marc Day

marc.day@nrel.gov

National Renewable Energy

Laboratory

Golden, Colorado, USA

Markus Eisenbach

eisenbachm@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Lucas Esclapez

lucas.esclapez@nrel.gov

National Renewable Energy

Laboratory

Golden, Colorado, USA

Alessandro Fanfarillo

alessandro.fanfarillo@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

William Freitag

chip.freitag@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

Nicholas Frontiere

nfrontiere@anl.gov

Argonne National

Laboratory

Lemont, Illinois, USA

Antigoni Georgiadou

georgiadoua@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Joseph Glenski

glenski@hpe.com

Hewlett Packard Enterprise

Bloomington, Minnesota

USA

Kalyana Gottiparthi

gottiparthik@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Marc T. Henry de

Frahan

marc.henrydefrahan@nrel.gov

National Renewable Energy

Laboratory

Golden, Colorado, USA

Gustav R. Jansen

jansengr@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Wayne Joubert

joubert@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Justin G. Lietz

lietzjg@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Jakub Kurzak

jakub.kurzak@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

Nicholas Malaya

nicholas.malaya@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

Bronson Messer

bronson@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Damon McDougall

damon.mcdougall@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

Paul Mullowney

paul.mullowney@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

Stephen Nichols

nicholsss@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Matthew Norman

normanmr@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Thomas Papatheodore

papatheodore@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Jon Rood

jon.rood@nrel.gov

National Renewable Energy

Laboratory

Golden, Colorado, USA

Philip C. Roth

rothpc@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

Sarat Sreepathi

sarat@ornl.gov

Oak Ridge National

Laboratory

Oak Ridge, Tennessee, USA

James White III

trey.white@hpe.com

Hewlett Packard Enterprise

Bloomington, Minnesota

USA

Noah Wolfe

noah.wolfe@amd.com

Advanced Micro Devices

Inc.

Austin, Texas, USA

ar
X

iv
:2

31
0.

01
58

6v
1

 [
cs

.D
C

]
 2

 O
ct

 2
02

3

https://orcid.org/0000-0003-3513-8264
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0002-6668-4586
https://orcid.org/0000-0002-1293-7525
https://orcid.org/0000-0002-9268-0634
https://orcid.org/0000-0002-0303-4711
https://orcid.org/0000-0002-1711-3963
https://orcid.org/0000-0001-8805-8327
https://orcid.org/0000-0002-2438-7292
https://orcid.org/0000-0003-3487-7452
https://orcid.org/0009-0001-6051-1975
https://orcid.org/0009-0005-8598-4292
https://orcid.org/0000-0002-0977-6310
https://orcid.org/0009-0009-5432-3773
https://orcid.org/0000-0002-1354-0255
https://orcid.org/0000-0001-7742-1565
https://orcid.org/0000-0001-7742-1565
https://orcid.org/0000-0003-3558-0968
https://orcid.org/0000-0003-4771-998X
https://orcid.org/0000-0002-8398-5524
https://orcid.org/0000-0002-9697-0145
https://orcid.org/0000-0001-6259-7453
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0009-0008-5865-9322
https://orcid.org/0000-0002-1504-5178
https://orcid.org/0000-0003-3484-2735
https://orcid.org/0000-0003-4764-3348
https://orcid.org/0000-0002-6991-4332
https://orcid.org/0000-0002-7513-3225
https://orcid.org/0000-0001-9583-1103
https://orcid.org/0000-0002-4978-9423
https://orcid.org/0009-0005-2186-075X
https://orcid.org/0000-0002-7935-421X

ABSTRACT
The advent of Exascale computing invites an assessment of existing

best practices for developing application readiness on the world’s

largest supercomputers. This work details observations from the

last four years in preparing scientific applications to run on the

Oak Ridge Leadership Computing Facility’s (OLCF) Frontier sys-

tem. This paper addresses a range of topics in software including

programmability, tuning, and portability considerations that are

key to moving applications from existing systems to future instal-

lations. A set of representative workloads provides case studies for

general system and software testing. We evaluate the use of early

access systems for development across several generations of hard-

ware. Finally, we discuss how best practices were identified and

disseminated to the community through a wide range of activities

including user-guides and trainings. We conclude with recommen-

dations for ensuring application readiness on future leadership

computing systems.

1 INTRODUCTION
On May 7th, 2019, the Oak Ridge Leadership Computing Facility

(OLCF) announced a contract with Cray (later acquired by HPE) and

AMD to build the Frontier supercomputer at Oak Ridge National

Laboratory (ORNL). This machine was intended not only to exceed

an exaflop of sustained double precision compute as measured by

High-Performance Linpack (HPL), but also to provide significantly

enhanced performance in scientific applications across a wide range

of domains when the machine entered production. However, at that

time few, if any, applications were ready to leverage the computa-

tional capabilities of an exascale machine. The unique architectural

system design necessary for Frontier to efficiently achieve exas-

cale had not yet been propagated to software codebases. Thus, the

deployment of an exascale computer, itself a considerable under-

taking, also necessitated a focused software effort for readying

scientific applications to avail themselves of the full capabilities of

the machine.

Application readiness is a widely recognized challenge in the

high performance computing (HPC) community, necessitating close

partnerships between the computing facility, system integrator,

and hardware vendors to ensure preparation in time for system

deployment[vazhkudai2018design, 10.1007/978-3-031-10419-0_6,
8024140, 8024138, 8960361]. However, while the essential chal-
lenge is not unique, the magnitude of the task has only increased

with the recent growth in heterogeneous hardware, multiple pro-

gramming models, and the unprecedented levels of parallelism

required to effectively use an exascale computer.

To address these challenges, a Frontier Center of Excellence (COE)
was formed with the expressed purpose of pooling key staff from

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SC’23, Nov. 12–17, 2023, Denver, CO, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

across HPE, AMD, and ORNL to act as a central repository of knowl-

edge and expertise around application readiness and optimization.

The COE acts as a focal point of application “co-design”, coordi-

nating efforts across a range of competencies including hardware,

software, algorithms, and computational science. The Frontier COE

was also intended to rapidly disseminate best practices to users and

other leadership supercomputing centers.

The purpose of this document is to detail the observations from

the COE over the last four years of work readying scientific applica-

tions for the OLCF Frontier system and provide a careful assessment

of current best-practices, along with novel methods, for application

porting and tuning on the world’s largest supercomputers.

The rest of the paper is organized as follows. Software testing

and readiness are discussed in Section 2. Next, Section 3 discusses

several examples of select applications across a representative range

of scientific domains and computational motifs. Section 4 briefly

describes access to precursor hardware platforms. Section 5 then

documents how the lessons from individual application teams were

rapidly disseminated to the broader user-base. Finally, the paper

ends with Section 6, which discusses novel lessons learned in the

course of the project, along with recommendations for other HPC

centers focused on application readiness.

2 SOFTWARE TESTING AND READINESS
At the start of the project in 2019, few applications were ready

to leverage the computational capabilities of an exascale machine.

It was recognized that porting and optimizing codes for Frontier

would be a considerable effort. To lessen the burden on application

teams, Frontier’s software was targeted at performance portability,
with the aim of enabling applications to run efficiently on Frontier

and on other systems with different node designs and hardware

vendors. The programming strategies discussed subsequently are

AMD’s HIP and OpenMP®via target offload. Applications using

abstraction frameworks such as Kokkos or RAJA to achieve perfor-

mance portability are discussed in Sections 3.5, 3.8, and 3.10.

2.1 Early Evaluation of AMD’s HIP
HIP (Heterogeneous-compute Interface for Portability) is a porta-

bility layer that enables code to run on GPUs produced by multiple

vendors, with initial support for AMD and NVIDIA GPUs. To ease

the porting of existing code to AMD GPUs, HIP’s programming

interface was designed to be similar to recent (but not necessarily

the latest) versions of NVIDIA’s CUDA API. AMD’s HIP implemen-

tation provided a “hipify” tool to produce HIP code from CUDA

code. As an early, partial evaluation of HIP’s functionality and per-

formance, OLCF personnel used AMD’s hipify tool to convert the

CUDA implementations of the SHOC benchmark programs[shoc1]
to HIP and compared the performance of both versions when run

on OLCF’s Summit system with its NVIDIA GPUs. In most cases,

the hipify tool converted the bulk of the code automatically, with

the primary exception being code that used outdated CUDA syntax.

As shown in Figure 1, the performance of the HIP implementations

was similar to that of the CUDA versions. These findings are as

expected for two reasons. First, because the HIP implementation is

a header-only library when targeting NVIDIA GPUs, the HIP SHOC

programs are CUDA executables once compiled and linked. And

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Experiences Readying Applications for Exascale SC’23, Nov. 12–17, 2023, Denver, CO, USA

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Bu
sS
pe

ed
Do

w
nl
oa

d_
Do

w
nl
oa
dS
pe

ed
Bu

sS
pe

ed
Re

ad
ba
ck
_R

ea
db

ac
kS
pe

ed
M
ax
Fl
op

s_
M
ul
M
Ad

d4
-S
P

De
vi
ce
M
em

or
y_
re
ad
Gl
ob

al
M
em

or
yC
oa

le
sc
ed

De
vi
ce
M
em

or
y_
re
ad
Gl
ob

al
M
em

or
yU

ni
t

De
vi
ce
M
em

or
y_
w
rit
eG

lo
ba
lM

em
or
yC
oa

le
sc
ed

De
vi
ce
M
em

or
y_
w
rit
eG

lo
ba
lM

em
or
yU

ni
t

De
vi
ce
M
em

or
y_
re
ad
Lo
ca
lM

em
or
y

De
vi
ce
M
em

or
y_
w
rit
eL
oc
al
M
em

or
y

De
vi
ce
M
em

or
y_
Te
xt
ur
eR

ep
ea
te
dR

an
do

m
Ac
ce
ss

BF
S_
BF
S

BF
S_
BF
S_
PC

Ie
BF
S_
BF
S_
te
ps

FF
T_
SP
-F
FT

FF
T_
SP
-F
FT
_P

CI
e

FF
T_
SP
-F
FT
-IN

V
FF
T_
SP
-F
FT
-IN

V_
PC

Ie
FF
T_
DP

-F
FT

FF
T_
DP

-F
FT
_P

CI
e

FF
T_
DP

-F
FT
-IN

V
FF
T_
DP

-F
FT
-IN

V_
PC

Ie
GE

M
M
_S
GE

M
M
-N

GE
M
M
_S
GE

M
M
-T

GE
M
M
_S
GE

M
M
-N
_P

CI
e

GE
M
M
_S
GE

M
M
-T
_P
CI
e

GE
M
M
_D

GE
M
M
-N

GE
M
M
_D

GE
M
M
-T

GE
M
M
_D

GE
M
M
-N
_P
CI
e

GE
M
M
_D

GE
M
M
-T
_P

CI
e

M
D_

M
D-
LJ

M
D_

M
D-
LJ
-B
an
dw

id
th

M
D_

M
D-
LJ
_P

CI
e

M
D_

M
D-
LJ
_-
Ba

nd
w
id
th
_P

CI
e

M
D_

M
D-
LJ
-D
P

M
D_

M
D-
LJ
-D
P-
Ba

nd
w
id
th

M
D_

M
D-
LJ
-D
P_

PC
Ie

M
D_

M
D-
LJ
-D
P-
Ba

nd
w
id
th
_P
CI
e

M
D5

Ha
sh
_M

D5
Ha

sh
Re

du
ct
io
n_

Re
du

ct
io
n

Re
du

ct
io
n_

Re
du

ct
io
n_

PC
Ie

Re
du

ct
io
n_

Re
du

ct
io
n-
DP

Re
du

ct
io
n_

Re
du

ct
io
n-
DP

_P
CI
e

Sc
an

_S
ca
n

Sc
an

_S
ca
n_

PC
Ie

Sc
an

_S
ca
n-
DP

Sc
an

_S
ca
n-
DP

_P
CI
e

So
rt
_S
or
t-R

at
e

So
rt
_S
or
t-R

at
e_
PC

Ie
Sp
m
v_
CS
R-
Sc
al
ar
-S
P

Sp
m
v_
CS
R-
Sc
al
ar
-S
P_

PC
Ie

Sp
m
v_
CS
R-
Sc
al
ar
-D
P

Sp
m
v_
CS
R-
Sc
al
ar
-D
P_

PC
Ie

Sp
m
v_
Pa
dd

ed
_C

SR
-S
ca
la
r-
SP

Sp
m
v_
Pa
dd

ed
_C

SR
-S
ca
la
r-
SP
_P
CI
e

Sp
m
v_
Pa
dd

ed
_C

SR
-S
ca
la
r-
DP

Sp
m
v_
Pa
dd

ed
_C

SR
-S
ca
la
r-
DP

_P
CI
e

Sp
m
v_
CS
R-
Ve

ct
or
-S
P

Sp
m
v_
CS
R-
Ve

ct
or
-S
P_
PC

Ie
Sp
m
v_
CS
R-
Ve

ct
or
-D
P

Sp
m
v_
CS
R-
Ve

ct
or
-D
P_

PC
Ie

Sp
m
v_
Pa
dd

ed
-C
SR
-V
ec
to
r-
SP

Sp
m
v_
Pa
dd

ed
-C
SR
-V
ec
to
r-
SP
_P

CI
e

Sp
m
v_
Pa
dd

ed
-C
SR
-V
ec
to
r-
DP

Sp
m
v_
Pa
dd

ed
-C
SR
-V
ec
to
r_
DP

_P
CI
e

Sp
m
v_
EL
LP
AC

KR
-S
P

Sp
m
v_
EL
LP
AC

KR
-D
P

St
en

ci
l2
D_

SP
_S
te
n2

D
St
en

ci
l2
D_

DP
_S
te
n2

D
Tr
ia
d_

Tr
ia
dB

dw
th

S3
D_

S3
D-
SP

S3
D_

S3
D-
SP
_P

CI
e

S3
D_

S3
D-
DP

S3
D_

S3
D-
DP

_P
CI
e

N
or

m
al

ize
d

HI
P

Pe
rf

or
m

an
ce

SHOC Benchmark Program With Metric

Figure 1: Performance of HIP on the SHOC benchmarks relative to CUDA versions running on OLCF Summit. Note the Y-axis
range is from 0.9 to 1.05. Average normalized HIP performance was 99.8% of CUDA performance when considering data transfer
costs, 99.9% without. In general, the overhead of using HIP vs. CUDA across a range of computational kernels is minimal.

second, most SHOC programs are designed to focus on a particular

computation or data access pattern and so involved a small number

of GPU kernels. The findings suggested the HIP approach was a

feasible approach for targeting GPUs from multiple vendors with a

single code base.

The similarity between CUDA and HIP has allowed an alter-

native strategy to converting codebases to HIP. The strategy uses

a single header file with macros to convert between CUDA and

HIP calls depending on the build environment [ChollaFrontier].
The application code may remain in CUDA and evolve using either

CUDA or HIP, as long as the functionality exists in both APIs.

Although the similarity of HIP to CUDA decreases the effort

required to port existing CUDA code to target AMD GPUs, it can

foster the incorrect assumption among developers that every CUDA

feature from the latest CUDA version is, or will be, provided by HIP.

Careful and repeated messaging to developers is needed to clarify

which CUDA/NVIDIA GPU features will be replicated to correctly

set expectations and to direct effort toward finding alternative, more

portable approaches with comparable performance.

2.2 OpenMP Offloading
Several applications on Frontier rely on OpenMP target offload for

GPU acceleration. Advantages of OpenMP offload include simplified

long-term maintenance of a codebase while enabling portability

across multiple GPU architectures. In general, OpenMP codes did

not achieve performance parity to codes ported with HIP. There

were, however, several common strategies observed to be useful

for applications using OpenMP to achieve high performance.

In general, loops can be acceleratedwith familiar OpenMP syntax.

However, developers should use a large, structured TARGET DATA

region around key performance regions of the code. These large

regions should use persistent data arrays and variables on the GPUs

via MAP to avoid repeated data movement between host and device.

OMP_TARGET_ALLOC allocates such persistent arrays on the GPUs.

Within a TARGET DATA region, data can be synchronized between
host and device via a TARGET UPDATE TO/FROM. This synchroniza-
tion leverages NOWAIT clauses for concurrent execution between

host and device. DETACH can be used to overlap independent opera-

tions, and investigations are underway to identify its best use in the

application codes such as GESTS [gests_sc19]. A USE_DEVICE_PTR
can be used within a TARGET DATA region to instruct the compiler to

use the GPU pointer of the array in function calls and to enable GPU-

Aware MPI calls. Finally, unstructured TARGET DATA ENTER/EXIT
pairs move data to/from the GPU when it’s best to exclude the data

from a structured TARGET DATA REGION.

3 APPLICATION EXPERIENCES
The purpose of this section is to discuss applications that have

demonstrated a significant performance improvement moving to

Frontier, and to capture and disseminate the lessons learned and

best practices the code teams have observed running on OLCF’s

Frontier system at large system scale (e.g., across hundreds or thou-
sands of nodes). The optimization strategies presented subsequently

encompass a multitude of topics ranging from performance portabil-

ity, library use, kernel launch latencies, kernel fusion, and the use of

reduced precision data types. These motifs, and the application ex-

amples they map to, are summarized in Table 1. The speed-ups each

application observed moving from OLCF-5 (Summit) to OLCF-6

(Frontier) are listed in Table 2.

SC’23, Nov. 12–17, 2023, Denver, CO, USA Malaya et al.

Table 1: Application Porting Motifs

Porting Motif Applications

CUDA/HIP Porting GAMESS, CoMet,

NuCCOR, Coast

Library Tuning GAMESS, LSMS, GESTS,

CoMet, LAMMPS

Performance Portability GESTS, ExaSky, E3SM,

NuCCOR, Pele

Kernel Fusion/Fission E3SM, Pele, LAMMPS

Algorithmic Optimizations LSMS, ExaSky, E3SM,

CoMet, Pele, LAMMPS

Table 2: Observed application speed-ups from OLCF-5 (Sum-
mit) to OLCF-6 (Frontier)

Application Measured Speed-up (Frontier/Summit)

GAMESS 5

LSMS 7.5

GESTS 5

ExaSky 4.2

CoMet 5.2

NuCCOR 6.1

Pele 4.2

COAST 7.4

The applications selected in this section generally come from

either Center for Accelerated Application Readiness (CAAR) or Ex-

ascale Computing Project (ECP) Application Development (AD) and

Software Technology (ST) portfolios. In general, both CAAR and

ECP applications had access to early hardware platforms (Section 4)

and dedicated expert support (Section 5) and represent a sophisti-

cated group of users with existing GPU programming experience

and readiness.

3.1 GAMESS
The General Atomic and Molecular Electronic Structure System

(GAMESS) project is an established ab initio quantum chemistry

package developed and maintained by the members of the Gordon

research group at Iowa State University [GAMESS]. The GAMESS

program has a broad user base of 150,000 in >100 countries. The

code is available to the users at no cost via web download.

GAMESS is predominantly legacy Fortran code with newer

C/C++ development parts. The new developments were added and

maintained as libraries inside the main code: LibCChem, LibCInt,

and later EXESS [doi:10.1021/acs.jpca.0c02249]. GAMESS is de-

signed as a portable computational chemistry software package

with the ability to run on many platforms and architectures. This

has required transitioning from serial execution to vector and paral-

lel executionwhile maintaining the full coverage of capabilities. The

main computational motif inside GAMESS is dense linear algebra

operations. As such, GAMESS depends on BLAS and diagonaliza-

tion libraries, and used MAGMA and ROCm™for linear algebra

operations. The LiBCChem/EXESS library inside GAMESS depends

on Global Arrays, EIGEN, and CUDA/HIP. Parallel execution is

accomplished through the generalized distributed data interface

(GDDI) which relies on MPI as its communication layer. To maxi-

mize code portability at the exascale, directive-based approaches,

such as OpenACC and OpenMP, were also exploited.

From the perspective of exascale computing the GAMESS team

decided to further develop fragmentationmethods: FragmentMolec-

ular Orbital and Effective Fragment Molecular Orbital methods

(FMO and EFMO, respectively), where computations are performed

on the level of a single fragment using newly developed libraries [10046114].
The libraries are object-oriented C++ codes developed for both CPU

and GPU and are distributed with GAMESS. LibCChem/EXESS in-

cludes codes for Rys quadrature two-electron integrals, Hartree-

Fock (HF), MP2 and CCSD(T) coupled cluster theory. The fragments

in the FMO scheme can be computed independently, and hence an

efficient linear-scaling algorithm can be formulated.

The development in the LibCChem/EXESS libraries was primar-

ily using CUDA, and the code was then ported to HIP. The combined

EXESS+GAMESS version was created during an early hackathon at

OLCF. Initial testing on the MI250X after HIPification on Crusher

indicated kernels running at almost double the flop rate of the V100

GPUs on Summit. A number of key optimizations for the memory

transfer were introduced and resulted in substantial improvement

of the RI-MP2 code being able to run at nearly peak device per-

formance. A direct comparison between the Summit V100 and the

AMD MI250X was not performed across the entire application, but

the CUDA/HIP RI-MP2 libraries within GAMESS were evaluated

in part. A speedup of 5x was observed in the fragment-level HIP

RI-MP2 code within LibCChem/EXESS libraries.

The code was also tested on Frontier using the Many Body Ex-

pansion Fragmentation method on 128 to 512 nodes for a system

comprised of 935 water molecules. An example comprised of 75k

atoms of an ionic liquid model system used 1024 and 2048 nodes at

a time. ROCm 5.4 was used in conjunction with MAGMA to include

a more efficient divide and conquer implementation of symmetric

eigen solver. The code has shown excellent performance and nearly

ideal linear scaling up to 2K nodes of the system. The GAMESS

team has received INCITE allocation time at OLCF and is now in

process of performing scientific runs.

3.2 LSMS
The Locally Self-consistentMultiple Scattering code (LSMS) [Wang1995,
Eisenbach2017b] is a first principles application for solving the

Schrödinger equation of electrons within a solid using density func-

tional theory. It achieves linear scaling in the total number of atoms

in the system by using a real space implementation of multiple

scattering theory to solve the Kohn-Sham equations of density

functional theory. LSMS was developed at ORNL and used on pre-

vious OLCF computer architectures. It was one of of the codes

selected for the OLCF CAAR in preparation for Frontier.

As the computation in LSMS for spherical atomic potentials

(the current main production mode) is dominated by linear alge-

bra operations on non-Hermitian double precision complex dense

matrices, the first step in moving to a new architecture is to use

the vendor provided linear algebra libraries. In particular LSMS

Experiences Readying Applications for Exascale SC’23, Nov. 12–17, 2023, Denver, CO, USA

requires matrix-matrix multiplications (such as BLAS ZGEMM) and

linear solvers, usually via LU factorization (e.g. LAPACK’s ZGETRF

and ZGETRS). The original implementation of the GPU kernels for

previous systems (e.g. OLCF’s Titan and Summit) employed CUDA

and calls to the cuBLAS library [Eisenbach2017]. To prepare for
Frontier, the GPU implementation increased the use of dense linear

solver available in libraries. Thus, we replaced the block inversion

algorithm by the LU factorization routines available in rocSOLVER

(i.e. rocsolver_zgetrf and rocsolver_zgetrs). While both ap-

proaches have 𝑂 (𝑁 3) scaling with the LIZ-matrix size, and the

zblock_lu algorithm has a slightly lower total floating point oper-

ation count, we observe better performance for the direct solution

of the LIZ 𝜏 matrices using the rocSOLVER routines. These library

calls are supplemented by HIP GPU kernels that transform the

LSMS problem into a form suitable for the linear solver.

The second set of operations that were ported to HIP are the

kernels needed to construct the structure constants that encode

the system geometry and to assemble the KKR matrix. As these

operations do not map readily onto standard library routines, we

chose a HIP implementation of these algorithms. By employing

kernel profiling we were able to identify bottlenecks in the first

implementation of these kernels related to integer index and address

calculations that interfered with the floating point operations on the

MI250X GPUs. Rearranging these operations achieved significantly

improved performance. Comparing the performance of a calculation

for FePt systems, we see a per-GPU performance improvement of

≈7.5x on Frontier MI250X GPUs compared to Summit’s V100.

3.3 GESTS
The GPUs for Extreme-Scale Turbulence Simulations (GESTS) team

is part of the CAAR project and investigates turbulent flows across a

wide range of scales via a Pseudo-Spectral Direct Numerical Simula-

tion (PSDNS) algorithm [gests_sc19]. DNSs of turbulence are well-
suited to leadership computing as they use both the compute capa-

bilities and the memory capacity offered by Exascale systems such

as Frontier to probe high Reynolds number conditions[leadershipdns,
lee2013petascale].

The GESTS codes are written in Fortran 95 around a custom-built

3D FFT algorithm. The initial GPU-enabled version of the code-

base relied solely upon CUDA functionality for data management,

asynchronous operations, and the FFT computations. Whenmoving

to AMD hardware, vendor-specific functionality was limited to the

core FFT functions, and OpenMP offloading was used to manage

data movement between the host and device, to enable GPU-Direct

MPI communications, and to accelerate a variety of array operations

on the GPUs.

Two variations of the PSDNS algorithm were developed: a Slabs
1D- and a Pencils 2D-domain decomposition. The Slabs version is

more efficient because it requires one fewer MPI communication

cycle during both the forward and inverse FFT transforms than the

Pencils version. However, for an 𝑁 3
problem, the Slabs version is

limited to𝑁 MPI ranks, while the Pencils version has a greater upper
limit of 𝑁 2

MPI ranks. This extra flexibility makes the Pencils code
appropriate for large problems when memory-per-node becomes

restrictive.

As part of CAAR, GESTS targeted a 4× improvement in a project-

specific Figure of Merit (FOM). GESTS defined its FOM as 𝑁 3/𝑡
wall

where 𝑁 3
is the number of grid points and 𝑡

wall
is the average run-

time per time step. The reference FOMwas chosen as 𝑁 3 = 18, 4323,

which was the largest problem completed during an INCITE 2019

project on Summit [gests_sc19] using a highly performant, CUDA-

based PSDNS algorithm. Both versions of the ported code demon-

strated an improvement of the FOM in excess of 5× on 4096 Frontier

nodes using 32,768 MPI ranks for the 𝑁 3 = 32, 7683 problem.

3.4 ExaSky
The ExaSky ECP project employs the HACC (Hardware/Hybrid Ac-

celerated CosmologyCode) code [frontiere2022farpoint, frontiere2022simulating,
habib2017], a particle-based cosmology framework. ORNL and the

Science Engagement section have been contributors to the exas-

cale preparation of the HACC code. Other collaborators are the

Argonne National Laboratory, Los Alamos National Laboratory,

and Lawrence Berkeley National Laboratory.

The ExaSky project intends to use Frontier with HACC to address

multiple-level cosmological problems of interest [heitmann2021].
To achieve this aim, a series of simulations with various volumes

will be created to test initial value problems that best suit the scien-

tific goals.

The HACC code has been under preparation to produce cosmo-

logical simulations of different implementations: (1) large-volume,

high-mass resolution gravity-only simulations, (2) large-volume,

high-mass resolution hydrodynamic simulations, and (3) small-

volume, high-mass resolution hydrodynamic simulations. The code

is a hybrid MPI-OpenMP implementation and only depends on an

external FFT library.

Running HACC on the early access systems Poplar and Tulip

(detailed in Section 4) identified a challenge in using both HIP and

OpenMP together. In this case, HACC used HIP to target execution

on the GPU, and OpenMP for both asynchronous computing on the

CPU and launching HIP kernels to the GPU. However, early com-

piler offerings didn’t offer full support for both HIP and OpenMP

in the same compilation unit. Developing general guidelines for

building with both HIP and OpenMP on COE machines was a co-

design effort across the code team, hardware vendor, and system

integrator.

Early performance assessments of theHIP implementation showed

improved performance on second generation early access systems

using AMD’s MI100s when compared to the NVIDIA Volta V100s

available in OLCF Summit. Only one gravity kernel of the six of

interest showed worse performance when using the AMD nodes.

This change in performance for the gravity part of the code was

connected to the use of the wavefront number size of 64 (the native

wavefront size of the AMD GPU architecture) instead of 32 (the

native wavefront size on the NVIDIA GPU architecture). Neverthe-

less, all major kernels demonstrated successful use of the Crusher

system and had speed-ups compared to the Spock and Summit

machines (see Section 4 for details on the early access systems).

The Frontier target at 8,192 nodes (32,768 GPUs) was a weak scal-

ing benchmark that aimed to increase the Summit FOM by a factor

of four; the measured speedup was found to be 4.2x. Successful runs

on Frontier indicated the code performed well (gravity-only and

SC’23, Nov. 12–17, 2023, Denver, CO, USA Malaya et al.

hydro) and achieved a FOM of about 230x with respect to the origi-

nal full machine baseline measured on the Theta supercomputer at

Argonne National Laboratory.

3.5 E3SM
The Energy Exascale Earth System Model—Multiscale Modeling

Framework (E3SM-MMF) [caldwell2019doe,norman2022unprecedented]
is an ECP project with a throughput target of 1,000-2,000× realtime

simulation. To achieve this ambitious goal at high spatial resolu-

tion, significant strong scaling is needed, which increases relative

parallel overheads and decreases the per-node workload available

to GPU accelerators. This means E3SM-MMF is highly sensitive

to latency, and particularly allocations, deallocations, and kernel

launches.

Several strategies were used by E3SM to achieve performance

optimizations and minimize latencies. Kernels that have little code

were merged into larger kernels, as long as global algorithmic de-

pendencies did not prohibit the fusion. This reduced the relative

cost of kernel launch overheads. Conversely, some kernels with

large amounts of code exhibited register spills. Therefore, when reg-

ister spillage was observed, kernels could be fissioned into multiple

kernels until register spillage did not occur. This results in larger

kernel launch overheads, but significantly lower kernel runtimes.

Therefore, there is a balance to strike when using this optimization

strategy. Another method to manage kernel launch latencies was

via launching all kernels asynchronously in the same stream so that

larger kernel runtimes overlap launch overheads for later kernel

launches.

To provide application portability across CPUs and NVIDIA,

AMD, and Intel GPUs, the Kokkos [9485033] and Yet Another

Kernel Launcher (YAKL) [norman2022portable] C++ portability

libraries were used. The E3SM-MMF’s new Cloud Resolving Model

uses C++ Kokkos code for cloud microphysics and macrophysics,

and this required interaction between two different C++ portability

libraries: Kokkos and YAKL. To accomplish this, Kokkos and YAKL

codes exist in separate and self-contained CMake libraries with an

interoperation layer provided by YAKL that allows an intermediate

representation of multi-dimensional array objects. This way, each

C++ portability library can maintain its own CMake build approach,

flags, and C++ standard requirements. The YAKL C++ portability

library contains a transparent pool allocator for all device-resident

allocations so that frequent allocation and deallocation patterns are

non-blocking and very cheap, which reduced latencies for device

allocations and deallocations.

Finally, part of the ECP funding for E3SM-MMF was devoted to

writing a new Cloud Resolving Model, which increases arithmetic

intensity via higher-order interpolation and Weighted Essentially

Non-Oscillatory (WENO) limiting [norman2020holistic]. This
improvement in arithmetic intensity is better suited to GPUs, in-

cluding AMD GPUs, which have high computational bandwidths

compared to data transfer rates.

3.6 CoMet
Another CAAR selection, CoMet [comet_sc18] is a scientific ap-
plication used to find similarity correlations between data objects

in large datasets, with application to science domains such as ge-

nomics, climate, bioenergy and pandemics [lagergren]. To do this,

CoMet acts on data elements stored as vectors and computes sim-

ilarity relationships between these vectors, making it possible to

identify clusters of items that each represent some common char-

acteristic of scientific interest. A unique feature of CoMet is its

ability to process data using mixed precision arithmetic. Scientific

problems that allow encoding of data as binary values with small

numbers of bits, for example in genomics or climatype analysis, are

able to take advantage of reduced precision capabilities of GPUs,

originally developed to support deep learning workloads. CoMet

can calculate on data using FP32, FP16, Int8 and other datatypes,

making it possible to solve much larger problems than would be

otherwise possible.

CoMet was designed to use abstractions for its GPU-related

internal functions, making it easy to port the code to the HIP pro-

gramming environment. To achieve this, the code uses #ifdefs
where needed to allow selective compilation for either CUDA or

HIP/ROCm backends. This strategy is also effective managing calls

to the required AMD rocBLAS and rocPRIM libraries, whose in-

terfaces are close to or identical to their CUDA counterparts. The

CoMet team was able to articulate precise library requirements to

AMD early in the project, enabling delivery of high performance

routines optimized for the CoMet target problem. On Frontier,

CoMet has achieved over 6.71 exaflops of performance using mixed

FP16/FP32 arithmetic on 9,074 compute nodes. Since its computa-

tional expense is overwhelmingly dominated by themixed precision

GEMM matrix product operation to compute correlations, CoMet

exhibits near-perfect weak scaling behavior up to full system scale.

3.7 NuCCOR
NuCCOR (Nuclear Coupled Cluster Oak Ridge) is a DOE Office

of Nuclear Physics application developed at ORNL to investigate

atomic nuclei from first principles. It solves the time-independent

Schrödinger equation for many interacting protons and neutrons

using the coupled-cluster theory tailored to the symmetries inher-

ent in atomic nuclei. Since its inception in the early 2000s, NuCCOR

has migrated from a pure Fortran 95 application to one written pri-

marily in modern Fortran, extensively using object-oriented design

patterns to ensure portability between HPC platforms. By writing

clean code and creating abstraction layers for all hardware and

library dependencies, NuCCOR is robust to many pitfalls that befall

HPC (particularly Fortran HPC) applications. For example, adding

a new hardware architecture or support for a new library is just

a matter of creating the appropriate plugin and adding it to the

appropriate factory classes.

Throughout this period, we have also used portability tools like

OpenMP and OpenACC to accomplish performance portability.

However, solely relying on these tools led to severe roadblocks,

mainly because compilers and tools for Fortran applications lag

behind their C++ implementations.

For the Frontier CAAR project, NuCCOR maintained a minimal

build where all GPU calls were made with wrappers to C function

calls and compiled with a working version of gfortran. Portabil-
ity is always handled first by abstraction. We added support for

Experiences Readying Applications for Exascale SC’23, Nov. 12–17, 2023, Denver, CO, USA

new hardware, libraries, and tools in plugins that implement a pre-

existing interface without affecting the domain science code. This

way CUDA Fortran, hipfort, OpenMP, or any other tool becomes

an optional dependency for experimentation instead of a require-

ment. By writing the scientific code to abstract interfaces instead of

actual implementations, we can focus on adding new capabilities

instead of constantly porting code to run on new systems.

With this plan in place, the NuCCOR team successfully ported

the application to run on Frontier by converting all CUDA code to

HIP using the hipify tool and creating the necessary adapters to

libraries like rocBLAS. In addition, the C interoperability function-

ality added to Fortran 2003 provides a straightforward way to use

both CUDA and HIP in Fortran without relying on non-standard

language extensions only available in selected compilers. Because

of this, our work with the COE focused on investigating bugs and

performance optimizations that only affected a single plugin. As a

result, we made progress on isolated issues without compromising

the production build.

3.8 Pele
Under the umbrella of the ECP, the Combustion-Pele project has de-

veloped applications for performing reactive flow simulations with

adaptive mesh refinement (AMR) in complex geometries. Two sep-

arate solvers were created: PeleC solves for the fully compressible,

multi-species Navier-Stokes equations, while PeleLM(eX) imple-

ments a low Mach number approach. Both applications are built

upon the AMReX block-structured AMR library [Zhang:2019] and
use embedded boundaries (EB) to represent complex geometries.

Both applications share a library called PelePhysics which contains

a code generator to emit code for thermo-chemistry routines.

PeleC and PeleLM(eX) began as hybrid C++/Fortran CPU-based

applications targeting many-core architectures. To target GPUs,

a prototype of PeleC was written in OpenACC as discussed in

[PeleC_IJHPCA]. Concurrently, the AMReX library was imple-

menting a performance portability abstraction of its own, using C++

similar to Kokkos [9485033], RAJA [raja], andGridTools [AFANASYEV2021100707].
The performance of the OpenACC prototype was found to be equiv-

alent to a similar prototype of PeleC written using the AMReX

C++ performance portability library. Although it appeared the For-

tran code could persist on the GPU, the Fortran code in PeleC and

PeleLM(eX) was abandoned in favor of writing code entirely in

C++. One principal reason was that compiler support for Fortran

on GPUs was noticeably lacking. Second, it gave the advantage of

developing a single code base which could run on CPUs, as well as

three different vendor GPU options: NVIDIA, AMD, and Intel. It

was also found to be 2x faster on CPUs due to the compiler’s ability

to optimize a single language. Lastly, the code is easier to debug

when using a single language.

Figure 2 shows an approximate history of the full single node

performance timeline of PeleC throughout the project from its

many-core beginning to its state on Frontier at the time of writ-

ing. Ultimately, a 75x speedup of the code was achieved over the

length of the project due to both software and hardware improve-

ments. The computer hardware in the machines shown in Figure 2

are: NERSC Cori, a many-core Intel Xeon Phi based machine with

68 cores per node; ANL Theta, a many-core Intel Xeon Phi with

10
−2

10
−1

10
0

Sep 2018 Cori

Sep 2020 Theta

Sep 2020 Eagle

Sep 2020 Summit

Nov 2021 Summit

Nov 2021 Perlmutter

Mar 2023 Frontier

Normalized Time

PeleC Time Per Cell Per Timestep

1 Node

0 0.2 0.4 0.6 0.8 1

Sep 2020 Summit

Nov 2021 Summit

Mar 2023 Frontier
4096 Nodes

Figure 2: History of PeleC time per cell per timestep for a
single node between September 2018 and March 2023 on a
variety of machines. Also shown is the time reduction at the
scale of 4096 nodes for the 2020, 2021, and 2023 code states
on Summit and Frontier.

64 cores per node; NREL Eagle, an Intel Skylake CPU based ma-

chine using two sockets with 36 cores per node; OLCF Summit, an

IBM Power9 CPU machine with six NVIDIA V100 GPUs per node;

and OLCF Frontier, an AMD EPYC CPU machine with four AMD

MI250X Instinct GPUs per node.

Figure 2 also shows the performance on 4096 nodes of Summit

and Frontier over time. Since most of the time spent in PeleC and

PeleLMeX is in chemistry routines, changes to the chemsitry inte-

grators made over the years have had an especially notable impact

on performance. The initial porting to GPU was the most lucra-

tive increase for single node performance. For AMReX, the largest

performance increase at large scale came from the the asynchro-

nous ghost cell exchange implementation, completed in March of

2021. At the time of writing, weak scaling efficiency of PeleC and

PeleLMeX from one to 4096 Frontier nodes is over 80%.

Optimizations done by the Pele project for on-node performance

were generally targeted towards the chemistry routines, while

most of the large scale optimization work was done by the AM-

ReX project. Efficiency in the code was gained mostly through the

following optimizations:

• The chemistry integration can be performed explicitly or

implicitly for non-stiff or stiff chemical mechanisms, re-

spectively. Significant speedup and GPU portability was

gained in both solvers by interfacing with the SUNDIALs

ODE integrators, in particular CVODE [Balos:2021]. In-
stead of our historical point-wise integration of the chem-

ical system, all the cells in the box are assembled into a

large chemical system and solved at once with CVODE.

In PeleC, a matrix-free GMRES approach is used within

the CVODE non-linear solve, minimizing the memory re-

quirements. In PeleLM(eX), batched linear algebra from the

MAGMA [Abdelfattah:2019] library is employed to achieve

high throughput and leverage the full potential of CVODE.

SC’23, Nov. 12–17, 2023, Denver, CO, USA Malaya et al.

• Within the chemical integration, the main kernels are the

computation of chemical production rates and the chemical

Jacobian. These two kernels have been heavily refactored

to minimize thread private arrays and explicitly precom-

pute/unroll the code.

• Some EB routines require sorting algorithms in which device

versions were implemented using existing libraries such as

Thrust.

• Fused kernel launches were used for larger device through-

put when using smaller boxes.

• Asynchronous ghost cell exchange were implemented.

Porting to Frontier happened through co-design with the AM-

ReX team, as well as other AMReX-based applications such as

Nyx [Nyx], AMR-Wind [amr-wind] in the ExaWind project, and

WarpX [10046112]. While AMReX developed and pioneered the

interface to the library and the GPU device backends, which com-

pile to each vendor’s native programming model, the initial use

of unified virtual memory (UVM) allowed each project to adapt

their existing code seamlessly. This made it possible to convert the

code section by section until full execution on device was achieved.

However, removing the use of UVM was ultimately necessary for

obtaining better performance on the Frontier AMD platform. With

clear similarities between HIP and CUDA, most of the prototyping

for the Pele conversion to GPUs was done on Summit, while en-

abling HIP merely required reporting and resolving bugs. The use

of precursor Frontier hardware was also crucial to understanding

and accounting for slight differences between the initial NVIDIA

hardware and programming models.

Lastly, the Pele applications have been found to stress the ma-

chine and compilers in ways that other applications do not. For

example, the unrolled chemistry computation routines can contain

upwards of 200k lines of code in a single file, with a single GPU

kernel (such as the calculation of a chemical Jacobian) spanning

140k lines of code on its own. These large kernels have been found

to use upwards of 18k registers. This can result in long compile

and link times, and it is apparent that Pele could benefit from fur-

ther optimization by breaking up these large kernels (i.e., “kernel

fission”).

3.9 COAST
The Communication-Optimized All-Pairs Shortest Path (COAST)

project represents a classic graph-theoretical approach to data min-

ing. The target is mining of scholarly articles, specifically biomedi-

cal literature. The objective is to discover unknown relationships

among concepts. Examples of applications include: a pharmaceuti-

cal laboratory discovering candidate drugs for a disease, an envi-

ronmental agency linking a toxin to a medical condition, etc.

The data starts as annotated text and is converted to graph rep-

resentation (knowledge graph). The graph commonly comes from

the SPOKE database [spoke], which integrates data from over

40 sources into a graph of over 50 million vertices. The vertices

represent biological and biomedical concepts, e.g., genes, diseases,

proteins, and symptoms. The edges represent known relationships

among them, such as “compound causes side effect” or “nirma-

trelvir/ritonavir treats COVID-19”. The code solves the all-pairs

shortest path (APSP) problem, i.e., it finds the shortest path be-

tween each pair of nodes in a graph. It does that using a parallel,

distributed, and GPU accelerated version of the Floyd-Warshall

algorithm, which is a canonical example of dynamic programming.

The code was used for a submission to the Gordon Bell competi-

tion in 2020 [kannan2020scalable]. It achieved 136 petaflops on

the Summit supercomputer at ORNL, and was selected as one of six

finalists. In 2022, the code was ported to the Frontier supercomputer

at ORNL and used for a new Gordon Bell submission. This time

the reported performance achieved 1.004 exaflops, and the submis-

sion was selected as a finalist again [kannan2022exaflops]. The
greater than 7x performance increase resulting from porting from

NVIDIA hardware to AMD hardware was achieved with a few key

strategies:

• For portability from the CUDA API to the HIP API, the code

relies on a thin layer of abstraction that defines functions

like set_device() and device_stream_create(), and del-
egates execution to cudaSetDevice() and cudaStreamCreate()
or hipSetDevice() and hipStreamCreate(), depending
on the compile-time configuration.

• For achieving high performance on AMD GPUs, the code

relies on automated software tuning. For example, the main

computational kernel, which heavily resembles matrix mul-

tiplication, is written in C++ as nested loops with multiple

levels of tiling, and the best set of tiling factors is discovered

in the process of compiling and timing a large number of

combinations.

The kernel optimization process was successful, as the perfor-

mance increased from 5.6 teraflops on one NVIDIA Volta GPU

of the Summit supercomputer to 30.6 teraflops on one AMD In-

stinct™MI250X GPU of the Frontier supercomputer.

3.10 LAMMPS
LAMMPS [LAMMPS] is a classical molecular-dynamics simula-

tor code focusing on materials modeling on parallel computers.

LAMMPS hasmultiple different back-ends, delivering highly-optimized

performance for a number of different executionmodels (e.g., OpenMP [OpenMP98],
OpenCL [OpenCL10], and other vendor-specific options) for a

wide variety of force-field models, constraints and simulation con-

figurations. On Frontier, the focus was on performance attain-

ment of the Kokkos [9485033, CarterEdwards20143202] back-
end of LAMMPS targeting HIP [OLCFHIP, AMDHIP] for the
ReaxFF [doi:10.1021/jp709896w,AKTULGA2012245,doi:10.1021/jp201599t]
force-field simulation of crystalline Hexanitrostilbene (HNS).

This work comprised several parts:

• Identification (and fixing) of significant correctness issues in

AMD’s Clang [LLVM:CGO04]-based compiler for HIP.

• Algorithmic co-design and optimization of LAMMPS’ imple-

mentation of ReaxFF and Kokkos’ HIP back-end.

• Optimization of AMD libraries and compilers.

3.10.1 Fixing correctness issues. The development of a HIP back-

end for Kokkos was achieved via a collaborative effort with several

members of the Kokkos team at the Scalable Algorithms and Cou-

pled Physics Group at OLCF. After enabling functionality, efforts

shifted to running and optimizing LAMMPS. While initial tests,

Experiences Readying Applications for Exascale SC’23, Nov. 12–17, 2023, Denver, CO, USA

particularly for simpler force-field styles (e.g., a Lennard-Jones po-

tential) ran without significant issues, the more computationally

intensive ReaxFF model initially caused intermittent segmentation

faults and out-of-bounds memory accesses at runtime.

This issue proved to be complicated to solve, as small changes

to the compiler (code-generation), source-code, or even run-to-run

timing variations could be enough to trigger these types of faults

intermittently at any number of source-code lines. Ultimately, ob-

taining correctness required extensive, close, and direct collabora-

tion between application teams and compiler experts at AMD. The

issue was ultimately tracked to register spills in highly divergent

code-regions. Kokkos’ portability proved to be a significant help

in the development of the compiler fix: by relaxing some of the

more strict memory access requirements (e.g., to enable direct GPU-

memory access from the CPU over LargeBAR), the same “kernel”

could be run on both the CPU and GPU, using the same memory

allocations (at a significant latency penalty on the CPU). This en-

abled fine-grained correctness validation of the calculated forces

and other intermediate values.

3.10.2 Algorithmic co-design and optimization. Once the Kokkos-
HIP back-end of LAMMPS was reliably running ReaxFF, the focus

shifted towards performance attainment. Initial profiling on AMD

Instinct GPUs found a few key bottlenecks:

• High thread-divergence in the ReaxFF force-field evaluation

kernels.

• Low occupancy in some ReaxFF force-field evaluation ker-

nels due to register-pressure constraints.

• Memory bandwidth requirements for the sparse matrix-

vector multiplications inside of the partial charge equili-

bration routines, and related communication overhead.

Algorithm 1 Pseudo-code for Torsion-force evaluation in ReaxFF

procedure eval_torsion(𝑖, 𝑛𝑒𝑖𝑔ℎ∗, 𝑏𝑜𝑛𝑑∗)
for 𝑗 in 𝑛𝑒𝑖𝑔ℎ[𝑖] do

if cutoff (𝑖, 𝑗) then
for 𝑘 in 𝑛𝑒𝑖𝑔ℎ[𝑖] do

if cutoff (𝑖, 𝑘) then
for 𝑙 in 𝑏𝑜𝑛𝑑 [𝑗] do

if cutoff (𝑖, 𝑗, 𝑘, 𝑙) then torsion(𝑖, 𝑗, 𝑘, 𝑙)
end if

end for
end if

end for
end if

end for
end procedure

A highly-idealized version of the original code-pattern for eval-

uation of the Torsional force component of the ReaxFF model is

presented in Algorithm 1 to help visualize the sources of divergence.

The outer atom index 𝑖 is initialized to the global HIP thread

index, and marched as a grid across all atoms in the system. In addi-

tion, the procedure is passed two lists, a distance-based neighbor-list

(neigh) and an atomic bond based neighbor-list (bond). The cutoff
function takes into account the distance (and bonds) between two,

or four, atomic coordinates and returns True if the pair-wise force
should be evaluated. Finally, if a tuple of (𝑖, 𝑗, 𝑘, 𝑙) indices makes

it through all of the cutoff checks, the torsion function is called,

containing many expensive memory loads and floating-point oper-

ations.

This pattern appeared in the evaluation of Angular and Torsional

force-field terms in ReaxFF. In the worst case (the Torsion exam-

ple above), profiling indicated that on average only a handful of

threads in the entire wavefront were active. Optimization of this

pattern depended on a key observation: the cost of evaluating the

cutoff function is proportionally small as compared to evaluation

of the full torsion (or other) force. Through the efforts of multiple

collaborators, a significantly faster method was developed: a “pre-

processor” kernel is launched that computes a list of successful

(𝑖, 𝑗, 𝑘, 𝑙) interaction tuples. Then, the Angular and Torsional force-

field kernels consume this precomputed list, such that almost all of
the control flow in Alg. 1 can be eliminated, and the pairwise force

terms can be evaluated in a “dense” manner. This methodology

was also extended to the kernel responsible for creating the bond
neighbor-lists themselves for further speedups.

In addition, it was noted that one key optimization made by Ak-

tulga et al. [AKTULGA2012245] was not present in the Kokkos-

backend’s implementation of ReaxFF of LAMMPS (it was available

in the OpenMP
®

backend, however), namely the joint iteration

of two conjugate gradient (CG) loops in the partial-charge equili-

bration phase of the computation. As this computation involves a

sparse-matrix vector product operation, wherein the same matrix is

multiplied by (and accumulated to) two separate vectors, significant

reductions in bandwidth requirements can be achieved by fusing

the CG solve loops. In addition, this scheme greatly reduces the

overall number of CG solve loop iterations required for both solu-

tions to converge. As each CG-solve loop iteration has a significant

communication phase (that scales poorly [AKTULGA2012245]),
this also results in a large reduction in the overall time spent in

communications during the partial-charge equilibration phase.

The result of this joint-effort was a greater than 50% speedup of

ReaxFF in LAMMPS since Feb. 2022 formultiple GPU-vendors [copa2022]:
a success for both application performance and portability.

3.10.3 Optimization of AMD libraries and compilers. The final

thrust of optimization effort in readying LAMMPS for Exascale

was through improving the compiler and device-libraries shipped

as part of the ROCm stack. During intial performance work, it was

noted that a handful of the key kernels — in particular, the Torsional

and Angular pair-wise force evaluations discussed previously— had

a significant number of vector register spills, as determined by the

vgpr_spill_count and amdhsa_private_segment_fixed_size fields in
the assembly dumps (from the output of the compiler’s –save-temps
option). Using DWARF [dwarf] information, and working with

AMD Compiler engineers, this issue was tracked back to inefficien-

cies in spilling of double-precision constants between scalar and

vector registers. Along with some changes to the register alloca-

tion scheme, this virtually eliminated register spills from the key

kernels. Finally, microbenchmarking the achieved throughput of

some heavily used math functions (e.g., pow() and exp()) exposed
some additional optimization opportunities.

https://reviews.llvm.org/D124195
https://reviews.llvm.org/D124195
https://github.com/lammps/lammps/pull/3147
https://github.com/lammps/lammps/pull/3195
https://github.com/lammps/lammps/pull/3158
https://reviews.llvm.org/D104874
https://reviews.llvm.org/D104874
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/commit/7f732ad2d2b57bff90a5623d44e2e8aefc9138a3

SC’23, Nov. 12–17, 2023, Denver, CO, USA Malaya et al.

4 ACCESS TO EARLY HARDWARE
PLATFORMS

A key enabler for application readiness was the provision of early

systems with successive generations of hardware well before the

final exascale system became available. The purpose of these early

access systems was to allow users to familiarize themselves with

the HPE Cray Programming Environment and AMD software stack,

aid in the porting of applications to HPE Cray systems, and provide

a platform for the tuning of applications for AMD GPUs.

From the inception of the project, HPE, AMD, and OLCF worked

together to ensure that key application teams had access to early

platforms as early as possible. In addition, the platforms were con-

structed to give application teams a development environment

that would ultimately converge on the target exascale platform.

Whenever possible, these systems were accompanied by talks and

documentation (see Section 5) detailing how the accessible plat-

form differed from the final system node architecture. This ensured

application teams wasted as little time as possible in optimizations

that would not benefit the final target exascale platform.

Starting in 2019, three generations of early access platforms were

deployed. These systems spanned three generations of AMD In-

stinct GPU hardware (MI60s, MI100s, and the MI250X products

used in Frontier), multiple generations of the HPE Slingshot Inter-

connect, and three generations of AMD EPYC CPUs. Access to the

systems was restricted to teams that were under non-disclosure

agreements (NDAs) permitting sharing information on the future

hardware and system configurations. Users on the systems were

permitted to publish results after the hardware in the clusters was

made generally available.

In general, all three generations of early access hardware plat-

forms were useful development platforms. All the platforms shared

key commonalities, in that they were heterogeneous systems, based

on AMD compute hardware, and shared a common instruction set

(x86 on the EPYC CPU and AMD’s Compute DNA architecture for

the Instinct GPUs). All early access systems had software and tools

that would be available on Frontier, in particular the HPE Cray

Programming Environment and AMD’s ROCm software stack.

The first generation platforms were named “Poplar” and “Tulip”

andwere based on AMDMI60s and AMDEPYC 7601 “Naples” CPUs.

The second generation systems (named “Spock” and “Birch”) had

AMD Instinct MI100s and AMD EPYC 7662 “Rome” CPUs. They

also had the HPE Slingshot interconnect with a 100 GbE interface

network. Spock and Birch had six nodes and 12 nodes, respectively,

each with four GPUs in each node. These systems were much

closer in software stack and interconnect to the eventual Frontier

system, and were of sufficient scale to permit modest scaling studies.

Developers were able to access both systems in 2020, which was

considerably before access to Frontier.

The final system (named “Crusher”) is identical to the Frontier

node architecture, with AMD 64-core Optimized 3rd gen EPYC

CPUs and AMD Instinct MI250X GPUs. The system also has the

HPE Slingshot interconnect with 200 Gigabit Ethernet (GbE) inter-

faces. Crusher was delivered well in advance of the general system

availability, permitting early access users to begin tuning on the

system in January, 2022. With 192 compute nodes, each containing

4× MI250X, the system was capable of providing early experiences

to users scaling applications to hundreds of compute devices on

software close to the stack used on Frontier, the production system.

A key strategy for leveraging the early systems was to test appli-

cation use cases that precisely mimic the per-GPU problem dimen-

sions expected on exascale runs. Math libraries achieve maximum

performance through tuning for the complex hierarchy of memory

levels and device parallelism of GPUs. Performance trade-offs de-

pend on specifics of the input and output sizes, so libraries often

contain a large collection of problem-size-dependent implementa-

tions. Early access allowed application developers to provide target

problem sizes for library developers, such that the libraries were

tuned and ready for these applications when the final system ar-

rived.

5 HACKATHONS, TRAININGS, USER GUIDES
Select application and software teams (henceforth “early users”)

had extensive access to AMD, HPE and OLCF staff for expert con-

sulting and knowledge sharing. Early users were given access to

the early-access hardware platforms described in Section 4. The

OLCF, in coordination with HPE and AMD, created a quick-start

guide and organized a training workshop for each system to pro-

vide a baseline for system access and application porting. From

there, any questions or issues encountered by the users were ad-

dressed throughOLCF support tickets (and a COEConfluence™site).

Each application team was paired with liaisons affiliated with the

COE who could provide expert knowledge and flexible support for

high-priority CAAR and ECP projects. The liaisons participated in

regular virtual meetings, instant-messaging channels, wikis, soft-

ware repositories, issue-tracking systems, and direct E-mail. Many

of the strategies documented in Sections 2 and 3 were the result of

close interactions between liaisons and application teams. Interac-

tions were disrupted in part by the COVID-19 pandemic in 2020.

Outside of the CAAR Kick-Off workshop the week of Oct 7th 2019,

nearly all the interactions were virtual.

Shortly after the early users obtained access to an early access

system, such as Spock or Crusher, the OLCF, HPE, AMD, and ECP

would hold a “hackathon” for subsets of the early user teams. The

idea was to give the teams access to the new system, let them

attempt to get their codes up and running, then follow up with

hackathons to help the teams drive toward their goals (e.g., compil-

ing, optimizing, and debugging). These hackathons proved to be a

great source for identifying common user issues and software bugs,

and generally collecting lessons learned. The lessons learned from

the hackathons were then disseminated to the rest of the early users

(and facility and vendor staff) through special webinar sessions.

Then the information was further distilled into new sections in the

user guide to help all (current and future) users of the system
1
.

Trainings covered a wide spectrum of topics across hardware,

software and system operations. Topics in hardware included in-

formation pertinent to optimization, such as cache sizes, hardware

atomics, register spilling, and kernel launch latencies. Software

topics included code examples to leverage new features, such as

specialized SGEMM/DGEMM operations, the AMD Infinity Fabric

Interconnect, or HIPifying codes. System topics included call pat-

terns for the batch system and NUMA and affinity considerations.

1
see for example https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html

https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html

Experiences Readying Applications for Exascale SC’23, Nov. 12–17, 2023, Denver, CO, USA

6 LESSONS LEARNED AND CONCLUSIONS
The most important lesson learned from the Frontier experience

was that application readiness on leadership computing resources

does not occur without deliberate support across a spectrum of

modalities including: hardware systems, CPU and GPU software,

performance tools/debuggers, networking software, and application

performance tuning and optimization expertise. The close collabo-

ration inherent to the COE across HPE, AMD, and ORNL ensured a

thoughtful allocation of resources and effective knowledge sharing

between code teams, vendor staff, and domain experts.

As detailed in Sections 2 and 3, enabling applications to run on

Frontier was most successful when accelerated codebases existed,

where porting and optimization to AMD’s HIP was an efficient

approach that also provided portability between multiple GPU

vendors. Applications also had success running on Frontier when

using abstraction frameworks such as Kokkos/RAJA, or OpenMP

target offload directives. Best performance was achieved when

applications leveraged vendor provided libraries, and when the

application teams were able to set clear performance targets and

provide precise function dependencies and problem sizes early in

the project.

Many of the applications in Section 3 achieved significant speed-

ups, with performance improvements between 5x and 7x vs. OLCF

Summit (on a per device or scaled-out basis) being typical. Several

applications also demonstrated sustained performance above an

exaflop on real scientific problems. Overall, the success of these

projects indicates that exascale computing is a paradigm shift in

capability, not in programming models or optimization techniques.

Traditional techniques such as HIP/CUDA, OpenMP, and MPI are

still valid to achieve high performance on modern supercomputers.

In particular, the “GPU-Aware MPI + X” model for inter-node com-

munication remains the predominant narrative for Frontier and the

exascale era.

Application readiness was also accelerated by early hardware

and software access. Early access to software and hardware helped

identify: A) functionality problems, B) missing features, and C) per-

formance problems, typically in this order. Platforms were seldom

“too early” for initial assessments and testing. Rather, software is-

sues that were identified earlier provided more time for vendors to

identify and implement a fix. The communication of software issues

and their fixes was also an important activity. Documenting known

performance issues, and their mitigation, on Confluence pages or

during virtual meetings saved COE early-access users considerable

time while tuning and porting codes and avoided multiple teams

triaging the same issue.

The COE also greatly benefited from a quantitative approach to

tracking application readiness. Application teams were expected to

provide a well-posed challenge problem and figure of merit (FOM)

on Summit and an acceleration plan for Frontier. The teams then

produced mid-project reports (reviewed by the COE Management

Council) and a final report detailing challenge problem results. This

quantitative approach permitted early detection of software bugs

and performance regressions, and enabled continuous assessment

of applications against their stated speed-up targets.

If this project were done again, the COE would do several things

differently. Clear information would be provided to users on what

particular version of the CUDA API was supported by AMD’s HIP.

Similarly, the COE would communicate what CUDA functions and

capabilities were not likely to be supported in HIP (likely due to

hardware differences). Finally, more training on common issues

(atomic operations, CPU and GPU bindings, and compiler optimiza-

tions)would be provided as early as possible to users.

The intensive engagement among the compute vendors, OLCF,

and application teams through the COE has proved invaluable in

preparing applications for exascale. It is expected that the func-

tion of the COE will remain vital for future leadership computing

systems, which are likely to experiment with advanced computer ar-

chitectures and programmingmodels. There are several examples of

the efficacy of machine learning and artificial intelligence for scien-

tific computing [9563024,McDougall2017, 10.1145/3392717.3392772],
and so it is also likely that the role of the COE will evolve as appli-

cations evolve to leverage these approaches.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-

SC-20-SC), a collaborative effort of the DOE Office of Science (SC)

and the NNSA, and was performed using computational resources

of the Oak Ridge Leadership Computing Facility, which is a DOE

SC User Facility supported under Contract DE-AC05-00OR22725

This manuscript has been co-authored by Oak Ridge National

Laboratory, operated by UT-Battelle, LLC under Contract No. DE-

AC05-00OR22725 with the U.S.Department of Energy. The views

expressed in the article do not necessarily represent the views of the

DOE or the U.S. Government. The U.S. Government retains and the

publisher, by accepting the article for publication, acknowledges

that the U.S. Government retains a nonexclusive, paid-up, irrev-

ocable, worldwide license to publish or reproduce the published

form of this work, or allow others to do so, for U.S. Government

purposes. DOE will provide public access to these results of feder-

ally sponsored research in accordance with the DOE Public Access

Plan.

AMD, the AMD Arrow logo, Instinct, EPYC, and combinations

thereof are trademarks of Advanced Micro Devices, Inc. Other prod-

uct names used in this publication are for identification purposes

only and may be trademarks of their respective companies.

	Abstract
	1 Introduction
	2 Software Testing and Readiness
	2.1 Early Evaluation of AMD's HIP
	2.2 OpenMP Offloading

	3 Application Experiences
	3.1 GAMESS
	3.2 LSMS
	3.3 GESTS
	3.4 ExaSky
	3.5 E3SM
	3.6 CoMet
	3.7 NuCCOR
	3.8 Pele
	3.9 COAST
	3.10 LAMMPS

	4 Access to Early Hardware Platforms
	5 Hackathons, Trainings, User Guides
	6 Lessons Learned and Conclusions
	Acknowledgments

