
ar
X

iv
:2

30
4.

10
39

7v
1

 [
cs

.D
C

]
 2

0
A

pr
 2

02
3

Optimizing High-Performance Linpack for Exascale

Accelerated Architectures

Noel Chalmers

Advanced Micro Devices Inc.

Austin, Texas, USA

noel.chalmers@amd.com

Jakub Kurzak

Advanced Micro Devices Inc.

Oak Ridge, Tennessee, USA

jakub.kurzak@amd.com

Damon McDougall

Advanced Micro Devices Inc.

Austin, Texas, USA

damon.mcdougall@amd.com

Paul T. Bauman

Advanced Micro Devices Inc.

Austin, Texas, USA

paul.bauman@amd.com

Abstract—We detail the performance optimizations made
in rocHPL, AMD’s open-source implementation of the High-
Performance Linpack (HPL) benchmark targeting accelerated
node architectures designed for exascale systems such as the
Frontier supercomputer. The implementation leverages the high-
throughput GPU accelerators on the node via highly optimized
linear algebra libraries, as well as the entire CPU socket to
perform latency-sensitive factorization phases. We detail novel
performance improvements such as a multi-threaded approach
to computing the panel factorization phase on the CPU, time-
sharing of CPU cores between processes on the node, as well
as several optimizations which hide MPI communication. We
present some performance results of this implementation of the
HPL benchmark on a single node of the Frontier early access
cluster at Oak Ridge National Laboratory, as well as scaling to
multiple nodes.

Index Terms—Accelerators, Exascale, GPU, Linpack

I. INTRODUCTION

In June of 2022, the Frontier supercomputer housed at Oak

Ridge National Laboratory (ORNL) debuted on the Top500 list

of supercomputers in the top position with a High-Performance

Linpack (HPL) [1] score of 1.1 ExaFLOPS [2]. Over twice

the score of the previous top supercomputer, Frontier was the

first supercomputer ever to achieve over one ExaFLOPS in

HPL, marking it as the first true exascale machine. Shortly

afterwards, AMD’s optimized implementation of HPL, named

rocHPL [3], was made open-source and freely available. A

variant of this HPL implementation, with optimized commu-

nication performance provided by Hewlett Packard Enterprise

(HPE), was run on Frontier to achieve over one ExaFLOPS

of overall performance. In this paper, we detail some of the

performance optimizations which helped achieve this score

with the expectation that these performance optimizations

provides useful information for users optimizing HPL on

heterogeneous architectures.

HPL is one of many benchmarks designed to measure some

aspects of a computer system. Other common benchmarks

include the High-Performance Conjugate Gradients (HPCG)

benchmark which stresses the system’s main memory band-

width and system-wide all-reduce performance, and the High

Performance Linpack - Mixed Precision (HPL-MxP) bench-

mark which stresses the system’s computational throughput

of mixed- and lower-precision math operations. As with these

other benchmarks, HPL effectively stresses several aspects of

a computer system including the 64-bit floating-point com-

putation rate, network bandwidth, and network latency for

extended periods of time while drawing essentially the peak

amount of power the system can use. This makes HPL an

incredibly useful stress test for validating a new computer

system’s reliability and overall performance.

The high FLOP rate in HPL on Frontier is owed almost

entirely to its GPU-accelerated node architecture and high-

speed network. The presence of accelerators is a growing

trend in high-performance computing. Indeed, as of June

2022 seven of the top ten supercomputers on the Top500 list

have GPU-accelerated node architectures. In Frontier’s case,

each node is comprised of a single 64-core AMD EPYC

CPU, four AMD Instinct MI250X GPU accelerators. The

EPYC CPU and MI250X GPUs all leverage AMD’s advanced

packaging as Multi-Chip Modules (MCMs). The CPU socket

is comprised of eight 8-core Core Complex Dies (CCDs) and

an IO die, while each MI250X GPU is comprised of two

Graphics Compute Dies (GCDs). The GCDs are connected

to one another, and to the CPU socket, via AMD Infinity

Fabric. With this architecture, the MI250X accelerators in each

Frontier node contribute over 98% of the node’s peak FLOPS

rate.

The computation performed in the HPL benchmark is the

solution of an N ×N random linear system of equations with

a blocked Gaussian elimination method with partial pivoting.

The N×N matrix, A, is distributed into a P×Q MPI process

grid via a 2D block-cyclic distribution for load balancing.

Leveraging the high FLOP rate of the GPU accelerators in

HPL requires careful consideration of the implementation

of its four main phases, each with different computational

character. These phases are:

• Panel factorization (FACT) - The leading NB columns of

A are LU factorized. This involves NB small collectives

among the P processes performing the factorization in

order to find the pivot rows.

• Panel broadcast (LBCAST) - The trailing matrix below

the current NB ×NB diagonal block is broadcast to all

other processes in the grid.

• Row-swapping (RS) - The NB pivots determined during

FACT are applied to the remaining columns of A

• Trailing update (UPDATE) - A rank NB update is applied

to the trailing submatrix of A. This phase consists of

http://arxiv.org/abs/2304.10397v1

a computationally demanding triangular inverse, a.k.a.

DTRSM, and a matrix-matrix multiplication routine,

a.k.a. DGEMM.

Classically, the vast majority of time in the HPL benchmark

is spent inside DGEMM routines inside the trailing update

phase. These routines are often highly optimized on different

hardware which enables HPL scores to achieve significant

fractions of the hardware’s peak floating point computation

rate.

As accelerators became more prevalent over the past decade,

there have been several works which studied leveraging them

in HPL. A natural approach is to use accelerators to improve

the performance of the large DGEMM computations in HPL,

keeping the matrix in the CPU memory and offloading the

DGEMM operations to the accelerator by dividing it into

smaller pieces and processing piece by piece, interleaved with

data transfers. Endo & Matsuoka [4] first studied using Clear-

Speed SIMD accelerators to improve DGEMM performance

in HPL in a heterogeneous cluster where only some nodes

contained accelerators. This idea of offloading the DGEMM

work to accelerators was also applied for HPL on the Road-

runner supercomputer by Kistler et al. [5] which used the IBM

PowerXCell 8i accelerators. Fatica [6] described this approach

for GPGPUs using CUDA, wherein they describe a pipe-

lining strategy for moving sections of the input/output matrices

to/from the GPU to accelerate both DGEMM and DTRSM

routines and hiding this data motion behind the computation

time on the GPGPU. Demonstrations of scaling of this pipe-

lining strategy to full clusters were described by Wang et

al. [7] and Rohr et al. [8]. Other authors considered similar

approaches for other programming models such as OpenCL

[9], and other accelerators such as the Intel Xeon Phi [10],

and even clusters which mixed different types of accelerators

[11].

In more recent works, several authors have noted the in-

creases in computation rates of accelerators have out-paced

the bandwidth improvements in the host-accelerator links. In-

deed, some modern GPU accelerators, including the MI250X

GPUs, also include specialized hardware units which further

accelerate the compute rate of matrix-matrix multiplications.

This has made the pipe-lining strategy described by Fatica

[6] for accelerating DGEMMs and other routines in HPL

impractical. In order to hide the data motion between host

and accelerator, the amount of computation done in each

kernel must be dramatically increased, usually leading to

unreasonably large blocking parameters in HPL which induces

bottlenecks in other phases. To alleviate this, Tan et al. [12]

and Kim et al. [13] present HPL implementations on modern

GPU accelerators where the entire problem is stored in the

GPUs’ memory, rather than host DDR, an idea that originally

appeared in Kistler et al. [5]. This has the benefit of removing

the need to move data for large computational routines to/from

the accelerator. Several large MPI communication phases

can then also leverage GPU-aware MPI routines to move

data directly between different GPUs’ HBM and leverage

fast hardware links between GPUs on-node when available.

Global A matrix

Process (0,0)

Process (1,0)

Process (0,1)

Process (1,1)

Distributed A matrix

Fig. 1: 2D block cyclic distribution of a matrix. The global

N × N matrix is blocked into NB × NB panels, which are

distributed among a P × Q grid of processes. Figure shows

an example of a distribution into a 2× 2 process grid.

Some complications in this implementation arise, however.

The panel factorization remains a complex communication-

and latency-sensitive phase in HPL, which is not well-suited

for fine-grain parallelism on accelerators. Furthermore, MPI

communications must still be coordinated by the host process

and overlapping these communications with useful work on

the accelerator can be challenging.

Both Tan et al. [12] and Kim et al. [13] opt to utilize

the host CPU to perform the panel factorization, transferring

only the needed data from/to the GPU at each iteration.

This reduced amount of data motion allows for the FACT

and LBCAST phases to easily overlap with trailing update

computation on the GPU. Communication required to perform

the row-swapping phase then introduces GPU idle time, which

both studies resolve by splitting the row-swapping and trailing

update into several smaller pieces and pipelining to hide com-

munication by smaller trailing updates. Tan et al. implement

even further pipelining using multiple CPU threads to advance

the panel broadcast phase while panel factorization progresses.

This approach, which potentially causes some congestion of

the network interfaces, is not used by Kim et al. who instead

use NVIDIA’s NCCL communication library for GPU-direct

communication which uses GPU kernels for data motion,

making overlapping with other communication impractical.

In this paper, we detail some of the optimizations we

have implemented for HPL to improve performance on GPU-

accelerated node architectures such as Frontier. In particu-

lar, we detail a multi-threading strategy for extracting data

parallelism in the inherently serial panel factorization phase,

overlapping CPU and GPU computation, and hiding GPU-

GPU communication time via a split trailing update formu-

lation. We then present some performance results of this

implementation of the HPL benchmark on the Crusher cluster

at ORNL showing the efficacy of our optimizations in hiding

MPI communication time and demonstrating good scaling

performance to multiple nodes, and afterwards give some

concluding remarks.

L

(a) Panel factorization (FACT). (b) Panel broadcast (LBCAST).

U

(c) Row-swapping (RS). (d) Trailing update (UPDATE).

Fig. 2: The four main phases at each iteration of HPL’s factorization algorithm. The figures show the phases on an example

2× 2 process grid. In each phase, we show with a patterned fill what panels of each process’s local matrix are accessed. We

also show with arrows what processes communicate in each phase.

II. HPL OVERVIEW

The HPL benchmark begins by generating a distributed N×

N double-precision matrix A on a two-dimensional grid of

P × Q processes. For load balancing, the global matrix A

is blocked into NB × NB sized panels, and these panels are

distributed to the process grid in a 2D block-cyclic fashion. An

example of this distribution is depicted graphically in Figure 1

for a 2× 2 process grid. A length N right-hand-side vector b

is also generated and appended to A to form an N × (N +1)
augmented system.

The linear system is solved via a blocked Gaussian elim-

ination algorithm, with partial pivoting. By treating A as an

augmented system, the linear system Ax = b is essentially

transformed into the upper triangular system Ux = b̂ =
L−1P−1

b, where A = PLU is the LU -factorization of

A with row-pivoting. After this transformation, the solution

vector x is readily found by applying U−1.

The blocked algorithm proceeds iteratively along the diag-

onal of A. Each iteration then consists of four main phases

which themselves consist of varying levels of computation

and communication between processes. To begin, at each

iteration the block of NB columns at the current position along

the diagonal of A are LU factored, applying row pivoting

only within these NB columns and leaving the rest of the

matrix unchanged. This phase, called the ‘panel factorization’

(FACT) stage, is shown graphically in Figure 2a for a 2 × 2
process grid. Only the leftmost block of panels is accessed,

as shown in the patterned panels in the figure, and only

in the processes which own sections of these NB columns.

The processes participating in the panel factorization must

frequently communicate in order to determine the NB row

pivots to apply as the factorization progresses. Communication

is indicated in the figure by arrows between these processes.

Each communication to determine the distinct row to pivot

is essentially a collective all-reduce operation involving all

the processes in this process column, as the processes must

collectively determine the pivot row and receive a copy of

this row. At the end of this phase, the column of panels will

have been pivoted and LU factored, yielding an N × NB

lower triangular matrix L distributed between the column of

processes.

Once panel factorization is completed, each of the processes

which participated in the factorization packs their section of

the L matrix, along with some index data conveying the

pivoting information, into a buffer and broadcasts this buffer to

all other processes in their row of the process grid. This step is

graphically shown in Figure 2b. No computation is performed

in this step, and only the data in the buffer holding L is

accessed or modified. As the L matrix is typically large for the

majority of the HPL benchmark, the performance of this phase

is heavily dependent on the amount of bandwidth available for

FACT LBCAST RS

FACT

UPDATE

MPI

CPU

Transfer

GPU

Look-ahead UPDATE

Row Scatter

Row Gather

Fig. 3: Diagram of the execution of a single iteration in HPL’s factorization. Diagram shows utilization of both CPU and

GPU, as well as the data transfer between them. MPI activity in different phases is also represented on the timeline. When the

walltime of the UPDATE phase is large, we observe that the computation on the GPU can effectively hide all phases except

for RS.

inter-process communication, as well as the efficiency of the

broadcast algorithm used.

With the L matrix and pivoting information broadcast to

all processes, the final major communication phase in each

process is to apply all the row pivots determined in FACT to

the remainder of the A matrix on each process, and collectively

construct the U matrix which resides to the right of the

NB × NB currently factored panel. Since the full set of

NB pivots are known in this phase, we can perform the

required communication in bulk via routines equivalent to

MPI_Scatterv followed by |MPI_Allgatherv|.Each

process first assembles their rows to be communicated into

buffers, which requires an irregular access of their local

A matrix. Each process in the process row containing the

currently factored panel then scatter the NB source rows

to their destination processes in each process column via a

Scatterv communication. Following this, all processes in a

column collectively assemble their section of the distributed

NB×N matrix, U , via an Allgatherv communication. The

data accessed and the communication directions are shown

graphically in Figure 2c.

The final phase of the iteration is the most computationally

demanding but requires no inter-process communication. The

pivoted rows of the global matrix have been assembled into

the U matrix, and the computations from FACT are extended

to these rows and applied as a single DTRSM routine, using

the low-triangular piece of the factored diagonal panel. With

the L and U matrices constructed and duplicated along the

process rows and columns, respectively, the last computation

is to apply a rank NB update to the trailing sub-matrix of

A distributed among all the processes. This computation is a

distributed N×N×NB DGEMM which subtracts the product

LU from the trailing sub-matrix of A. The data accessed for

this computation is shown graphically in Figure 2d.

III. ROCHPL DESIGN

AMD’s implementation of the HPL benchmark, named

rocHPL [3], is based on the open-source HPL implementation

hosted on Netlib [14]. This reference HPL code is parallelized

with MPI, but otherwise contains no other parallel program-

ming model. Our modifications to this HPL implementation

involved adding GPU support via AMD’s ROCm platform,

runtime, and toolchains. The rocHPL code is written using

the HIP programming language and leverages linear algebra

routines highly optimized for AMD’s latest discrete GPUs via

the rocBLAS math library.

As noted above, the recent works of Tan et al. [12] and

Kim et al. [13] both argue that the computational throughput

of modern accelerators is so large that the entire matrix A must

be stored in the accelerators’ high-bandwidth memory (HBM),

as moving data from/to CPU memory would be too costly.

As the AMD Instinct MI250X accelerators contain special-

ized hardware accelerating the crucial DGEMM computations,

computational throughput has been even further increased

beyond even what these works consider. We must therefore

follow a similar design in rocHPL, storing the matrix A

across each of the MI250X’s 128 GB HBM capacity.

It then becomes natural to consider whether all phases of

the HPL benchmark should be performed on the accelerator,

with the host process only serving to coordinate MPI com-

munication. The UPDATE phase is, of course, a natural fit

for the accelerator’s high computational throughput. Likewise,

the LBCAST and RS phases map easily to the accelerators as

the required local data motion for row-swapping is accelerated

using the GPUs’ high memory bandwidth, and MPI commu-

nications can leverage both the high-bandwidth Infinity Fabric

links between GPUs as well as the direct connection of the

network interface cards (NICs) to the GPUs on node. The

FACT phase, however, remains a challenge to execute on the

accelerator. While it is true that many of the individual BLAS

computations in FACT would be accelerated on the GPU,

the communications required for row-pivoting would require

frequent host-device synchronizations and would consequently

introduce significant amounts of GPU idle time due to kernel

launch latency. We therefore follow a similar approach to that

of Tan et al. and Kim et al. and transfer necessary data back

to the host processes in order for the FACT computations to

be performed on the CPU before sending needed data back to

the accelerators.

Fortunately, performing the FACT phase on the CPU leads

to a relatively simple way to hide some necessary MPI

communication by local computation using the ‘look-ahead’

mechanism in the HPL benchmark. By noting that the FACT

phase of each iteration requires only the next NB columns

of the matrix, the look-ahead works by splitting the UPDATE

phase on each process which will be performing the FACT

phase in the next iteration. These processes first perform the

UPDATE phase on only the leading NB columns, and then

immediately begin transferring these columns to the host for

factorization while completing the UPDATE phase on the

remaining local matrix. This approach leads to an iteration

whose timeline of execution looks similar to that shown in

Figure 3. When the UPDATE phase begins, the computations

are performed on just the look-ahead first so that this section

of columns can be transferred to the CPU, and then transferred

back after the FACT phase. Once the FACT data arrives back

on the GPU, the LBCAST communication can be done all

while the remaining trailing UPDATE is being completed on

the GPU. Processes which do not participate in the FACT

phase simply wait in the LBCAST phase. After the UPDATE

phase is completed, the row pivots computed in FACT are

applied which requires a GPU kernel to gather the rows to be

communicated, followed by MPI communication, and a GPU

kernel to scatter the received rows back into A.

A. Multi-threaded Panel Factorization

At the beginning of the HPL benchmark, the computational

work on the accelerator in each iteration can effectively hide

both transfers to and from the host for the FACT computation,

as well as the LBCAST communication. But as the bench-

mark progresses, the amount of work being performed in the

UPDATE phase decreases until it is no longer able to hide

these other phases. In order to maximize the duration of the

benchmark where communication and factorization are hidden

by UPDATE, and to spend the minimal amount of time without

the UPDATE phase on the critical path, it is crucial to perform

the FACT phase as fast as possible on the CPU.

The design in rocHPL is to let every MPI process manage

one and only one GPU device. In the case of MI250X GPUs,

where each GCD of the module presents to the OS as a distinct

GPU, each MPI rank manages a unique GCD. Assuming each

MPI rank is also bound to a distinct CPU core, this leaves

potentially many unused CPU cores which can be leveraged

in the FACT phase through multi-threading. While many CPU

BLAS libraries offer multi-threaded implementations of com-

putationally expensive BLAS routines, such as the DGEMMs

and DTRSMs needed in FACT, we opt instead to multi-thread

the entirety of the FACT phase by manually distributing the

computation among CPU threads.

The matrix being LU factored in the FACT phase is tall

and skinny. It consists of only NB columns, but potentially

·
·
·

·
·
·

NB

NBThread 0

Thread 1

Thread T − 1

Thread 0

Thread 1

Fig. 4: Graphical depiction of the multi-threading strategy

used in the FACT computation on CPU. The ensemble of

NB columns is split into NB × NB tiles, and the tiles are

round-robined between T CPU threads.

many thousands of rows. This makes it amenable to paral-

lelization by distributing chunks of rows between threads on

the host, an approach similar to the technique of Parallel Cache

Assignment (PCA) by Castaldo et al. [15] and the work on

parallel panel factorization by Dongarra et al. [16] and Kurzak

et al. [17]. At the beginning of the FACT phase, we create

an OpenMP parallel region of T threads and distribute work

between threads by blocking the tall and skinny matrix into

tiles of NB rows, assigning blocks in a round-robin fashion

to each thread, as shown graphically in Figure 4. We choose

square tile sizes purely out of convenience as this way the first

tile, which will contain the upper-triangular factor as well as all

the source rows during pivoting, is guaranteed to be assigned

to the main thread.

The original Netlib HPL code on which rocHPL is based

contains several serial and blocked LU factorization methods,

including left-looking, right-looking and Crout factorizations.

Each of these is directly parallelizable with the tiling strategy.

The determination of the pivot row is implemented as a parallel

reduction over all OpenMP threads, after which the main

thread calls MPI to complete the reduction across all processes

in the process column. The main thread then applies the row

pivot and synchronizes with the remaining threads so that

the rank-1 update to the trailing sub-matrix can be applied

in a parallel fashion using all the threads. For the blocked

factorization methods, a similar idea is applied where the main

thread performs the DTRSM updates to the upper-triangular

factor, after which each thread uses the result to perform their

section of the trailing update. With this approach, the data in

each tile is accessed by only one thread, with the exception

of any accesses by the main thread when applying row pivots.

The data can therefore be kept resident in the CPU caches near

0 0.2 0.4 0.6 0.8 1

·105

0

50

100

150

200

250

300

350

400

Number of rows, M

F
A

C
T

P
er

fo
rm

an
ce

(G
F

L
O

P
S

)
FACT Multi-threading

1 Core

2 Cores

4 Cores

8 Cores

16 Cores

32 Cores

64 Cores

Fig. 5: Multi-threading performance test for FACT phase.

Performance in GFLOPS is measured when factoring an

M × NB matrix on a single process for NB = 512 and M

a range of multiples of NB. Different curves show different

numbers of CPU cores used in powers of 2 from 1 to 64.

the physical core to which that thread is bound. In addition,

using the 64-core AMD CPUs on Frontier the entirety of

the data accessed during the FACT phase typically remains

resident in the L3 cache.

To demonstrate the performance benefits of this multi-

threading strategy in the FACT phase, we show the results

of a performance test in Figure 5 on a single Frontier node

using BLIS v4.0 as the CPU BLAS library. The performance

of the FACT phase when factoring an M × NB matrix is

measured for NB = 512 and M taken to be various multiples

of NB. We run this test with a single process to eliminate

time which would be spent by the main thread determining

and exchanging pivots with MPI. The factorization algorithm

used is the recursive right-looking with two subdivisions in

the recursion and a base block size of 16. On the base

block, the factorization algorithm used is a right-looking

factorization. We execute the FACT computation across these

problem sizes using different numbers of CPU cores. From

the figure, we see that the performance of the FACT phase is

considerably improved through multi-threading and that using

large numbers of CPU cores benefits performance for even the

relatively small problem sizes.

B. CPU Core Time Sharing

With the multi-threading strategy for the FACT phase,

an important consideration is where to place CPU threads

to maximize the performance in each FACT computation.

Consider the example of the Frontier node architecture; as

there are eight GCDs present in the node, we launch eight MPI

processes and bind each process to the CCD that is nearest to

the GCD it will manage (c.f. the node topology diagram in

[18]). A natural choice then is to have each process create

seven additional OpenMP threads when it enters the FACT

phase, so that the process can leverage all eight CPU cores in

its CCD.

However, it is often possible for a process to utilize even

more CPU cores than would be available through a simple

partitioning of all available cores. Consider a 2D process grid

of P ×Q = 2 × 4 on the Frontier node architecture. At any

given iteration of the computation in HPL only two processes

will coordinate on computing the panel factorization while

the other six processes are waiting to receive the LBCAST.

If both processes performing the panel factorization each use

eight CPU cores while the remaining six MPI processes each

use a single CPU core, that leaves 42 idle CPU cores on

the socket during this iteration. As the benchmark proceeds

through iterations, the 16 total CPU cores being used during

each FACT phase will cycle between different CCDs, but we

will still always observe 42 total idle CPU cores in every

iteration. With this observation, we consider a generic way

to leverage all CPU cores in each HPL iteration by over-

subscribing OpenMP threads to physical CPU cores.

In the general case of launching a node-local P×Q process

grid to a node with C CPU cores, we bind each of the

processes to a distinct root core and consider the remaining

C̄ = C − PQ cores as a pool of resources. This pool is

partitioned into P non-overlapping groups, each with C̄

P
cores,

and each group is assigned to a distinct process row. Every

MPI rank in each process column then uses OpenMP bindings

to specify a total of T = 1 + C̄

P
OpenMP threads and binds

them to its root core and its process row’s partition of the

pool. In this way, every FACT phase will leverage a total of

PT = P + C̄ CPU cores on the node. In the extreme case

of a P × 1 local process grid on the node, this core binding

reduces to a simple partitioning of available CPU cores, as all

processes on the node must participate in the FACT phase

simultaneously. At the opposite extreme of a 1 × Q local

process grid on the node, the amount of CPU core sharing

is maximized since at most one process on the node will ever

be computing the FACT phase at any given time.

In rocHPL we have implemented a generic wrapper script

to compute these OpenMP bindings when launching the

benchmark. The CPU core time sharing, as well as the de-

composition of the global problem among the compute nodes,

uses input from the user which describes the local process grid

configuration desired on each node.

C. Split Update

Examination of the timeline view of execution in Figure

3 shows that the division of work between the host CPU

and accelerator allows us to effectively hide the FACT and

LBCAST phases behind the local UPDATE computation.

However, the communication time required to perform the RS

phase still leads to idle time on the accelerator. It is therefore

FACT LBCAST RS1

FACT

UPDATE2

MPI

CPU

Transfer

GPU

Look-ahead UPDATE

Row Scatter for RS2 & Look-ahead

UPDATE1

RS2

Row Scatter for RS1

Row Gather for RS2

Row Gather for RS1 & Look-ahead

RS - Look-ahead

Fig. 6: Diagram of the execution of a single iteration in HPL’s factorization with the split update formulation. When the

execution time of the UPDATE phase is large, we observe that computation on the GPU can effectively hide all other phases

in the HPL iteration.

advantageous to consider ways to hide this communication

time with local computation as well.

A simple way to accomplish this communication hiding

would be to divide the RS and UPDATE phases column-wise

into several smaller chunks and apply a pipe-lining strategy.

In this way, the local computation to perform the UPDATE

phase on a chunk can hide the communication time for the

RS phase for the next chunk. This strategy is what is applied

in Tan et al. [12] and Kim et al. [13], who both use a multi-

threaded implementation to coordinate the different chunks

and different phases. Such a multi-threaded strategy is costly in

our HPL implementation, however, as using multiple threads

to pipe-line different phases utilizes CPU cores that could

otherwise be used in FACT.

We opt instead for an alternative way to hide the commu-

nication time in the RS phase that requires no addition multi-

threading, which we call a ‘split update’. Let us denote by n

the number of columns in the local section of A on a process at

the start of the HPL benchmark. Note that due to the 2D block-

cyclic distribution of A, n will be the same for all processes

in each process column. Consider splitting the local matrix

column-wise into two pieces with n1 and n2 columns which

we call the ‘left’ and ‘right’ sections of the local A matrix,

respectively. We select n1 such that it is a multiple of NB.

We denote by UPDATE1 and UPDATE2, the application of the

UPDATE phase on the left and right sections, respectively, and

likewise for the RS phase. The idea of the split update is to

use the UPDATE computation on one section to hide the MPI

communication of the RS phase of the other section. The key

observation is that in order to do so, the needed rows for the

RS stage on one section must be gathered before the UPDATE

of the other section is started.

The split update formulation leads to a timeline of execution

that resembles the one shown in Figure 6. At the start of an

iteration, we assume that RS2 communication has already been

completed. That is, we assume that the rows in the right section

of the local A matrix have been communicated, though not

necessarily scattered back into A. We begin the iteration by

gathering the needed rows for communication from both the

look-ahead and left section and scattering the communicated

rows from the right section back into A. While the rows are

scattered, the communication of rows for only the look-ahead

is performed, and the received rows are written into the look-

ahead. The iteration then proceeds as it does without the split

update, with the UPDATE phase being performed on the look-

ahead and the result copied back to the host for the FACT

phase and subsequent LBCAST. While the transfers, FACT,

and LBCAST are executed, the UPDATE2 phase is computed

on the accelerator. However, since the rows of the left section

of A have already been gathered for communication, the RS1

communication can also be performed at this point and be

hidden by UPDATE2. Following UPDATE2, the rows for the

next iteration in the right section of A are gathered to prepare

for the RS2 communication. The UPDATE1 phase can then

be queued, first scattering the communicated rows back into

A, and the RS2 communication can be hidden by this local

computation. Note that if this process performed the FACT

phase, then the number of columns updated in UPDATE1 will

be n1 −NB.

Because of the staggered fashion in which the left and right

updates are performed, interleaved with their respective row

gathering and scattering, we must keep the number of columns

in the right section of the local A matrix, n2, on each process

fixed for each iteration while n1 decreases. Since we pick n1

to be a multiple of NB, eventually n1 will equal NB, and

the look-ahead will then eventually become the entirety of the

remaining left section. After this occurs, there is no longer

a split update formulation, and the iterations fall back to the

form shown in Figure 3 where the RS communication is not

hidden by UPDATE.

For the split update formulation to effectively hide all

communication time, the right section of the local A matrix

must be at least large enough to hide the data transfers to

and from the host, as well as the FACT, LBCAST, and RS1

phases. It is then natural to ask: if the UPDATE2 phase can

initially hide all time spent in these phases, will it continue

to hide them as the benchmark progresses? To determine

this, note that since n2 remains fixed while n1 decreases,

the UPDATE2 phase is always updating the same number of

columns of A in each iteration for as long as n1 remains non-

zero. In terms of computational cost, while n2 remains fixed

the UPDATE2 computation scales linearly with the number of

rows, denoted by m, in the local piece of A being updated on

this process. Likewise, the other phases hidden by UPDATE2,

except for the RS1 phase, share this linear scaling with m.

Indeed, the data transfers to/from the host, the FACT phase,

and the LBCAST phase each have a linear complexity in the

number of local rows of A being updated in each iteration.

The row-swapping communication in RS1, on the other hand,

has a complexity which is linear in n1, and is therefore

decreasing as n1 decreases. That rate is roughly the same rate

as the local number of rows of A decreases. We can therefore

conclude that if the UPDATE2 can initially hide each of these

components, it will continue to hide them up until the point

when the left section has decreased to zero columns and the

RS2 communication can no longer be hidden. In practice, we

have observed that this split update formulation is able to hide

all MPI communication by UPDATE phases for approximately

75% of the execution time of the HPL benchmark on a single

Frontier node.

Since it is crucial that n2 be chosen only large enough to

hide the FACT, LBCAST, and RS1 phases, its selection at the

beginning of the benchmark is a key consideration in the split

update formulation. While some performance models could

be used to estimate the optimal size of n2, we instead allow

the user to input a ‘split fraction’ parameter to rocHPL to

indicate what percentage of columns should be in the right

section of A and leave this input as a tuning parameter. For

HPL runs on a single Frontier node, we typically find that

splitting the local A matrix in half between the left and right

sections works optimally.

IV. PERFORMANCE RESULTS

In this section we present some performance results of the

rocHPL benchmark on a single node, and scaled to multiple

nodes, of the Crusher system at the Oak Ridge Leadership

Compute Facility (OLCF). Crusher is a Frontier early access

cluster and therefore shares the same node architecture as

Frontier. Crusher is an HPE Cray EX supercomputer system

with each node consisting of a single socket optimized 3rd

Gen EPYC 64 core processor, four AMD Instinct MI250X

accelerators, and four HPE Slingshot 200Gbps network inter-

faces, each directly attached to a distinct MI250X GPU. For

all performance results below, we use GCC v11.2.0 as our

C++ compiler, ROCm v5.4.0 to compile HIP kernels, and use

the rocBLAS v2.46 GPU BLAS library distributed with ROCm

v5.4.0. For the CPU BLAS library, we use BLIS v4.0. Finally,

we use Cray-MPICH v8.1.17 as the MPI implementation.

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration

T
im

e
(s

)

Iteration Timing

Iteration Time

GPU Active Time

Transfer Time

MPI Time

FACT Time

Fig. 7: Timing breakdown of each iteration in a run of the

HPL benchmark on a single node of Crusher. The black line

shows the total time at each iteration and the green line shows

the time the GPU was active during the iteration. The stacked

areas of red, blue, and yellow show the FACT computation

time, the MPI communication time, and the host-device data

transfer time at each iteration, respectively.

A. Single Node Performance

Beginning with a single node run on Crusher, we execute

the rocHPL benchmark by launching eight processes in a

P ×Q = 4× 2 process grid to a single node. We use a global

problem size of N = 256, 000 which, combined with neces-

sary workspace buffers, effectively fills the HBM capacity of

each of the four MI250X GPUs on the node. As is typical

of HPL implementations, the choice of blocking factor NB is

an important balance of computation and communication per-

formance. The block size NB should be chosen at least large

enough that the large DGEMM computations reach a high

percentage of peak performance on the device, while choosing

NB to be as small as possible allows for maximal overlap

of communication and computation in each iteration. For the

Frontier node architecture, we typically choose NB = 512
to strike this balance. At NB = 512 the DGEMMs required

in HPL typically achieve 49 TFLOPS of performance on

each MI250X GPU using the highly tuned DGEMM kernels

available in rocBLAS. With this NB value, we also utilize

a 50-50 left-right split in the split update formulation to hide

MPI communication for row-swapping. With these parameters,

the single node execution of the rocHPL benchmark on

Crusher achieves on average 153 TFLOPS of performance

overall.

We show in Figure 7 the timing breakdown of each iteration

in the single node run of the rocHPL benchmark. For each

iteration, the process which owns the current diagonal panel

records several timers. We record the overall iteration time

along with several other components, namely: the total time

the GPU spent actively computing in this iteration, the total

time spent sending data to and from the host, the total

time spent in MPI communication, and the total time spent

computing the FACT phase on the CPU. We plot both the

per-iteration time along with the total GPU active time in this

figure. The remaining three timers are shown in the figure as

stacked lines to show the critical path of execution near the

end of the benchmark.

From the behavior of the per-iteration time in Figure 7 we

see two distinct regimes during the HPL benchmark execution.

At the beginning of the benchmark, the per-iteration time

precisely corresponds to the total GPU time in each itera-

tion. This demonstrates that all other phases, including panel

factorization and all MPI communication, are entirely hidden

by GPU actively. Furthermore, 95% of the GPU active time in

each iteration is typically spent inside DGEMM computations.

We therefore achieve a high percentage of the achievable

computational throughput of the node in this regime. Indeed,

as each large DGEMM computation achieves 49 TFLOPS of

performance, we have an absolute limit of 4 × 49 = 196
TFLOPS of computational throughput in this regime. The

rocHPL benchmark prints a variety of performance metrics

during execution, from which we typically see the running

throughput in this regime achieve 90% of this limit, or 175

TFLOPS.

Around iteration 250, the left section in the split update is

too small to adequately hide the RS2 communication and the

per-iteration time can be seen to be slightly above the GPU

active time. Soon after this, the left section of the split update

becomes zero, and the right section shrinks until GPU activity

is no longer on the critical path at all. From the stacked line

plots of the host-device transfer time, MPI communication

time, and FACT computation time in Figure 7 we see that

these combined phases become the critical path of execution

for the remainder of the benchmark execution. It is in this

tail section that the running computational throughput of the

benchmark decreases substantially to its final value, as the time

per iteration in this regime is no longer compute-bound, but

rather latency and communication bound. Nevertheless, using

the optimization described above, the HPL implementation

in rocHPL still achieves an overall performance of 78% of

the achievable NB = 512 DGEMM computation rate of 49

TFLOPS per MI250X on a single Crusher node.

B. Multi-node Scaling

When weak scaled to multiple nodes, we expect the per-

iteration time breakdown of the HPL run to follow a similar

trend to that shown in Figure 7, albeit with more total iterations

as the node count grows. However, while the computational

work in each GPU and CPU socket remains the same as the

problem is scaled, the MPI communication time is expected

to grow compared to the single node results. This is due to

two factors. First, the inter-node bandwidth uses the network

100 101 102
102

103

104

Number of Nodes

H
P

L
S

co
re

(T
F

L
O

P
S

)

rocHPL Frontier Scaling

Ideal Scaling

Measured Performance

Fig. 8: Measured HPL score on multiple nodes of Crusher

using the rocHPL benchmark. Benchmark is executed on

1, 2, 4, 8, . . . , 128 nodes.

interfaces which have less peak bandwidth than the Infinity

Fabric links between the GCDs on a single node. This affects

bandwidth-sensitive communication operations like those in

the LBCAST and RS phases. Second, the latency cost of

communications is expected to increase as the node count

grows. This is important in latency-sensitive communications

like the individual row pivots in the FACT phase, which are

essentially MPI collectives across an entire process column.

We show in Figure 8 the performance of the rocHPL

benchmark measured on 1, 2, 4, 8, . . . , 128 nodes of Crusher.

We also show the ideal perfect weak scaling from the single

node performance. For each node count, we keep the P ×Q

process grid square, or a grid with a 2:1 ratio of P to Q. For

the node-local process grid, which determines the amount of

CPU core time sharing that we can perform, we maximize

the number of process columns on-node. That is, once Q is

at least 8, we select the node-local process grid to be 1 × 8.

We scale the global problem size, N , to again fill the GPUs’

HBM capacity, and hold NB fixed at 512, and the left-right

split at 50%, for all tests. We see in the figure that the rocHPL

benchmark scales very well to multiple nodes, achieving over

90% weak-scaling efficiency from the single node score of

153 TFLOPS to the score of 17.75 PFLOPS on 128 nodes.

Despite the relatively small node count for this test, this score

would rank 38th on the November 2022 Top500 list.

V. DISCUSSION

We have presented rocHPL, AMD’s open-source imple-

mentation of the HPL benchmark targeting accelerated node

architectures designed for exascale systems. As with other

recent works on leveraging modern accelerators in HPL,

rocHPL holds the entire problem in the accelerators’ high-

bandwidth memory and moves panels to the CPU only to

perform the small latency-sensitive panel factorization. We

detailed some performance optimizations used in rocHPL

including a multi-threading strategy for improving panel fac-

torization performance on the CPU, a method for time-sharing

CPU core resources between different processes on the same

node, and a split update strategy that can effectively hide

communication time required for performing row-pivoting.

Detailed timing of the execution of rocHPL on a single

node of the Crusher system shows that our optimizations are

able to entirely hide MPI communications and CPU work

behind GPU compute activity for the first 50% of the iterations

in the benchmark. This, combined with the high performance

DGEMM routines in rocBLAS, allows the benchmark to

achieve a high percentage of the effective DGEMM computa-

tional throughput on each accelerator. Towards the end of the

benchmark, the performance of MPI communications and the

FACT phase on the CPU become the critical components. Our

multi-threading strategy for the FACT phase helps to reduce

the time spent in this regime.

The scaling performance for this HPL implementation is

observed to be over 90% efficient when weak scaling to

from a single Crusher node to 128 nodes. Full scale runs on

machines such as Frontier of course require efficient scaling

far beyond 128 nodes. For these large-scale runs, however,

careful consideration of the performance of the MPI routines

in HPL is required. It is likely that specialized communication

algorithms, which optimize for the system’s network topology,

would be required to maintain efficient scaling, which is a

topic outside the scope of this paper. Such optimizations are

not present in our general implementations of these routines in

rocHPL, but the code is designed to be modular so that users

can easily implement their own custom routines and further

optimize for their target systems/architectures.

The steady progression of generational leaps in computa-

tional throughput on accelerated node architectures continues

to pose a challenge for benchmarks such as HPL which mix

compute, network bandwidth, and latency sensitive phases.

As the improvement of computational throughput outpaces

inter-process communication performance, the performance

bottlenecks shift away from being bound by computation rate

and lowers overall performance, as measured by efficiency

of peak computational throughput. Future works will have

to address such shifts and carefully consider how accelera-

tors can or cannot be further leveraged in the latency- and

communication-dominated tail regime of the HPL benchmark.

ACKNOWLEDGMENT

The authors gratefully acknowledge the performance team

at Hewlett Packard Enterprise and, in particular, Steve Whalen,

Norm Troullier, and John Baron for their frequent discussions

and insights. We also gratefully acknowledge the rocBLAS

library team at AMD: Alex Brown, Andrew Chapman, Henry

Ho, Raman Jana, Carson, Liao, Alex Liu, Wasiq Mahmood,

Daine Mcniven, Koji Nakajima, Braga Natarajan, Benjamin

Ulmer, Yoichi Yoshida, and Torre Zuk for all their work

optimizing crucial BLAS routines on AMD Instinct GPUs.

This research used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S. Depart-

ment of Energy under Contract No. DE-AC05-00OR22725.

AMD, the AMD Arrow logo, Instinct, EPYC, and combi-

nations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their

respective companies.

REFERENCES

[1] J. J. Dongarra, P. Luszczek, and A. Petitet, “The

LINPACK benchmark: Past, present and future,” Con-

currency and Computation: practice and experience,

vol. 15, no. 9, pp. 803–820, 2003.

[2] Top500.org. (2022). “June Top500 list,” [Online]. Avail-

able: https://www.top500.org/lists/top500/2022/06/

(visited on 06/01/2022).

[3] [SW REL.] N. Chalmers, rocHPL - High Performance

Linpack for Next-Generation AMD HPC Accelerators

version 6.0, 2022, Advanced Micro Devices Inc., URL:

https://github.com/ROCmSoftwarePlatform/rocHPL.

[4] T. Endo and S. Matsuoka, “Massive supercomputing

coping with heterogeneity of modern accelerators,” in

2008 IEEE International Symposium on Parallel and

Distributed Processing, IEEE, 2008, pp. 1–10.

[5] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton,

“Petascale computing with accelerators,” ACM Sigplan

Notices, vol. 44, no. 4, pp. 241–250, 2009.

[6] M. Fatica, “Accelerating Linpack with CUDA on het-

erogenous clusters,” in Proceedings of 2nd Workshop

on General Purpose Processing on Graphics Processing

Units, 2009, pp. 46–51.

[7] F. Wang, C.-Q. Yang, Y.-F. Du, J. Chen, H.-Z. Yi,

and W.-X. Xu, “Optimizing Linpack benchmark on

GPU-accelerated petascale supercomputer,” Journal of

Computer Science and Technology, vol. 26, no. 5,

pp. 854–865, 2011.

[8] D. Rohr, M. Bach, M. Kretz, and V. Lindenstruth,

“Multi-GPU DGEMM and high performance Lin-

pack on highly energy-efficient clusters,” IEEE Micro,

vol. 31, no. 5, pp. 18–27, 2011.

[9] G. Jo, J. Nah, J. Lee, J. Kim, and J. Lee, “Accelerating

LINPACK with MPI-OpenCL on clusters of multi-GPU

nodes,” IEEE Transactions on Parallel and Distributed

Systems, vol. 26, no. 7, pp. 1814–1825, 2014.

[10] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A.

Kobotov, R. Dubtsov, G. Henry, A. G. Shet, G. Chrysos,

and P. Dubey, “Design and implementation of the

Linpack benchmark for single and multi-node systems

based on Intel® Xeon Phi coprocessor,” in 2013 IEEE

27th International Symposium on Parallel and Dis-

tributed Processing, IEEE, 2013, pp. 126–137.

https://www.top500.org/lists/top500/2022/06/
https://github.com/ROCmSoftwarePlatform/rocHPL

[11] T. Endo, S. Matsuoka, A. Nukada, and N. Maruyama,

“Linpack evaluation on a supercomputer with heteroge-

neous accelerators,” in 2010 IEEE International Sym-

posium on Parallel & Distributed Processing (IPDPS),

IEEE, 2010, pp. 1–8.

[12] G. Tan, C. Shui, Y. Wang, X. Yu, and Y. Yan, “Optimiz-

ing the LINPACK algorithm for large-scale PCIe-based

CPU-GPU heterogeneous systems,” IEEE Transactions

on Parallel and Distributed Systems, vol. 32, no. 9,

pp. 2367–2380, 2021.

[13] J. Kim, H. Kwon, J. Kang, J. Park, S. Lee, and J. Lee,

“SnuHPL: High performance LINPACK for heteroge-

neous GPUs,” in Proceedings of the 36th ACM Interna-

tional Conference on Supercomputing, 2022, pp. 1–12.

[14] [SW REL.] A. Petitet, R. C. Whaley, J. Dongarra,

and A. Cleary, HPL - A Portable Implementation

of the High-Performance Linpack Benchmark

for Distributed-Memory Computers version 2.3,

2018, Innovative Compute Laboratory, URL:

https://netlib.org/benchmark/hpl/.

[15] A. M. Castaldo and R. C. Whaley, “Scaling LAPACK

panel operations using parallel cache assignment,” ACM

Sigplan Notices, vol. 45, no. 5, pp. 223–232, 2010.

[16] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek,

“Achieving numerical accuracy and high performance

using recursive tile LU factorization with partial piv-

oting,” Concurrency and Computation: Practice and

Experience, vol. 26, no. 7, pp. 1408–1431, 2014.

[17] J. Kurzak, M. Gates, A. Charara, A. YarKhan, I.

Yamazaki, and J. Dongarra, “Linear systems solvers

for distributed-memory machines with GPU acceler-

ators,” in Euro-Par 2019: Parallel Processing: 25th

International Conference on Parallel and Distributed

Computing, Göttingen, Germany, August 26–30, 2019,

Proceedings 25, Springer, 2019, pp. 495–506.

[18] Oak Ridge Leadership Computing Facility. (2023).

“Crusher Quick-Start Guide,” [Online]. Available:

https://docs.olcf.ornl.gov/systems/crusher quick start guide.html

(visited on 03/01/2023).

https://netlib.org/benchmark/hpl/
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html

	I Introduction
	II HPL Overview
	III rocHPL Design
	III-A Multi-threaded Panel Factorization
	III-B CPU Core Time Sharing
	III-C Split Update

	IV Performance Results
	IV-A Single Node Performance
	IV-B Multi-node Scaling

	V Discussion

