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ABSTRACT
Network Function Virtualization (NFV) platforms consume signif-
icant energy, introducing high operational costs in edge and data
centers. This paper presents a novel framework called GreenNFV
that optimizes resource usage for network function chains using
deep reinforcement learning. GreenNFV optimizes resource param-
eters such as CPU sharing ratio, CPU frequency scaling, last-level
cache (LLC) allocation, DMA buffer size, and packet batch size.
GreenNFV learns the resource scheduling model from the bench-
mark experiments and takes Service Level Agreements (SLAs) into
account to optimize resource usage models based on the different
throughput and energy consumption requirements. Our evaluation
shows that GreenNFV models achieve high transfer throughput and
low energy consumption while satisfying various SLA constraints.
Specifically, GreenNFV with Throughput SLA can achieve 4.4×
higher throughput and 1.5× better energy efficiency over the base-
line settings, whereas GreenNFV with Energy SLA can achieve 3×
higher throughput while reducing energy consumption by 50%.

KEYWORDS
Network function virtualization, energy efficiency, performance,
service level agreements, deep reinforcement learning.

1 INTRODUCTION
Network Function Virtualization (NFV) virtually decouples network
functions (e.g., firewalls, routers, tunneling gateways, CDNs) from
the physical devices, enabling the deployment of new network ser-
vices with increased agility and faster time-to-value. NFVs bring
the benefits of cloud computing and virtualization to the network-
ing domain, facilitating virtualized network functions (VNFs) to
be implemented in software and run on any physical server [19].
Telecommunication service providers (TSPs) prefer NFV over pur-
chasing, storing, and operating physical equipment since it not only
reduces their capital and operating expenditures, but also provides
them with more flexibility to open up their network capabilities and
services to users, and the ability to deploy and support new network
services faster and cheaper [30]. Since energy bills represent more
than 10% of TSPs’ operating expenses [24], reducing energy con-
sumption while sustaining throughput is one of the strong selling
points of NFV as well as an open area of research for improvement.

The NFV platforms mainly focus on high throughput and low
latency, as the virtualization overhead of VNFs has been the primary
deterrent to its adoption in lieu of hardware-based middleboxes.
VNFs using Intel Data Plane Development Kit (DPDK) can achieve
more than 100 Gbps throughput at the cost of high CPU power [15].
The poll mode driver in DPDK uses complete cycles of dedicated
cores to maximize the packet processing throughput. Despite the
line-rate throughput in DPDK, it significantly adds up high energy
consumption to the data center network. There is no systematic
control to reduce the energy consumption in these packages. More-
over, existing work in this area fails to achieve high data transfer
throughput and high energy efficiency simultaneously.

In this paper, we present a novel resource scheduling framework,
GreenNFV, to achieve energy-efficient network function virtual-
ization under various Service Level Agreement (SLA) constraints.
GreenNFV uses Deep Reinforcement Learning and allows a cus-
tomizable energy efficiency rate for the target data transfer through-
put. GreenNFV makes it easy to dynamically control energy con-
sumption rate given the target transfer throughput through resource
controls such as CPU allocation, CPU frequency scaling, last-level
cache (LLC) allocation, DMA buffer size, and packet batch size.

GreenNFV harmonically controls hardware (HW) components.
Statistical analysis of the network flows enables GreenNFV to iden-
tify packet arrival rates and traffic patterns. The packet arrival rate
decides the polling frequency to match enough resources to achieve
the target performance.

Compute resources are scheduled to those network functions
(NFs) according to network load using the HW control knobs.

The main contributions of this paper include:

(1) Introduction of GreenNFV, a highly effective resource sched-
uling framework for energy-efficient network function vir-
tualization under different SLA constraints;

(2) Translation of resource scheduling problem into deep deter-
ministic policy gradient (DDPG) algorithm, a value-based
actor-critic reinforcement learning algorithm, which is very
effective for continuous (real-valued) and high-dimensional
action space;

(3) Presentation of three novel resource optimization models
based on different energy-aware service level agreements
(SLAs), which enable the TSPs to minimize energy con-
sumption without compromising the performance guaran-
tees given to the customers; and
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(4) Development of a distributed learning model by extending
the concept of prioritized experience replay to learn from
multiple workers simultaneously.

We have implemented GreenNFV on top of the NetVM plat-
form [17] and devised a mix of callback and polling to better control
the network scheduling. The learned models are validated with var-
ious SLA constraints (such as Maximum Throughput, Minimum
Energy, and Energy Efficiency). Our evaluation shows that Green-
NFV can achieve both high throughput and low energy at the same
time while meeting the SLA constraints. GreenNFV with Maxi-
mum Throughput SLA can achieve 4.4× throughput improvement
over the baseline (without any optimization) while consuming 33%
less energy. GreenNFV with Minimum Energy SLA can achieve
3× throughput improvement of the baseline while reducing energy
consumption by half.

The rest of the paper is organized as follows: §2 provides back-
ground information and discusses the related work in this area; §3
presents our benchmark study on the individual impact of each re-
source on system performance and energy consumption; §4 presents
GreenNFV model design and implementation considerations; §5
elaborates the evaluation of GreenNFV; and §6 concludes the paper
with a discussion on future work.

2 BACKGROUND AND RELATED WORK
VNF placement for improved resource utilization is a well-studied
problem in the literature. The goal of efficient VNF placement is to
minimize the inter-core or processor communication, thus reducing
the cache eviction and memory accesses. In particular, as service
chains process the same packets, the placement can efficiently group
these chains in the same core and processor to achieve higher per-
formance and lower energy consumption. The packets can also be
processed in parallel and share the common functionalities in the
protocol level [27]. A substantial body of literature delves into the
optimization of end-to-end data transfer throughput, encompassing
the tuning of various application-layer and kernel-layer parame-
ters [6–8, 11, 21, 22]. However, this body of work has not addressed
this optimization within the context of VNFs.

Kulkarni et al. [23] address the placement of middleboxes and
VNFs for a performance target or efficient resource usage. Bari et
al. [9] present an Integer Linear Programming (ILP) model for VNF
orchestration. Marotta et al. [29] propose mixed-integer optimiza-
tion with online heuristics for the VNF placement problem under
resource demand uncertainty. Kaur et al. [20] leverage evolutionary
optimization algorithms to solve the VNF deployment problem in a
multi-domain software-defined networking (SDN) setup. Wang et
al. [39] propose a model to jointly optimize NFV resource allocation
in three phases: virtual network functions (VNFs) chain composition,
VNFs forwarding graph embedding, and VNFs scheduling. They
apply a general cost model to consider network costs and service per-
formance. Qu et al. [34] consider VNF transmission and processing
delays and formulate the joint problem of VNF scheduling and traffic
steering as a mixed-integer linear program (MILP) to minimize the
makespan/latency of the overall VNFs’ schedule. These works do
not consider the energy consumption aspect of the VNF placement
problem. Khoury et al. [12] formulate an ILP problem to sched-
ule network flows into virtual network functions so that the model

can reduce power consumption. Al-Quzweeni et al. [5] employ the
MILP optimization model to minimize total power consumption in
the context of 5G networks by optimizing the VM location and VM
server utilization. However, these models only work with the offline
version of the problem and fail to adapt to the dynamically changing
network conditions.

Numerous works have been done to address the NFV resource al-
location problem. Chen [10] studies NFV resource allocation in edge
computing environments using a genetic algorithm-based approach.
However, it comes with a assumption that the energy consumption
can be measured before placement. In many cases, it is not realistic.
Sun et al. [37] propose an energy-aware routing algorithm that con-
siders network function chains’ traffic requirements and bandwidth
consumption to minimize server energy consumption. Marotta and
Kassler [28] present a joint resource and flow routing assignment
problem for VNF placement to minimize the power consumption
of the servers and switches needed to deploy the overall virtualized
infrastructure and the routing graph. Kar et al. [19] design a dy-
namic energy-saving model with NFV technology using an M/M/c
queuing network with the minimum capacity policy where a certain
amount of load is required to start the machine, which increases the
utilization and avoids frequent changes of the device states. They
formulate an energy-cost optimization problem with capacity and
delay as constraints and propose a heuristic solution for the dynamic
placement of VNF chains to solve this NP-hard problem. Zhang
et al. [42] propose a polynomial near-optimal algorithm based on
the Markov approximation technique to effectively place VNFs at
different locations and steer service function chain requests while
minimizing energy consumption. Iqbal et al. [18] propose a scheme
that uses P and C-state of the processor to reduce both active and
idle power consumption. They used ANN for traffic prediction. Sun
et al. [37] studies the online deployment of the service function
chain and proposed energy-aware routing and adaptive delay shut-
down mechanism. They used a simulated environment to verify the
approaches. Pei et al. [33] proposed a VNF placement algorithm
based on Double Deep Q Network and threshold-based policy. The
solution considers the transfer throughput, end-to-end delay, running
time, and load balancing.

GreenNFV considers a range of system-level control knobs (e.g.,
number of CPU cores, CPU frequency scaling, last-level-cache
(LLC) allocation, DMA buffer size, and packet batch size). It also
consolidates the VNFs based on the flow path and minimizes the
cache eviction, reducing memory access and increasing CPU uti-
lization. The resource allocation for VNFs decides performance and
energy efficiency. CPU allocation is controlled by frequency scaling
and turning off idle CPU cores. DMA buffer size also plays a vital
role in achieving high performance in the NFV environment, as it
makes the best use of Intel Data Direct I/O to avoid cache evic-
tion [38]. Cache Allocation Technology [1] provides an OS-level
control of partitioning the LLC, where LLC is shared among multi-
ple cores and renders fewer memory accesses, higher performance,
and lower energy consumption. GreenNFV essentially learns how to
schedule these hardware resources and applies new configurations in
run-time for service chains. Such ability enables the system to adapt
when network conditions change and ensures high packet processing
throughput and energy efficiency.
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Figure 1: Micro-benchmarking of LLC size: effect of LLC on NF throughput and energy consumption.

3 RESOURCE IMPACT ANALYSIS
NFs run on a virtualized machine, sharing hardware resources such
as CPU cores, cache, memory, and network queues. The achievable
throughput of NFs could differ depending on how the resources are
configured for NFs.

GreenNFV leverages a mix of controllable resources to optimize
resource usage towards throughput and energy efficiency.
Last-level cache (LLC) is an essential element for high-speed net-
work performance [17, 38]. NFs in a service chain access the same
packet, and caching the packet suppresses memory access. Intel
CAT can provide finer-grained control over the shared LLC. As an
advanced cache system, a modern Intel processor has Data Direct
I/O (DDIO) technology [4], 10% of the LLC is allocated for DDIO
and used for packet processing only. In legacy systems, NIC di-
rectly writes packets into the main memory, and then the CPU reads
packets from the main memory to LLC. Instead of such direct imple-
mentation, NIC can write the packet directly to the LLC. We perform
micro-benchmarking on two network function chains named - C1
and C2. The input flows in these function chains are 13 Mpps and 1
Mpps, respectively. We schedule different portions of LLC to these
chains and record their impact. Assume the tuple, (𝑥,𝑦)𝑙𝑙𝑐 , where, 𝑥
and 𝑦 are LLC allocation for C1 and C2 respectively, we consider 4
allocations [(90%,10%), (70%,30%), (40%,60%), (20%,80%)] and
record each throughput and energy consumption. Figure 1(a) shows
the cache miss rates, and Figure 1(b) shows the achieved throughput
of the function chains. The (90%,10%) allocation is reasonable since
it allocates LLC proportional to the input flows. The performance
of C1 starts dropping as we reduce the LLC allocation for C1 and
increase it for C2. Figure 1(c) shows the energy consumption of the
same cases. We see that decreasing the LLC for C1 can increase
energy consumption significantly. This is due to the frequent cache
misses in small LLC sizes. Therefore, optimal LLC allocation to
many different network function chains can reduce packet processing
energy consumption.
Dynamic frequency scaling of CPUs is one of the major control
knobs in energy efficiency. Low frequency can hamper the through-
put, while a high value can consume extra energy. We performed
micro-benchmarking on the NFV system with different levels of
CPU frequencies. We used an Intel Xeon E5 (V4) Processor with
64 GB main memory and an NF chain of three NFs. The line rate
traffic with a large packet size (1518 Bytes) is fed into the function
chain. Figure 2 shows the impact of CPU frequency scaling on the
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Figure 2: Micro-benchmarking of CPU frequencies: effect of CPU fre-
quencies on NF throughput and energy efficiency.

throughput of the network packet processing. The packet processing
rate and energy consumption increase when we increase the CPU
frequencies. However, the growth is non-linear. The result varies
when different network chains with different NFs are used.
Batching enables the packets to be processed in groups, which
provides improved cache locality to the packets. NFs are instructions
that need to be performed over many subsequent packets. Batching
the packets provides faster access to the packets. Fetching the packets
from the main memory is expensive. Instead of fetching each packet
for processing, a batch of packets can be fetched at the same time
as fetching a single packet. However, the size is crucial because
excessive batching can overload the LLC and increase the miss
rate. Figure 3 shows the impact of batch size on throughput, energy
consumption, and cache miss rates. The increase in batch size can
increase the packet processing speed of the NF chain, reducing
the cache miss rate to a certain level. Afterward, the throughput
decreases, and the cache miss rate and energy consumption increase.
The optimal level of batch size also depends on the network function
and the chain.
DMA buffer size needs to align with LLC because the large DMA
buffer size can overflow LLC size, so the LLC miss rate can increase
due to cache eviction. Figure 4 shows a network function’s packet
processing speed and energy consumption and compares the result
of processing two flows with different packet sizes. We can see that
the DMA buffer size can control the packet processing speed and
the energy consumption of the NFs. DMA buffer size can steadily
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Figure 3: Micro-benchmarking of batching size: effect of batch size on NF throughput and energy efficiency.
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Figure 4: Micro-benchmarking of DMA buffer size: effect of DMA buffer size on NF throughput and energy efficiency.

increase the performance up to a certain level. During this time, en-
ergy consumption tends to decrease. With increased throughput, the
system can process quickly, reducing the idle energy consumption
of the system.

4 GREENNFV DESIGN
This section discusses the design of the models that GreenNFV uses
in its architecture.

4.1 Design Considerations
Controlling and distributing the resources optimally among NF func-
tions are the main objectives of GreenNFV. For example, when
CPU cores are shared, GreenNFV needs to appropriately distribute
the CPU time and control the CPU frequency level. As discussed
in the previous section, in addition to CPU, GreenNFV also con-
siders LLC allocation, network buffer size, packet batch size, and
packet prefetching. GreenNFV aims to provide the optimal amount
of resources to the NF chains to achieve the most efficient resource
utilization according to the energy constraints. Different chains may
require different Quality of Service (QoS). From a telecommunica-
tions service provider’s standpoint, it is essential to support each
scenario and establish a Service Layer Agreement (SLA) with the
client for each of the chains. GreenNFV considers the following
SLAs.
Energy SLA: GreenNFV optimizes resources for specific energy
constraints. Then it tries to optimize performance under the defined
energy constraint. This scenario is ideal for chains that have specific
energy budgets while maximizing the throughput, 𝑇𝑓𝑖 for each flow,
𝑓𝑖 . Equation 1 shows such optimization.

argmax
{𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 }

𝜓𝑇 =

𝑛∑︁
𝑖=1

𝑇𝑓𝑖

subject to. 𝐸 ≤ E𝑆𝐿𝐴
(1)

Throughput SLA: Some flows may require strict throughput guar-
antees. Hence, the administrators may want to guarantee a certain
throughput level as defined in the SLA while trying to minimize
energy consumption. Equation 2 shows such optimization.

argmin
{𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 }

𝜓𝐸 =

𝑛∑︁
𝑖=1

𝐸𝑓𝑖

subject to. 𝑇 ≥ T𝑆𝐿𝐴
(2)

Here, 𝐸𝑓 𝑖 is the energy consumption of each NF in the NF chain.

Energy Efficiency SLA: This SLA strictly aims to optimize the
energy efficiency of the system. We define energy efficiency as the
number of bytes transferred in unit time using a unit amount of
energy. Therefore, when a system processes 𝐵 bytes of packets in 𝑡𝑝
time and spends 𝐸 amount of energy, then the goal of the SLA is to
increase the energy efficiency, 𝜆 of the system that is explained as,

argmax
{𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 }

𝜆 =
𝐵

𝐸 × 𝑡𝑝
=
𝑇

𝐸
, (3)

where 𝑇 is the throughput of the system.
In this work, we used a nonlinear power model [14] to estimate

the power consumption of the CPU as,

𝑃𝑢 = (𝑃𝑚𝑎𝑥 − 𝑃𝑖𝑑𝑙𝑒 ) (2𝑢 − 𝑢ℎ) + 𝑃𝑖𝑑𝑙𝑒 (4)

Where 𝑃𝑖𝑑𝑙𝑒 and 𝑃𝑚𝑎𝑥 are the average power consumption of the
idle server and the average power consumption of the fully utilized
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server. 𝑢 is the CPU utilization and ℎ is the calibration parameter.
We used the Yokogawa WT210 power meter to measure the actual
power to validate the model and compute ℎ.

4.2 Baseline Heuristic Approach
Initially, we propose a baseline approach for compute-resource
scheduling in the NFV environment. The steps are listed in Al-
gorithm 1. The algorithm initially assigns a fixed number of cores to
the NFs with a predefined frequency value. Then it computes LLC
size, DMA buffer size, and the batch size, as shown in Line (4-6)
of Algorithm 1. Then it periodically checks the constraint and dy-
namically updates the number of cores, core frequencies, and batch
size.

Algorithm 1: Baseline Heuristics Algorithm

1 Allocate cores and frequencies evenly to each NF
2 cores← 1
3 core_frequency [1:cores ]← median(core_frequency)
4 batch_size← 2
5 LLC_size← proportion to flow rate

6 DMA_buffer_size← LLC_size
packet_size × batch_size

7 Periodically - check the throughput and energy consumption
// 𝜆 is energy efficiency

8 𝜆← throughput
energy_consumed

9 if 𝜆 < threshold1 then
10 Select nearest smaller core_frequency that is available
11 else
12 Select nearest larger core_frequency that is available
13 if 𝜆 < threshold2 then
14 batch_size← batch_size + 1
15 else
16 batch_size← batch_size– 1

This simplistic algorithm has many issues that can be addressed
efficiently. There is a diverse range of network functions - CPU in-
tensive, memory-intensive, lightweight process (e.g., NAT, firewall),
and more heavyweight (e.g., Evolved Packet Core). These NFs can
have distinct resource requirements. Moreover, network flows can
be highly dynamic. Resource allocation is also highly dependent on
flow characteristics. All these resources have a non-linear effect on
each other. Therefore, such a simplistic resource allocation is ineffi-
cient in scheduling resources. A learning-based model can achieve
significant improvement over the heuristic-based approach.

4.3 GreenNFV Deep Learning Model
The heuristic approach works well for some predefined scenarios;

However, this approach cannot adapt to the dynamic nature and
varying requirements of the different kinds of flows. To provide
fine-tuned control over performance and energy consumption, we
need a model that can fine-tune resources under various known
and unknown scenarios. It needs to consider network condition
changes over time and should have the ability to adapt new parameter
configurations in real time. Therefore, the most suitable solution for
this problem is a class of algorithms that can train from historical

data and perform dynamic resource allocation based on the nature
of the flow and available resources. In particular, for our problem
in hand, GreenNFV considers Reinforcement Learning (RL), a sub-
field of machine learning.

RL algorithms learn from the environment and get experienced
over time through learning. It can adapt its decisions based on chang-
ing environmental conditions. For this problem, an RL-based solu-
tion is most suitable to control the system parameters to achieve the
performance and energy requirements simultaneously while satisfy-
ing the SLA constraints. Q Learning [40] is a basic RL approach. It
uses a (state, action) table of Q values to determine the best action.
The algorithm takes discrete values of states and actions. Any con-
tinuous value state or action needs to be appropriately discretized.
The state space is the set of all the flows along with their through-
put, energy consumption, flow completion time, and flow size. The
problem arises when we try to discretize the action and state spaces.
The number of discrete actions grows exponentially with respect to
the discretization level. For example, we have five different actions -
number of cores, LLC size, DMA buffer size, batch size, and CPU
core frequencies. When we choose 𝑘 discrete levels for each action,
the number of actions becomes 𝑂 (𝑘5). For 𝑛 number of flows, the
action space becomes 𝑂 (𝑛 × 𝑘5). Q-learning requires many entries
in the Q-table, and it becomes highly inefficient to maintain such a
large table.

In GreenNFV, we model the achievable NF transfer throughput
and energy consumption with deep neural networks (DNNs) and
use a distributed training framework to ensure efficient comput-
ing time for analyzing large historical logs. An effective algorithm
used to train DNNs in a distributed setting is Distributed Deep Q-
Learning [32]. Deep Q-networks (DQNs) [31] are convolutional
neural networks trained with a variant of Q-learning [40]. DQNs do
not require a large Q-table. Instead, they use Deep Learning (DL) to
learn the table themselves. DQN has proven very efficient for some
application areas, such as Arcade gaming. DQN introduced several
techniques to stabilize learning, such as experience replay, target
network, and clipping rewards. However, DQN cannot process a
high number of actions in continuous space. Because of the DNN,
the output layer can only handle a handful of actions.

To make the learning process efficient and robust among many
machines, we need a distributed learning framework to learn from
machines in parallel. It also needs to process ample state and action
space efficiently. For this reason, we choose Deep Deterministic Pol-
icy Gradient (DDPG) [25] that can process the continuous state and
action space. DDPG is very effective for continuous (real-valued)
and high-dimensional action spaces. DDPG uses a stochastic behav-
ior policy for search space exploration but estimates a deterministic
target policy that is much easier to learn. This provides us with both
highly accurate and fast-converging predictive modeling for through-
put optimization. DDPG can directly parameterize the policy func-
tion and optimize its value. On top of DDPG, to perform learning in
distributed settings, GreenNFV utilizes the Ape-X framework [16].
Below, we explain the use of DDPG and Ape-X in GreenNFV in
detail.

4.3.1 Deep Reinforcement Learning Formulation. In a stan-
dard reinforcement learning framework, an agent interacts with the
environment in discrete time. In each time step 𝑡 , the agent observes
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Algorithm 2: DDPG Algorithm [25]

1 Select action, 𝑎𝑡 = 𝜇𝜃𝜇 (𝑥 ) + N𝑡

2 Store transition, (𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑥𝑖+1 ) in Replay buffer, 𝑅
3 Select random minibatch, 𝑁 transitions from 𝑅

4 Set, 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′

𝜃𝑄
′ (𝑥𝑖+1, 𝜇

′
𝜃𝜇′
(𝑥𝑖+1 ) )

5 Update critic by minimizing the loss:
6 𝐿 = 1/𝑁 ∑

𝑖 (𝑦𝑖 − 𝑄𝜃𝑄 (𝑠𝑖 , 𝑎𝑖 ) )2
7 Update actor using the sampled policy gradient:
8 Update the target networks:
9 𝜃𝑄

′ ← 𝜏𝜃𝑄 + (1 − 𝜏 )𝜃𝑄 ′

10 𝜃𝜇
′ ← 𝜏𝜃𝜇 + (1 − 𝜏 )𝜃𝜇′

the state 𝑥𝑡 ∈ X and chooses an action 𝑎𝑡 ∈ A. When the state
changes to 𝑥𝑡+1, the agent receives reward 𝑟 (𝑥𝑡 , 𝑎𝑡 ) ∈ R. The agent’s
behavior is controlled by policy 𝜋 : X → A that translates states
to actions. The state-action value function’s expected return values
can be defined as, 𝐸𝑥𝑝 [∑∞𝑡=0 𝛾𝑡𝑟𝑡 (𝑥𝑡 , 𝑎𝑡 )], where 𝛾𝑡 ∈ (0, 1] is the
discount factor.

The agent takes actions based on the policy, 𝜋 (𝑎 |𝑥); however, in
most cases, it is almost impossible to store all possible (state, action)
pairs. A function approximator, 𝜋𝜃 (𝑎 |𝑥) with parameter vector, 𝜃
can be used to learn the policy function. The deep deterministic
policy gradient was derived in [36]. Given a deterministic policy,
𝜇𝜃 : X → A that can approximate optimal action value for a given
state and the discounted state distribution (i.e., the probability of
visiting the state in the future), 𝜌𝜋 , the performance objective can
be written as,

𝐽 (𝜌𝜃 ) =
∫
S
𝜌𝜇 (𝑥)

∫
A
𝑟 (𝑥, 𝜇𝜃 (𝑥))𝑑𝑎𝑑𝑥

= 𝐸𝑥𝑝𝑥∼𝜌𝜇 [𝑟 (𝑥, 𝜇𝜃 (𝑥))]
(5)

Silver et al. [36] proves that the gradient of the objective can be
written as,

∇𝜃 𝐽 (𝜌𝜃 ) = E𝑥∼𝜌𝜇 [∇𝜃 𝜇𝜃 (𝑥)∇𝑎𝑄𝜇 (𝑥, 𝑎) |𝑎=𝜇𝜃 (𝑥 ) ] (6)

DDPG [36] is an actor-critic model that initializes critic network
𝑄𝜃 (𝑠, 𝑎) and a actor-network, 𝜇𝜃 (𝑥 |𝜃𝜇 ) with weights, 𝜃𝑄 and 𝜃𝜇 .
These two networks are trained with a mini-batch of samples. The
samples are the transitioning tuples (𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑥𝑖+1) when an agent
observe 𝑥𝑖 state, performs 𝑎𝑖 action to receives 𝑟𝑖 reward and change
the state to 𝑥𝑖+1. The networks are trained on random samples from
the experience replay buffer so that the divergence due to the corre-
lation among the samples is minimized. It also initializes the target
network, 𝑄 ′, and 𝜇′ to update the actor-critic network smoothly.
State update rules are presented in the Algorithm 2. More details of
the algorithm can be found in [25].

Action Space: In GreenNFV, we define Action space as the set
of controllable resources in all NFs, A = {A1,A2, ...,A𝑛} and for
each NF the set of actions,A𝑖 are - CPU core, 𝑐𝑖 , CPU frequency, 𝑐 𝑓𝑖 ,
last level cache, 𝑙𝑙𝑐𝑖 , DMA buffer size, 𝑏𝑖 , batch size, 𝑏𝑠𝑖 . Therefore,
for any NF the set of actions are,

A𝑖 = {𝑐𝑖 , 𝑐 𝑓𝑖 , 𝑙𝑙𝑐𝑖 , 𝑏𝑖 , 𝑏𝑠𝑖 } (7)

Algorithm 3: GreenNFV Framework

1 Procedure NF_CONTROLLER()
2 REMOTE_CALL(central_learner.param) // Collect

latest update from the Central Learner

3 𝑥𝑖 ← COLLECT_STATE(nfs [1:N]) // collect the

throughput, energy, packet arrival rate, CPU

utilization

4 for 𝑖 ← 1 to 𝐾 do
5 𝑎𝑖 ← 𝜋𝑖 (𝑥𝑖 ) // Get resource allocation from policy,

𝜋

6 [𝑇𝑖+1, 𝐸𝑖+1, 𝜉𝑖+1,Ω𝑖+1 ], 𝑟𝑖+1 ← controller.ALLOCATE(𝑎𝑖)
7 local_buffer.STORE( 𝑥𝑖 , 𝑎𝑖 , [𝑇𝑖+1, 𝐸𝑖+1, 𝜉𝑖+1,Ω𝑖+1 ], 𝛾𝑖+1)
8 Periodically : replay_buffer.STORE(local_buffer)
9 REMOTE_CALL(central_learner.param) // Collect

updates from central learner

10 end
11 return

12 Process CENTRAL_LEARNER()
13 INITIALIZE_PARAMETERS() // Initialize networks

14 for 𝑖 ← 1 to 𝐾 do
15 replay_buffer.SAMPLE() // Prioritize experience

sampling

16 COMPUTE_DDPG_LOSS()

17 UPDATE_PARAMETERS()

18 periodically remove the old experiences from replay buffer
19 end
20 return

State Space: The state space is defined as the set of current status
for all NF as, X = {X1,X2, ...,X𝑛} that contains throughput, 𝑇𝑖 ,
energy consumption, 𝐸𝑖 , CPU utilization, 𝜉𝑖 , packet arrival rate, Ω𝑖 .
Therefore, ∀X𝑖 ∈ X, we have:

X𝑖 = {𝑇𝑖 , 𝐸𝑖 , 𝜉𝑖 ,Ω𝑖 } (8)

Reward Signal: In GreenNFV, we have three different reward
functions for different SLA-based resource optimization that are
elaborated in §4.1. For each SLA, we define different reward signals.
The reward is the response from the environment to the learning
agent to measure how good its current actions are from the previ-
ous step. To maximize the throughput SLA, we define the reward
function as described in Equation 2. For minimizing the energy
SLA, we define 𝜓𝐸 (Equation 1) as the reward function. For the
energy efficiency SLA, we defined the reward function as explained
in Equation 3.

4.3.2 Distributed Learning Framework. On top of DDPG, Green-
NFV utilizes Ape-X framework [16]. The ape-X framework uses
a distributed architecture to scale up the DDPG algorithm. It ex-
tends the concept of prioritized experience replay to achieve the goal.
Experience replay [26] has been heavily used in reinforcement learn-
ing to improve data efficiency. It becomes highly effective to train
DNNs [31] as it utilizes a buffer of previous experiences to stabilize
the training procedure. The experience samples can be defined as
a tuple in the form of (𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑥𝑖+1) with states, actions, rewards,
and successor states at time t.

In contrast to consuming samples online and discarding them
later, sampling from the stored experiences means they are less
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Figure 5: Overview of the GreenNFV architecture.

heavily “correlated” and can be reused for learning. Experience
replay prevents the overfitting of the model by allowing the agent
to learn from previous policy versions. The procedure is closely
related to importance sampling. Uniform sampling from a replay
buffer is a good default strategy and probably the first to attempt.
However, prioritized experience sampling [35], as the name implies,
will weigh the samples so that “important” ones are drawn more
frequently for training.

In this setup, the actor and learner modules can be distributed
across multiple workers. Actors run on servers and generate data
according to the current policy. A single learner samples the new
experience and updates the policy parameters. These updated param-
eters are sent periodically to the actors. This framework implements
a centralized replay memory with prioritized experience replay. The
framework is explained in Algorithm 3 that explains the steps of
NF_CONTROLLER (actor) and a central learner process. Initially,
NF_CONTROLLER performs a remote call to the learner process and
receives the current parameters to update its policy. Then the actor
collects information about the current network function chains and
the flows. Based on this information, NF_CONTROLLER computes
the current resource control settings (actions) using its current pol-
icy and reconfigures the resources accordingly. Then the controller
stores this information as a sample experience in its local buffer.
Periodically, the NF_CONTROLLER sends the content of the local
buffer to the central replay buffer and collects the latest parameter
values for the policy. The CENTRAL_LEARNER process periodi-
cally collects prioritized experiences from the replay buffer. Then
it computes the DDPG loss function and updates the parameters.
Periodically, it removes old experiences from the replay buffer.

4.4 GreenNFV Implementation
GreenNFV is implemented over the OpenNetVM [41], a popular
packet processing framework to develop, deploy and manage net-
work functions. It uses the Intel DPDK library for high-speed packet
processing. The platform runs NFs as individual process or in a
docker container. Each NF has two circular queues to track incom-
ing and outgoing packets. OpenNetVM (ONVM) controller has
Rx and Tx threads, running on a dedicated core, to manage packet
circulation through NFs. NFs can run on an individual core or multi-
ple cores or even share the same core depending on the processing

requirements. Some NFs work in a distributed manner, thus requir-
ing coordination. Multiple IDS VNFs can be deployed and share
information for more fine-grained protection.

In GreenNFV implementation, one of the main challenges is to
design NF management in a way that can dynamically conserve
energy while maintaining performance. When the packet arrival rate
increases, we want to allocate more resources to the NF. However,
when the packet arrival rate slows down, the CPU should go to a low
power state, and batch size and LLC allocation should change too.
When there is no packet to process, we put NF to sleep until a new
packet arrives.

Figure 5 shows typical NF chains deployed in multiple nodes.
However, such an assignment requires careful consideration based
on the compute and memory requirement of NFs, and packet arrival
rates. Service chains can be configured using a configuration file or
SDN controller. We added functionalities in the ONVM controller
that allow us to control the CPU share, DVFS (CPU frequency)
control, LLC allocation, DMA Buffer size, and packet batch size.
To access the DVFS, we use cpufrequtils [3] library. It can
provide fine-grained access to the CPU frequencies. The library
provides numerous power management schemes called power gover-
nors, such as userspace, on-demand, conservative, power-save, and
performance. The Userspace governor enables frequency control
from the userspace. We use userspace governor to control the
CPU frequencies of the individual CPU cores.

To control the LLC allocation, we use Intel CAT [1]. This Intel
library only works on Intel processors, and it provides fine userspace
control of the LLC. It is particularly helpful when multiple work-
flows share the same resources. This library provides access to a
construct named Class of Services (CLOS) that can be used to group
the NFs. It is possible to dynamically assign the LLC to these CLOS
from the userspace. They also provide resource capacity bitmask
(CBM) to allocate cache to each group. We implement CPU sched-
uling to the NF similar to NFVNice [23]. Linux provides a kernel
feature, named cgroups that allows more fine-grained resource
allocation - such as CPU time, system memory, network bandwidth,
and their combinations. cgroups uses a similar hierarchy and in-
heritance like the processes. We also integrated a Distributed RL
framework that can cooperate with the ONVM controller. The Actor
network is responsible for computing resource allocation. ONVM
controller can request resource allocation from the Actor-network.
We also implemented a centralized learner and replay buffer, that pe-
riodically updates Actor networks with new parameters. The learning
module is developed with Python 3.6 and Tensorflow [2] framework.

5 EVALUATION
We evaluate GreenNFV under three different optimization goals
based on differing Service Level Agreements (SLA):

• Maximize the achievable throughput without violating the
power constraint set by the SLA (§5.1).

• Minimize the energy consumption while providing a specific
throughput guarantee (§5.2).

• Maximize energy efficiency in terms of the throughput
achieved per unit energy consumption (§5.3).

GreenNFV is evaluated using six nodes from a cloud service
provider. Nodes are equipped with Intel Xeon CPU E5-2620 (v4)
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Figure 6: Training progress of the proposed reinforcement learning algorithm during the testing of the Maximum Throughput SLA.

with frequencies ranging from 1.2 GHz to 2.1 GHz. Each CPU has
dual sockets with a total of 16 cores. The main memory size for each
server is 64 GB. The nodes are connected with a DPDK-compatible
NIC card - Intel 10 Gigabit X540-AT2. Intel DPDK is a highly
popular packet processing framework and is extensively used in
Telecommunication systems. Hardware preferences can be general-
ized to any Processor or NIC that supports the DPDK framework.
The servers are running Ubuntu SMP with Linux kernel 4.4.0-177-
generic as the operating system. As the traffic generator software, we
use MoonGen [13] that can generate UDP and TCP traffic at line rate.
Packet size varies from 64 Byte to 1518 Byte. In our experiment, we
used three servers to generate the traffic using MoonGen, and the
rest of the three servers are used to host the NF chains. Each node
hosts an NF chain with three Network functions. Network functions
are chained with a series connection.

We compare our model with the Energy Efficient P-state (EE-
Pstate) approach from [18]. In that work, the authors use a threshold-
based approach to decide on P-state. They also use simple predictors
like - Double Exponent Smoothing Predictor (DES) for traffic predic-
tion. We also compare our model with the baseline model that uses
a Performance power governor, and all other components are set to
default values. Finally, we compare our model with the Heuristics
model (§4.2) and the Q-learning model. For the Q-learning model,
we discretize the action and state space.

5.1 Maximum Throughput SLA
In this experiment, we evaluate the Maximum Throughput SLA,
where the model aims to maintain the best achievable throughput
without violating the SLA’s energy constraint. We set the maximum
energy threshold to 2000 Joules and use five flows. During the train-
ing process, we test the performance periodically at each 2000th
episode. The reward function used in this SLA issues rewards only
when the agent can meet the energy SLA.

Figures 6(a-b) show the throughput and energy consumption as
the training progresses. The throughput value increases during the
training process (Figure 6(a)). As shown in Figure 6(b), the model

learns to restrict the energy consumption below the energy constraint
set by the SLA. Then it tries to increase the throughput during
the learning process. Figures 6(c-g) shows the selection of each
control component. When the batch size of the packets is increased,
it helps to achieve high throughput while maintaining the energy
consumption below a certain threshold (Figure 6(c)). The batch size
is a critical component to achieve high performance, as it reduces
the cache miss rate that can arise due to packet loading from the
main memory. Passing one packet at a time requires the function
call for each packet. However, packets in batches reduce the number
of function calls drastically and increase the performance without
a high energy toll. The LLC allocation is also increased to achieve
higher performance so that the batch can be processed faster without
many cache misses (Figure 6(d)). Increased DMA buffer size also
helps with the increase in the achieved throughput (Figure 6(e)). The
model performs a balance to accommodate the batch of packets by
controlling the buffer size. These three control knobs (packet batch
size, LLC allocation, and DMA buffer size) are directly contributing
to the increase in the achievable throughput and have less impact on
energy consumption.

The CPU utilization and core frequency level have a significant
impact on the achieved throughput and total energy consumption.
For this reason, these two knobs are used to balance throughput and
energy consumption. In the experiments, the core frequencies are
initially set to a minimum level (1.3 GHz) to ensure the energy con-
straint is preserved. Later, the model tries to increase the frequency
to higher values to increase the performance. As soon as it hits the
constraint, it steps back (Figure 6(d)). At the same time, the model
balances the CPU utilization percentage by decreasing it to 60% to
keep the power consumption under control. Throughout the training,
the model tries to learn the optimal frequency setting and the correct
amount of CPU allocation for increased performance and controlled
energy consumption (Figure 6(a-b)). CPU allocation and frequency
settings are tuned down to decrease the consumed energy, the other
three knobs (packet batch size, LLC allocation, and DMA buffer
size) need to be tuned up to increase the performance.
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Figure 7: Training progress of the proposed reinforcement learning algorithm during the testing of the Minimum Energy SLA.
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Figure 8: Training progress of the proposed reinforcement learning algorithm during the testing of the Energy-Efficiency SLA.
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Figure 9: Performance comparison of different models based on throughput and energy consumption

We compared the result of the Maximum Throughput SLA with
other existing models - baseline, Heuristics, EE-Pstate [18], and
Q-learning model in Figure 9. This SLA is set to maximize the

throughput. The baseline does not tune any system-level parameters.
Therefore, the achieved throughput is the lowest compared to other
models used in the experiment. The baseline heuristic algorithm
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Figure 10: Performance (in terms of throughput and energy consumption) of the model with different SLA’s over time.

tries to adjust the parameters in real time. However, it does not use
any prior knowledge about the system. It makes decisions based
on purely real-time feedback from the network using predefined
static rules. Such decision-making is slow and takes a long time to
converge. Still, the heuristic-based approach can achieve 2× perfor-
mance improvement over baseline. On the other hand, EE-Pstate
uses thresholding on the p-state level of the processor cores and
leaves other control knobs without optimization. The Q-learning-
based model also has difficulty increasing the throughput. It works
with predefined discrete levels of parameters. Therefore, fine-tuning
the parameters is difficult in real-time. We can see a 4.4× throughput
improvement on MaxTh SLA over the baseline model and almost 2×
improvement over the Heuristics, EE-Pstate, and Q-learning model.
Moreover, the energy efficiency (throughput/energy) is improved by
1.5× compared to the Heuristics, EE-Pstate, and Q-learning model.

5.2 Minimum Energy SLA
The Minimum Energy SLA aims to minimize the energy consump-
tion of the NF processing while maintaining a specific minimum
throughput defined in the SLA. In the experiment, we set the mini-
mum throughput constraint to 7.5 Gbps, and if the model violates
that constraint, it gets no rewards. The model only receives rewards
when it can maintain the throughput constraint, and the reward gets
better when it reduces energy consumption.

Initially, the model starts to find the control settings that can yield
high throughput even with high energy consumption. This setting
is better than any setting that fails to maintain the throughput guar-
antee. As the training progresses, the model tries to find a solution
that reduces energy consumption while maintaining the throughput
constraint. The model effectively learns to maintain the throughput
constraint. Figures 7(c-g) shows how the model tunes the control
knobs to achieve this during training. The model starts with a high
CPU utilization and high core frequency value (Figures 7(c-d))).
The packet batch size is also large to facilitate high throughput. The
model tries to find settings that can reduce energy consumption to
receive more rewards. It tries to keep the LLC allocation stable and
increases both batch size and buffer size (Figures 7(e-g)). It reduces
the per-packet energy cost; however, the reduction is not very sig-
nificant. At the end of the training period, it tries to decrease CPU
utilization and keeps the core frequency high. Simultaneously, the
model increases the LLC and buffer size to compensate for the de-
creased CPU. This strategy reduces energy consumption and keeps
the throughput above the set constraint by the SLA.

We compare the performance of Minimum Energy (MinE) SLA
with the baseline algorithm, Heuristics-based approach, EE-Pstate.
Minimum Energy SLA can achieve 3× higher performance than
baseline, also more than 30% improvement over Heuristics, EE-
Pstate, and Q-learning while reducing the energy consumption by
almost 60% compared to other models.

5.3 Energy-efficiency SLA
In this experiment, we test the Energy Efficiency SLA and its
progress over the training period. This is an unconstrained opti-
mization of SLA where the model can receive more rewards when
achieving high energy efficiency. The model starts with a controlled
setting of low energy efficiency and then tries to increase the reward
by searching for more energy-efficient settings.

Figure 8 records the throughput, energy consumption, efficiency,
and status of the control knobs during the training process. During
the training process, the model selects a setting with low energy effi-
ciency (Figure 8(c)). The initial throughput (Figure 8(a)) is around
4 Gbps with an energy consumption level of around 4200 Joules
(Figure 8(b)). Then the model tries to find the settings that consume
less energy with similar performance. This policy increases energy
efficiency. Then around the 12000th episode, a significant drop in
the throughput and energy consumption is observed; however, the
efficiency remains the same. The model can also achieve high effi-
ciency when it processes fewer packets using less energy. The model
explores that region and then increases its throughput again. Then
we can see the model tries to keep the energy consumption level
stable and increases the throughput, which also results in high energy
efficiency. Then, around the 16000th episode, the model attempts
to stabilize the energy and increases the throughput with some os-
cillations. To perform that, the model increases the CPU allocation,
CPU frequency, and the LLC allocation (Figures 8(d,e-f)), but de-
creases the DMA size. As a result, a spike in energy efficiency is
observed until the 40000th episode. Afterward, the model changes
the policy to reduce CPU allocation sharply. In the meantime, the
model steadily increases the batch size and the DMA buffer size.
This keeps the throughput steady at around 6 Gbps; however, it
decreases energy consumption. As a result, we observe a steady
increase in energy efficiency. After the 60000th episode, we observe
a steady allocation of CPU around 200%, and the model tries to
increase the CPU frequency to the maximum level. Meanwhile, an
increased batch size helps to achieve high throughput. The model
also stabilizes the DMA buffer size. Initially, the model tries to
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Figure 11: Total energy consumption (including the energy cost of train-
ing RL algorithm) improvement compared to other models

increase throughput by increasing the CPU allocation—however,
the increased energy consumption is a barrier to achieving higher
efficiency. Then, the model decreases the CPU allocation and tries
to find optimal settings to increase energy efficiency. Figure 9 shows
that the Energy Efficient SLA - GreenNFV(EE), can achieve almost
4× performance improvement over the baseline and 2× improve-
ment over the Heuristics, EE-Pstate, and Q-learning models while
consuming energy similar to these models.

We also tested our SLA-based models with fixed SLA constraints.
Maximum throughput SLA is fixed with energy constraint 3.3KJ.
Initially, the model tries to achieve the maximum throughput that
the energy constraint allows. The model tries to allocate resources
so that the energy constraint violation does not occur. Initially, we
observe SLA violations and oscillations in performance and energy
consumption. Afterward, the model settles down at around 8 Gbps
throughput without violating the energy constraint. Minimum En-
ergy SLA is fixed with a throughput constraint of 7 Gbps. That
means the Minimum Energy SLA should provide at least 7 Gbps
performance while minimizing the energy. Figure 10 shows that
initially, MinE SLA takes some time to reach the SLA goal. We
can see an overshoot in performance with high energy consumption.
Finally, the model reduces the throughput to 7 Gbps and also reduces
energy consumption.

The RL model itself consumes energy during the training process.
However, the GreenNFV model needs to be trained only once before
deployment and is run many times during the decision-making pro-
cess. Once the model is trained, the decision is obtained in constant
time. The initial training cost is amortized over many subsequent
future decision-making runs. To see the impact we calculated the
Energy saving, 𝐸𝑠 , as follows:

𝐸𝑠 = (𝐸𝑛𝑓 + 𝐸𝑡 − 𝐸𝑏 )/(𝐸𝑛𝑓 + 𝐸𝑡 ) (9)

where 𝐸𝑛𝑓 is the energy consumption of the Nfs, 𝐸𝑡 is the energy
consumption during the training, and 𝐸𝑏 is the energy consumption
of the baseline model. Figure 11(c) shows that the MinE algorithm
can consume 23% less energy even when the energy cost of the
model training process is included and over time it reaches 62%.

6 CONCLUSION
This study explores a novel energy optimization framework for the
Network Function Virtualization (NFV) platform with various user-
defined service level agreements (SLAs). Existing literature contains
different system-level optimization techniques to increase the pro-
cessing speed of the Network Function (NF) chains. In our study, we

extensively explored the impact of energy consumption without im-
pacting performance. Our novel solution, called GreenNFV, employs
a Deep Reinforcement Learning (DRL) based approach by translat-
ing the resource scheduling problem into a deep deterministic policy
gradient (DDPG) algorithm, a value-based actor-critic reinforcement
learning algorithm, which is very effective for continuous (real-
valued) and high-dimensional action space. We present three novel
resource optimization models based on different energy-aware ser-
vice level agreements (SLAs), which enable the telecommunication
service providers (TSPs) to minimize energy consumption without
compromising the performance guarantees given to the customers.
GreenNFV shows 4.4× performance improvement over the base-
line settings while consuming 33% less energy with the Throughput
SLA. When used with the Energy SLA, it can achieve 3× throughput
improvement while reducing energy consumption by 50%.

In future work, we plan to incorporate software-defined network-
ing (SDN) and NF controllers to provide higher flexibility. We envi-
sion a model where both the SDN controller and NF controller can
update each other to perform more effective flow scheduling.
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