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ABSTRACT
This paper presents a parameterized analytical performance model
of transformer-based Large Language Models (LLMs) for guiding
high-level algorithm-architecture codesign studies. This model de-
rives from an extensive survey of performance optimizations that
have been proposed for the training and inference of LLMs; the
model’s parameters capture application characteristics, the hard-
ware system, and the space of implementation strategies. With such
a model, we can systematically explore a joint space of hardware
and software configurations to identify optimal system designs un-
der given constraints, like the total amount of system memory. We
implemented this model and methodology in a Python-based open-
source tool called Calculon. Using it, we identified novel system
designs that look significantly different from current inference and
training systems, showing quantitatively the estimated potential to
achieve higher efficiency, lower cost, and better scalability.
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1 INTRODUCTION
We consider the task of conducting high-level analyses for algorithm-
architecture codesign of distributed clusters and transformer-based
Large Language Models (LLMs) [3, 4, 36, 39, 40]. By “high level,” we
mean focusing on developing and using fast and coarse-grained
analytical or semi-empirical models of the software and hardware,
a stage of design that precedes detailed simulation or implemen-
tation on actual hardware. The goal is to estimate the best-case
relative improvements that might come from significant changes
to the system or software, as well as combinations of system and
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software configurations that might be unusual or otherwise costly
and difficult to implement. Since high level models are expected to
be much cheaper than detailed simulation, they should facilitate
rapid exploration of a potentially large parameter space during the
early phases of codesign.

In this work, our starting point is Megatron, a large family of
open-source LLM instances developed by NVIDIA [44]. The cost
of training such models is high: a version of Megatron having
one trillion (1T) parameters was recently trained over 84 days on
450 billion tokens using 3,072 NVIDIA A100 Graphics Processing
Unit (GPU) and executing more than 1,000 zettaFLOP (1 × 1021
floating-point operations) [29, 30]. This cost roughly equals seven
hundred years on a single GPU and over six million dollars (US)
assuming a single GPU at $1 per hour cloud-GPU rates. Incurring
such costs is commonplace; the PaLM-540B model recently trained
by Google used 2,572 zettaFLOP with similar numbers of Tensor
Processing Units (TPUs) and more than 8 million TPU hours [6].
Such high costs strongly motivate any combination of algorithmic,
software, or hardware redesign that can reduce them.

Consequently, there are proposed enhancements in algorithms
and software [29, 37, 38] and options for hardware acceleration [18,
31]. However, selecting a good configuration in practice has relied
primarily on heuristic reasoning [29]. While these proposals have
yielded impressive results, it has also been observed that distributed
training runs at a FLOP/s rate well below 50% of peak despite the
prevalence of matrix multiply (GEMM) operations [34].

The challenge is that the codesign landscape is quite large, mak-
ing it hard to reason about the impact of major changes to arbi-
trary combinations of hardware and software. For example, con-
sider that limited GPU memory capacity requires dividing a large
model among processors. Doing so can be achieved via model paral-
lelism, which combines two strategies known as tensor parallelism
and pipeline parallelism [29]. However, when using NVIDIA A100
GPUs, the size of the NVLink domain is 8, which can limit tensor
parallelism performance [32]. To compensate, one can increase the
degree of pipeline parallelism—but that may in turn produce other
inefficiencies such as reduced utilization due to pipeline bubbles
and needing to recompute intermediate features in light of memory
constraints [13, 29]. Alternatively, one might improve the computer
network to support larger tensor parallelism domains; companies
and researchers have indeed considered doing so [17, 32]. However,
if memory capacity is the root issue, then a more cost-effective
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Figure 1: The transformer block structure of a typical LLM, such as GPT-3 or Megatron.

strategy is to increase capacity. Overall, this example shows that
codesign should carefully consider and delicately balance memory
capacity, memory bandwidth, processing throughput (i.e., FLOP/s),
network bandwidth, and network scalability, all of which interact
with choices made in software. Therefore, to reason about these
trade-offs we seek a principled analysis framework that can be
extended or adapted in a hardware and software landscape under-
going rapid and continual evolution.

We propose one such model-driven approach for high-level code-
sign of LLM training and inference systems. We first identify a
parameterized space of possible configurations that span major
system features and common algorithmic and software implemen-
tation strategies (Section 2). We then develop a unified analytical
model to estimate the end-to-end performance of LLM training as
a function of the configuration parameters. This model allows us to
pose, mathematically, a constrained optimization problem: find the
configuration that yields the best performance given fixed system
constraints such as memory capacity and system or network size.

We encode this performance model and model-optimizer in a
tool called Calculon. The parameter space includes the structure
and number of weights in the LLM model, the implementation
strategy, and a schematic description of the hardware system (Ta-
ble 1). Since Calculon’s model is analytical, it can calculate and
return a complete breakdown of projected training or inference
time quickly, typically in much less than a 1ms per configuration.
It thus becomes possible to search an entire configuration space
having many millions of combinations in only a few minutes on a
standard desktop computer.

This paper includes several analyses we have conducted using
Calculon. The modeling formulae themselves are complex to write
out in full; therefore, to save space, we focus on the analyses as
“proof-of-concept,” with detailed formulas appearing in Calculon’s
open-source repository, where our formulas and assumptions ap-
pear in full, allowing replication of our results or modification of our
assumptions.1 The analyses showcase Calculon’s potential to facili-
tate high-level codesign, revealing several system and optimization
insights that may contradict conventional wisdom:
(1) None of the existing software-parallelism strategies is uniformly

the “best.” However, there is an optimal split-parallelism strat-
egy that balances system resourceswell, with the exact optimum
depending on system parameters, as we show.

(2) The speed of LLM training can be a sensitive function of system
size, with performance variability (ratio of highest to lowest
performer) exceeding 6×. These “efficiency cliffs” come from

1https://github.com/calculon-ai/calculon

difficulties mapping LLM structures to a given number of pro-
cessors when sizes do not “divide evenly.”

(3) Adding a second high-capacity tier of memory for tensor of-
floading reduces performance variability across various LLM
configurations and sizes, enabling efficient training of larger
models. Moreover, the bandwidth requirement for efficient of-
floading is within current technological capabilities.

While these findings are estimates, they suggest quantitatively what
performance improvements are possible, a critical first step for LLM
codesign. Our methodology is systematic and rigorous, enabling
future exploration via more detailed experiments and simulation.

2 ANALYTICAL MODEL
Calculon is a Python-based analytical performance model for LLM
training and inference on large-scale distributed systems. The core
analytical model performs a single calculation of time and resource
usage. This model is given 3 specifications: the LLM, the system
the LLM is running on, and the execution strategy describing how
the LLM is run on the system.

2.1 LLM Configuration
We adopt the framework of Megatron [44] for describing the struc-
ture of transformer-based [49] LLMs. Megatron can be used to reim-
plement models such as GPT2 [36] or GPT3 [3], Chinchilla [11],
LLaMa [48], and many other popular LLMs.

For training, Megatron uses synchronous mini-batch stochastic
gradient descent and the Adam optimizer for weight updates [2, 19].
It may employ transformer-based encoder blocks, decoder blocks,
or both. Each transformer block has the same structure and consists
of a multi-head attention block followed by a multilayer perceptron
(MLP) block, with normalization and residual connection between
them, as shown in Fig. 1 (adapted from Shoeybi et al. [44]). Several
hyperparameters define the blocks: the hidden size (hidden) is the
size of the embeddings and MLP layers, the number of attention
heads (attn) of certain size, the sequence size (seq) of the input text,
training batch size (batch), micro-batch size (m), and the number
of transformer blocks (blocks).

2.2 Hardware Configuration
Calculon models a processor-based distributed system in which
computation is assigned to either “matrix” execution or “vector”
execution. The performance of each type of computation may be
parameterized by input size in a specification file. This feature is
useful when, for instance, smaller general matrix multiply (GEMM)
operations run at a lower fraction of peak than larger ones [33].

https://github.com/calculon-ai/calculon
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Table 1: Optimizations related to LLM training grouped in families related to a system component or particular parallelism
they target. Families and optimizations within families are sorted by year. Arrow upward/downward direction represents
an increase/decrease in the metric. Color represents an increase (green) or decrease (red) in the performance. The presented
relative significance of each optimization’s effect is based on experimental evaluation of the search space. Range represents
space of Calculon’s input parameters.

Optimization Year Related
system

Comp
time

Comp
util

Mem
time

Mem
cap

Mem
BW

Net
time

Net
BW Range

Data parallelism (DP) [55] 1989 network – ↑ – ↑↑↑ – ↑ ↑ 1 .. batch
DP overlap [23] 2017 network ↑ ↓ – – – ↓↓↓ – true/false
Optimizer sharding [22] 2019 network ↓ – – ↓↓ – – – true/false
Recompute [5, 10] 2000 compute ↑↑ – – ↓↓↓ – – – full/attn/none
Fused layers [26] 2018 compute – ↑↑ ↓↓ ↓↓ ↓ – – true/false
Microbatch training [13] 2019 compute – ↑↑ – ↑↑↑ – – – 1 .. batch/DP
Pipeline parallelism (PP) [7, 13] 2012 network ↑ ↓↓ – ↓↓ – ↑ ↑ 1 .. blocks
PP 1F1B schedule [7, 28] 2012 network – – – ↓↓ – – – true/false
PP interleaving [29] 2021 network ↓ ↑↑ – ↑ – ↑ ↑↑ 1 .. blocks/PP
PP RS + AG [20] 2022 network – – – – – ↓ ↓↓ true/false
Tensor parallelism (TP) [7, 21, 43] 2012 network ↓↓ ↓ – ↓↓ ↓↓ ↑↑↑ ↑↑↑ 1 .. attn
TP RS + AG instead AR [29] 2021 network – – ↑ ↑ – ↓ ↓ true/false
Sequence parallelism (SP) [20] 2022 network ↓ – ↓ ↓↓ ↓ ↑ ↑ true/false
TP redo for SP [20] 2022 network – – – ↓ – ↑ ↑ true/false
TP overlap [52] 2022 network ↑ ↓ – – – ↓↓ – none/pipe/ring
Weight offload [42] 2021 memory – – ↑ ↓↓↓ ↑ – – true/false
Activation offload [42] 2021 memory – – ↑ ↓↓↓ ↑ – – true/false
Optimizer offload [42] 2021 memory – – ↑ ↓ ↑ – – true/false

The memory system of the processor is modeled as a two-level
hierarchy wherein the first level is used for direct computation
and the second level is used for stashing bulk data until a later
time when it is needed (i.e., offloading). Both memory systems have
programmable capacities, bandwidths, and size-based efficiencies.

Each computational operation (e.g., GEMM) is fed to a processing
model that determines how long it will take. This model considers
both the time spent in raw compute (i.e., FLOPs) and the time spent
in raw memory accesses [33].

Each processor is able to connect to an arbitrary number of
networks. Each network is programmed with a size, bandwidth,
latency, and efficiency. A network also has a specification of how
it handles each specific operation, which is also the mechanism
that models the performance benefits of in-network collectives [32].
Each network also has a value of how much processing power is
taken from the processor while the network is operating at full band-
width. This value is explicitly used when modeling the performance
degradation of overlapping communication with computation.

2.3 Execution Configuration
Many performance optimization techniques and implementation
strategies have been proposed for transformer-based model train-
ing. We surveyed these methods and present them in Table 1. The
large compute requirements of LLMs dictate distributed training
using many processors or accelerators and using various modes
of parallelism. Megatron employs three parallelization strategies:
data parallelism (DP), pipeline parallelism (PP), and tensor par-
allelism (TP). These strategies can lead to a complex execution

schedule (Fig. 2). In this schedule, execution of transformer blocks
is intertwined with communication related to TP, PP, and DP.

We implement TP as presented in Megatron [44]. While other TP
partitioning schemes are possible, the selected one tries to minimize
the number of communication instructions per single transformer
block, which in the case of small TP partition sizes also reduces
the amount of communication traffic. We implement PP using an
interleaved schedule presented in [29], as shown in Fig. 2. DP is
implemented with an optional overlap. In this case, DP communi-
cation for each layer is scheduled as soon as the last microbatch is
propagated through that layer, as shown in Fig. 2(b).

Calculon implements all of optimizations from the Table 1. Each
optimization is parameterized with its acceptable input-range in
the column “range”. The space of techniques that Calculon captures
grows combinatorially, a major challenge for the implementation.
While individual techniques can be described with formulae, they
must be combined carefully to ensure their interactions are captured
and feasibility constraints are accounted for, as Calculon does.

We based the Calculon performance model on many transformer-
specific optimizations described in the open literature. The starting
point is Megatron [44], which combines many optimization families
including DP [55], activation recompute [5, 10], and TP [44]. The
Megatron team later added many PP-related features[13, 28, 29],
including micro-batching, 1F1B and interleaved scheduling, and
TP-related optimizations [20, 29], such as splitting all-reduce com-
munication into reduce-scatter and all-gather to optimize PP traffic
and adding sequence parallelism. Calculon also implements most
optimizations from DeepSpeed [41], including optimizer shard-
ing [22, 37], and tensor offloading [38, 42]. Several optimizations
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(a) Pipeline schedule, prologue
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Figure 2: A pipeline schedule of LLM training with an in-
terleaved schedule [29]. Every transformer block (Fig. 1) is
identified by its block number startingwith 𝐿 andmicrobatch
id starting with𝑚. Several consecutive blocks in each proces-
sor are grouped into chunks. The backward pass for every
block-microbatch combination is scheduled right after the
data for it becomes available. A pipeline schedule consists of
a prologue phase shown in (a) and epilogue phase shown in
(b), with the in-between steady phase omitted for brevity. The
epilogue demonstrates data parallelism (DP) communication
overlapped with backward pass of other transformer blocks.

developed for inference are included as well [1, 35]. Finally, we also
included activation fusion for some layers [26] and overlapping DP
and TP communication with compute [23, 52].

We do not consider many techniques that make LLM train-
ing available on smaller systems with costs of significant slow-
downs [38, 46], nor those that target arbitrary networks with worse
performance for regular transformer structures [12, 15, 16, 51].
We also do not consider implementation strategies that may non-
trivially affect model fidelity, including compression and asynchro-
nous training techniques.

Many techniques implemented in Calculon are de facto stan-
dards for LLMs, such as optimizer sharding [22] and microbatch
training [13]. Other techniques are scattered among many code
bases, such as interleaved schedule for PP only implemented in
Megatron [29]. A strength of Calculon is estimating performance
for combinations of techniques that have not yet been attempted.

2.4 Performance Calculation
LLMs are implemented in a series of replicated transformer blocks
(Fig. 1). Taking advantage of the regular structure, Calculon an-
alyzes the minimum number of unique block structures to make
its performance prediction, reusing the results when appropriate.
In contrast, many non-LLM specific performance tools needlessly

replicate the performance prediction of all blocks independently.
This modeling-time optimization allows Calculon to complete a full
analysis in under a millisecond.

Calculon distinguishes edge blocks with point-to-point commu-
nication for PP and separates the effects of each technique between
layers in the transformer block and across the execution stages,
such as forward and backward pass, optimizer step, communication
phases, etc. Doing so permits distinguishing the effects of interact-
ing model components and a faithful expression of how techniques
interact. For example, Calculon forbids DP communication overlap
during the optimizer step if optimizer sharding is enabled, and it
throttles offloading when high bandwidth memory (HBM) memory
is in active use while allowing it during compute-only or network
communication phases.

Given a description of the LLM, the system, and the execution
strategy, Calculon performs a complete performance estimation
using its analytical model and outputs the statistics which con-
tain relevant information about total performance (e.g., batch time,
sample rate, etc.) as well as a breakdown of where the time was
spent and how much of the available resources were used. The
time breakdown includes forward pass, backward pass, recompu-
tation (if used), optimizer, and more. For network time, it reports
the amount of time each type of parallelism was communicating
on the network and reports how much time was exposed blocking
computation. When offloading is used, Calculon reports the amount
of total time performing offloading over the second level memory
system and also the amount of time exposed (if any) in this process.
For memory systems, Calculon reports how much memory was
used and which types of data used them (e.g., weights, optimizer
state, activations, etc.). Finally, Calculon reports efficiency of the
LLM execution.

Fig. 3 shows an example output of running GPT3 175B on 4,096
NVIDIA A100 GPUs each with 80 GiB of memory connected over
NVLink clusters of 8 and InfiniBand HDR networks between them.
The execution specifies TP=8, PP=64, and DP=8. The total batch
time was 16.7 seconds and 20% of that was spent in recomputing
the activations during the backward pass. Of the available 80 GiB of
HBM memory, 17.4 GiB was used and 29% of the utilized memory
was used for optimizer state.
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Figure 3: Time and memory consumption for running GPT3
175B across 4,096 GPUs using TP=8, PP=64, DP=8.
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2.5 Validation

Table 2: Calculon’s validation comparing performance predic-
tion to performance measured on the A100-based Selene su-
percomputer for full activation recomputation and sequence
parallelism plus selective activation recomputation. Perfor-
mance is batch time measured in seconds.

22B 175B 530B 1T

Full Selene 1.42 18.13 49.05 94.42
Calculon 1.40 18.03 49.89 90.08

Delta 1.72% 0.56% -1.72% 4.60%

Seq+Sel Selene 1.10 13.75 37.83 71.49
Calculon 1.14 13.64 34.47 66.04

Delta -3.33% 0.81% 8.87% 7.62%

We validated Calculon’s modeling accuracy against measured
performance of various LLMs on NVIDIA’s A100-based Selene su-
percomputer [20]. We compare the results for modeling Megatron
applications sized 22B, 175B, 530B, and 1T, while performing full
activation recomputation as well as when applying sequence par-
allelism with attention-only activation recomputation. The com-
parison appears in Table 2. For these 8 runs on Selene, Calculon’s
prediction averages 3.65% error, and the maximum error is 8.87%.

3 RELATEDWORK
For codesign, one expects event-driven hardware modeling to be
more accurate than analytical modeling but also orders of mag-
nitude slower. NVArchSim [50], a state-of-the-art GPU simulator,
can take a day to model 1 second of a single GPU’s execution time.
Network simulators such as SuperSim takes on the order of a day
to model 1 second of network communication between 128 end-
points [14, 27]. SST, a state-of-the-art parallel network simulator,
shows a similar speed with single-core modeling [53] and, there-
fore, requires significant time to simulate the training of Megatron
on thousands of accelerators. On the application modeling side,
compiler-based models like ParaGraph can extract both application
models and optimizations from the compiled representation of the
applications [14]. However, it might not be possible to deduce all
of the performance optimizations and implementation strategies
developed for Megatron, and introducing them explicitly is a very
time-consuming process. Furthermore, compiler-based approaches
generally work well only for existing hardware.

On the execution side, several projects consider automatedmodel
parallelization and partitioning. FlexFlow splits a single iteration
along samples, operators, attributes, and parameters dimensions
but does not consider pipelining [25]. DAPPLE, PipeDream, and
Tarnawski et al. focus on pipeline parallelism scheduling [8, 28,
47]. These efforts do not consider TP or parallelization strategies
separate from a broader space of execution optimization techniques.

GShard [24] and GSPMD [54] provide a way to implement par-
allel transformer or automatically parallelize transformer via XLA
compiler [9] after code annotation. XLA compiler supports many
other optimizations as well. GSPMD focuses on finding the optimal
configuration for existing systems. Alpa [56] builds on top of these

projects adding an automated search for optimal combined TP and
PPmodel split. Unlike Calculon, they do not consider a unified space
of hardware and software configurations and do not target future
system design, both being key features of Calculon. Also, Calculon,
being an analytical performance model with fast prediction time,
can explore vast configuration spaces. Other solutions, typically
working as part of compiler infrastructure or runtime, either cover
a smaller space or use heuristics to limit the search, focusing on
running training with good performance on the available system.

Finally, NaaS proposes a joint codesign of optimized neural net-
work (NN) and accelerators to achieve the best performance per
unit power [57]. Calculon focuses on optimizing large-scale system
design and system-level optimizations rather than NN layers.

4 PERFORMANCE TRADE-OFFS
We used Calculon to explore the landscape of system configurations
defined by our analytical modeling (Section 2). The two studies that
follow study implementation trade-offs given a fixed system (Sec-
tion 4.1) and how LLM structure, software, and hardware factors in-
teract when exploring the full space of configurations (Section 4.2).

4.1 Parallelization Analysis
We consider the training of Megatron-1T LLM [29] on a baseline
system configured with 4,096 NVIDIA A100 GPUs with a global
batch equal to 4,096. We try all combinations of TP, PP, and DP to
determine the resource allocation with the best performance.

We denote a splitting by (𝑡, 𝑝, 𝑑) where 𝑡 × 𝑝 × 𝑑 = 4,096 GPUs
and each of 𝑡 , 𝑝 , and 𝑑 factors measure the degree of TP, PP, and DP
exploitation, respectively. Smaller values of 𝑡 , 𝑝 , or 𝑑 imply “less” of
that type of parallelism, with 1 being the minimum value of each. In
this case study, we assume a software implementation that employs,
as a memory-saving strategy, both optimizer sharding and 1F1B
scheduling (Table 1). We then try all possible settings of (𝑡, 𝑝, 𝑑)
where we set the NVLink domain size to 𝑡 ≤ 32; we specifically
set the NVLink size to the number of GPUs in the TP domain
to shed light on the effects (implicit costs) of TP. The impact of
changing (𝑡, 𝑝, 𝑑) on execution time and memory consumption are
summarized in Fig. 4, and from it, we can make several observations.

First, over-emphasizing any one mode of parallelism leads to a
stark performance drop, as every parallelization strategy has a dom-
inating cost component. The top row of Fig. 4 shows how increasing
any of 𝑡 , 𝑝 , or 𝑑 to their extreme values (e.g., when 𝑑 = 32, letting
𝑡 = 1 and 𝑝 = 128 or 𝑡 = 32 and 𝑝 = 4), execution time is relatively
high. For TP, the culprit is the visible communication costs (“TP
comm”) that increase as 𝑡 increases while compute utilization drops
due to thinning operands in the local matrix multiplications. For
PP, the cost of pipeline bubbles—in particular, idle time between
forward and backward passes— increases as 𝑝 increases. For DP,
communication costs (“DP comm”) increase as 𝑑 increases.

Second, each parallelism strategy affects memory usage differ-
ently, as shown in the bottom row of Fig. 4. While TP cuts both
weight and activation memory costs, PP reduces only weights. Due
to how interleaved pipeline scheduling is implemented, we need to
keep an even larger activation space as we would have to with no
PP. DP cannot reduce activation or weight storage.
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Megatron-1T single batch training on 4096 A100 GPUs with various parallelism strategies

Figure 4: Parallelization strategies analysis, 𝑡 indicates TP factor, 𝑝 - PP, and 𝑑 - DP. We can see that high TP and DP suffer from
communication overheads, while high PP suffers from scheduling bubble. On the memory side, TP helps reduce weight and
activation pressure, while PP helps only with weight space reduction. High DP helps balance optimizer space by sharding it,
achieving the same efficiency as PP and TP.

Third, the dependence of overall performance on (𝑡, 𝑝, 𝑑) appears
to behave like a convex function, yielding an optimal parallelization-
split in execution time (where valleys occur in execution time) with
some minimum constraint on memory usage (i.e., since overall
memory usage decreases nearly monotonically as 𝑡 and 𝑝 increase).

In short, a good parallelism split reduces visible communication
time, improves compute utilization by reducing PP bubbles and
increasing local matrix multiply sizes, and implies a minimum total
required memory. Calculon illuminates these quantitatively.

4.2 Optimizations Analysis
While an optimal parallelization strategy exists per Section 4.1, the
best configuration depends on the structure of the LLM, the avail-
able system resources, and what other software implementations
are selected. We illustrate these variations in Fig. 5.

First, Fig. 5(a) shows the variation in execution time and memory
usage for training a baseline implementation of Megatron-1T [29]
assuming a per-GPU HBM memory capacity of 80GiB. Dashes
indicate infeasible configurations due to memory capacity limits.
Among the feasible configurations, the minimum execution time is
attained for (𝑡, 𝑝) = (8, 32) with 79GiB, just under capacity.

Next, suppose we enable additional software or hardware tech-
niques. For instance, Fig. 5(b) considers the addition of sequence

parallelism (Table 1) and its associated performance-enhancing
techniques [20]. The optimal configuration shifts slightly to (𝑡, 𝑝) =
(16, 64) while also lowering the memory requirement to 72GiB. En-
abling all compatible techniques from Table 1, as shown in Fig. 5(c),
yields a variety of configurations that could be chosen to mini-
mize either time ((𝑡, 𝑝) = (16, 4)) or memory capacity (40GiB at
(𝑡, 𝑝) = (8, 32)), as desired. Additional optimizations, including op-
timizer sharding and TP and DP communication overlapped with
computation, significantly increase the number of possible map-
pings and move the optimal parallelization point towards higher
TP and DP with lower PP. And doubling memory capacity yields
Fig. 5(d), shifts such points even more in that direction.

5 OPTIMAL STRATEGY SEARCH
Beyond the examples in Section 4, we observed numerous instances
of complex interactions in configuration parameters.

5.1 Optimal Execution
There were many instances where selecting a memory-saving tech-
nique frees enough memory to allow a different software technique
needing memory to use the “newly available” capacity to decrease
running time. Discovering these effects motivates the design of
Calculon to allow exploring of the full combinatorial space.
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Megatron-1T single batch of training on
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Figure 5: Batch time training with various optimizations and
constraints (dashes indicate infeasible configurations due to
a lack of memory). The top number shows the best batch
time, and the bottom number shows the required memory
to run, 𝑡 and 𝑝 measure the degree of TP and PP . (a) time for
a system with 32 A100 with 80GiB HBM in a single NVLink
domain and original optimizations set [29]; (b) same with
partial recompute and sequence parallelism [20]; (c) same
with all optimizations from Table 1; (d) same with memory
capacity increased to 160GiB per GPU.

To get a coarse sense of this space, we considered all execution
configurations for training the GPT-3 175B-parameter model on a
4,096-GPU system. There were 10,957,376 calculations possible. Out
of all possible configurations, only 1,974,902 were feasible (~18%) as
the rest would not have sufficient resources to run. The histogram
in Fig. 6(a) depicts the distribution of estimated performance of the
feasible runs measured as sample-processing rate, that is, the num-
ber of data samples processed per second of LLM training. While
the histogram has 10 bins, the 2 rightmost bins that correspond to
configurations within 20 % of the best configuration are indistin-
guishable with the naked eye. We observed only 30 configurations,
or less than 0.002% of the full space, achieved performance within
10 % of the best configuration. Figure 6(b) considers just the 100
best performers as an empirical cumulative distribution function.
Only about ten attain performance within 5 % of the best. Thus,
good configurations may be like needles in a haystack.

Anecdotally, several of these best-configurations did not match
our expectations or commonly reported heuristics. For example,
some of the best partitioning strategies included setting TP to 4
and PP to 2, moving both under the capacity of an 8-GPU NVLink
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Figure 6: All possible execution strategies for GPT3 175B
model training on 4,096 GPUs. (a) Histogram of the sample
rate. (b) CDF plot of top-100 configurations.

domain, whereas conventional wisdom assumes TP should be used
to saturate NVLink with PP needing only a slower network.

For these reasons we implemented an optimal execution search
engine in Calculon. Unlike the procedure described in Section 2,
which yields a result based on a single execution configuration,
this search engine exhaustively tries all possible execution config-
urations for a specific system, system size, and LLM and returns
the best performer and its statistics. Because Calculon calculates
performance so quickly, a standard multi-core desktop computer is
able to search the entire configuration space in minutes.

5.2 Optimal System Size
The most important “variable” affecting performance is the struc-
ture of the LLMmodel itself, which can impose many constraints on
what partitioning strategies will be most effective, memory capacity
requirements, and the ideal system size (number of processors). For
example, for best system utilization, PP should split transformer
blocks evenly, while TP should split attention heads and the neu-
rons in MLP block evenly, possibly cutting them so the local matrix
multiplication size is divisible by a large power of 2, typically 128.

One way this interaction between LLM shape and system param-
eters manifests is in the phenomenon of “efficiency cliffs,” which
are sudden drops in performance among system configurations that
are close in size. We can observe these cliffs in Fig. 7. It considers
three different LLMs: GPT3 175B [3], Turing-NLG 530B [45], and
Megatron-1T [29] models. Given a system with a certain number of
GPUs (x-axis, considering only multiples of 8 GPUs), we search the
full configuration space for the best performer that utilizes exactly
that many GPUs and plot its performance as a point (y-axis, higher
is better). Each data point is an exhaustive search performed as
described in Section 5.1. While the overall trend (envelope) steadily
increases with system size, observe that the performance variation
in “top performers” also grows dramatically. The Turing-NLG has
many LLM size-parameters that are not powers of two, making it
particularly tricky to map. This phenomenon occurs for all models
and implies that even though one might buy a system with some
number of GPUs, mapping a specific model might utilize a smaller
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Figure 7: Scaling LLM efficiency training on up to 8,192 GPUs.
“Efficiency cliffs”—sudden drops in performance—become
worse as the system size increases due to the difficulty of
finding a good mapping of the LLM to the system.

number due to these cliffs. Moreover, in two of the LLMs fewer con-
figurations can run at all, as represented by the increasing number
of points with zero relative performance.

In short, Calculon can be used to find the optimal execution
strategy for a particular system by exhaustively searching the con-
figuration space for every possible system partition size. For the
3 LLMs presented in Fig. 7 this required 467,553,284 calculations.
Indeed, the case of a “single-use” system in the context of systems
for LLM training is not out of the question, and this finding that
arbitrary increases in system size might not deliver the best perfor-
mance or efficiency, counters some prior claims [56]. Right-sizing
the system in light of such phenomena could mean the difference
between deciding to use or acquire a relatively smaller system
knowing that, due to efficiency cliffs, there might not be a usable
configuration without increasing the system scale by a lot.

6 OFFLOADING ANALYSIS
An interesting type of analysis enabled by Calculon is tensor offload-
ing. Recall that some software techniques aim to reduce memory
requirements while others trade increased memory requirements
for better performance. In hardware, there are at least two options
to alleviate capacity issues. One is to directly increase the size of
the processor’s memory system, typically HBM for top performing
processors and accelerators. Unfortunately, scaling HBM capacity
is limited by strict and expensive technological constraints. An
alternative is to employ an external high-capacity memory, such
as Central Processing Unit (CPU) memory or compute express
link (CXL)-attached memory. Software strategies can exploit this
approach via zero-offload [42] and zero-infinity [38] for tensor of-
floading to CPUmemory. These methods alleviate memory capacity
issues but may incur other costs, such as increased computation
(e.g., under activation checkpointing) or increased communication
costs due partly to limited bandwidth to external memory.
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Figure 8: Tensor offloading scheme modeled in Calculon

We can use Calculon to analyze what the minimum bandwidth
requirements for the offloaded memory system should be to make
the offloading effective. In this analysis, we assume that offloading
overlaps only with compute and network operations and not with
memory operations to HBM memory. This assumption avoids po-
tential compute throttling that depends on communication with
HBM memory. Also, we assume that offloading could be performed
with CPU or a direct memory access (DMA)-like engine similar
to Tensor Memory Accelerator (TMA) in the NVIDIA H100 [31],
and thereby requiring no computational resources on the training
accelerator. We analyze the required offloading capacity and band-
width, assuming we only store a single transformer block currently
required for computation in HBM, and allocate space worth of a
single block’s tensors that are being prefetched and offloaded, as
shown in Fig. 8. We fully overlap computation for a current block
with the offloading of the results of the previous block computations
and prefetching operands for the next one.

The bandwidth required for such seamless tensor offloading is

Bandwidthoffload ≥ Sizetensor
𝑇compute

. (1)

Depending on the size of the offloading tensors, the highest band-
width may be required when prefetching weights during the for-
ward pass; offloading activations during the forward pass; or prefetch-
ing activations, weights, and optimizer during the backward pass.

While weights and optimizer space size depend only on the
model parameters, compute time and activation size depend on
model parameters and micro-batch size. Micro-batch size heav-
ily depends on the amount of available memory and, as such, on
hardware and other software implementation choices, as we want
to increase micro-batch size as much as possible as long there is
enough memory. The best choice of offloading memory bandwidth
and capacity depends on the combination of LLM and system.

In order to determine optimal offloading memory parameters,
we set up Calculon with an offloading memory of infinite capacity
and infinite bandwidth, and reported utilized capacity and band-
width. The results for a 1 trillion-parameter LLM are presented
in Fig. 9(a) for performance and HBM consumption, and in Fig. 9(b)
for offloading memory bandwidth and capacity utilization. Utilized
bandwidth almost reaches 600GB/s, while required memory ca-
pacity is as high as 4 TiB. However, due to the greedy nature of
the search, Calculon reports required bandwidth for the absolute
best performing configuration. As seen in Fig. 6, there might exist
other configurations that have close enough performance but de-
manding fewer resources. With the desire to choose an offloading
memory that is realistic and practical, inspecting Fig. 9(a,b) shows
that there exist many configurations with good performance where
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Megatron-1T training on 4096 H100 80 GiB GPUs with a
 secondary memory available for tensor offloading

Figure 9: Tensor offloading study. 𝑡 and 𝑝 measure the de-
gree of TP and PP. (a) shows sample rate (top number) and
HBM consumption (bottom number) with ideal offloadmem-
ory with infinite size and bandwidth. (b) shows offloading
bandwidth (top number) and capacity (bottom number) con-
sumption. (c) and (d) show the same for offloading mem-
ory with 512GiB capacity and 100GB/s bandwidth. Note that
with resource abundance Calculon finds strategies that con-
sume significantly more resources. With reasonable resource
constraints, Calculon finds execution strategies with similar
performance utilizing much less resources.

the offloading memory requirements could fit in 512GiB capacity
at 100GB/s.

Fig. 9(c,d) shows the same analysis where we set the offloading
memory to 512GiB capacity at 100GB/s. Comparing Fig. 9(a) and
(c) shows the performance slowdown using offloading memory
with restricted configuration is well within 5% for many cases. At
the same time, utilized capacity and bandwidth is much lower, as
seen comparing Fig. 9(b) and (d). For the best performing split-
parallelism configuration with (𝑡, 𝑝) = (8, 2) the performance drop
is less than 3% while utilizing 56% of bandwidth and 45% capacity
of the system with an infinite offload memory.

The existence of an offloading memory significantly affects HBM
utilization and the choice of optimizations for the best performing
configuration. With offloading memory, the majority of configu-
rations, including the most performant ones, do not utilize more
than 20GB of fast HBM. The abundance of slower memory makes
using higher DP possible while making PP less appealing. While
both TP and DP communication overlap are available, Calculon
suggests configurations with higher DP and a value of TP no more
than 16. TP up to 16 can achieve best performance with a single
dimensional distribution, as described in [29], since distributing
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Figure 10: Scaling LLM efficiency training on up to 8,192
GPUs with offloading. Offloading helps keep higher effi-
ciency for LLMs with higher parameter counts.
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Figure 11: Relative speedup of LLM training on up to 8,192
GPUs due to available offloading. While providing moderate
performance improvement for large system sizes, offloading
can be instrumental for fine-tuning LLMs on small systems.

GEMM across more dimensions works better only with larger TP
partition sizes [35]. The reason for the relatively higher DP is that
it is distributed across processors in the slower network, which
requires fewer processors to fully saturate network bandwidth. In
the case of NVIDIA GPUs and NVLink, we consider allocating up
to 15 % of cores for running NCCL kernels, whereas driving the
slower network only requires 2 % of cores. Using 15 % of cores slows
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Table 3: Price and performance results for various systems and LLMs under a fixed budget of $125M.

GPT-3 175B Turing-NLG 530B Megatron 1T
HBM3 DDR5 Price Max GPUs GPUs Perf Perf/$M GPUs Perf Perf/$M GPUs Perf Perf/$M

20G 0 $22.2k 5616 5472 1117 917 5600 349 280 5120 93 82
40G 0 $25k 5000 4992 1154 924 4984 447 359 4864 219 180
80G 0 $30k 4160 3744 990 881 4080 390 318 4096 224 182
120G 0 $40k 3120 3120 861 690 3120 282 226 3072 172 140
20G 256G $24.8k 5048 4680 1209 1044 5040 518 415 4896 283 234
40G 256G $27.5k 4544 4536 1172 939 4320 386 325 4544 261 209
80G 256G $32.5k 3840 3744 990 813 3840 403 323 3840 228 182
120G 256G $42.5k 2936 2928 786 632 2880 306 250 2720 160 139
20G 512G $32.2k 3872 3744 990 820 3864 405 325 3872 230 184
40G 512G $35k 3568 3568 943 755 3360 355 302 3504 209 170
80G 512G $40k 3120 3120 837 671 2880 306 266 3072 184 150
120G 512G $50k 2496 2328 642 552 2496 266 213 2456 151 123
20G 1T $42.2k 2952 2944 790 635 2880 306 251 2944 177 142
40G 1T $45k 2776 2672 724 602 2760 293 236 2720 164 134
80G 1T $50k 2496 2328 642 552 2496 266 213 2456 151 123
120G 1T $60k 2080 2080 579 464 2016 226 187 2080 130 104

down concurrent GEMM and exposes some amount of the commu-
nication time. (If the process of GPU design compartmentalization
proceeds further, with blocks similar to TMA being able to move
data across the network, this finding is likely to change.)

The improvements to system scalability with 512GB of offload-
ing memory at 100GB/s for three LLMs appear in Fig. 10. The
impact on smaller models, such as GPT3-175B, is modest. But for
larger models, likeMegatron-1T, the improvement is muchmore sig-
nificant. Moreover, consider models like Turing-NLG 530B, which
suffer from efficiency cliffs due to the difficulty of mapping to arbi-
trary system sizes. These cliffs are mitigiated with offload capacity,
thereby reducing the plateaus of suboptimal system sizes. Offload
memory capacity provides more options to partition an LLM and
may be regarded as a cost-effective method for “future-proofing”
larger system acquisitions in support of models that might require
more non-power-of-two parallelism configurations.

Calculon estimates typical performance gains for LLM training
due to offloading to lie between 10 % and 20 % for Turing-NLG 530B
and Megatron-1T LLMs per Fig. 11. Though these values seem
modest, the decision to use offloading or not should come after
analyzing total cost of ownership (TCO), as even small efficiency
gains can accumulate during long system use time.

Where offloading shines is providing better LLM training ef-
ficiency at smaller scales. It allows the training of Megatron-1T
with high efficiency on less than 256 GPUs, which is not possible
without offloading (indicated by “infinite speedup” in the figure).
While small systems have a low aggregate performance to train
foundational models, LLM fine-tuning, which is believed to be key
in successful LLM adaptation, requires several orders of magnitude
less compute. However, we still need to have enough aggregate
memory capacity to fit LLM. Typical system design would force
LLM users to allocate more GPUs, increase model parallelism (e.g.,
TP and/or PP), and suffer some efficiency loss due to strong-scaling

issues. Offloading enables LLM training at smaller GPU counts, per-
mitting higher DP and providing better performance and efficiency.

7 OPTIMAL SYSTEM SEARCH
The key benefit of Calculon is its ability to search across a wide
range of software configurations quickly. When determining what
hardware to deploy for a data center, designers are often faced
with the challenge of choosing an optimal system under a specific
budget. In this section, we use Calculon to showcase its ability to
quickly choose from a selection of systems in order to optimize
performance per price.

For this study, we analyze the training of three different LLMs:
GPT3 175B [3], Turing-NLG 530B [45], and Megatron-1T [29] mod-
els on different systems.We base our system design aroundNVIDIA’s
H100 [31] GPU interconnected in clusters of 8 with NVLink and
between clusters with NDR InfiniBand. We use theoretical system
components and pricing as follows. An H100 without any HBM3
memory is $20k, which includes all the required infrastructure.
HBM3 memory costs $2,250, $5,000, $10,000, and $20,000 for 20
GiB, 40 GiB, 80 GiB, and 120 GiB, respectively. All HBM versions
run at 3TB/s. To add a secondary DDR5 memory to an H100 costs
$2.5k, $10k, and $20k for 256 GiB, 512 GiB, and 1 TiB, respectively.
All secondary memory options run at 100 GB/s per direction.

For a price-aware performance analysis we cap the maximum
system cost to $125M. In this case, due to cost difference for each
design, the number of H100s deployed is different based on the total
system cost constraint. We present all system options across the
full permutation of HBM3 and DDR5 options resulting in 16 system
designs. Table 3 shows these options. The “Price” column shows the
price of each H100 with its options and the “Max GPUs” column
shows the maximum GPUs that can be afforded with $125M.

For each system and LLM analyzed, we sweep across the system
size space exhaustively finding the absolute best execution strategy.
We report the used number of GPUs in the “GPUs” column for
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each LLM, as well as the performance (i.e. sample rate) and the
performance divided by system cost. Neither the least nor most
expensive system design competes very well. The system design
with the highest performance (highlighted) is the top performer for
all three LLMs. With only 256GiB of DDR5 memory it was able to
offload enough data to keep the active memory usage under 20GiB
in HBM3. This cost saving trade-off allows it to have the second
highest system size and maintain a high compute efficiency.

8 CONCLUSION
In conclusion, the value of Calculon lies in its ability to analyze
a large codesign space of hardware and software configurations,
thereby making it possible to discover new and sometimes surpris-
ing configurations that might outperform the best-known state-of-
the-art.

To help illustrate this point, we summarize some of the best
strategies discovered by Calculon in Table 4, with the resulting
performance improvements over the state-of-the-art Fig. 12. There
is a 30 % performance improvement compared to previous State-of-
the-Art from optimization strategies alone, and potential 30 % more
performance per cost improvement from a better system design
choice based on our cost model.
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Figure 12: Performance comparison of optimal execution
strategies found by Calculon with available State-of-the-Art
optimized Megatron-1T implementations.

The specific combination of optimizations discovered by Cal-
culon, to the best of our knowledge, is not implemented in any
framework. The combination of activation fusion and optimizer
sharding, significantly reduces memory requirements. But then,
counter to conventional wisdom, Calculon decided to exploit this
reduction by reducing PP and increasing DP (which benefits from
more memory). Normally, doing so would incur great communica-
tion cost. But by combining a large microbatch size with high PP
interleaving and DP communication overlap, all the cost could be
hidden behind increased per-microbatch compute time.

Table 4: Comparison of parallelization strategies.

(𝑡, 𝑝, 𝑑)(𝑡, 𝑝, 𝑑)(𝑡, 𝑝, 𝑑) m
PP
int

added
optimizations MFU

recompute (8, 64, 8) 1 2 Full recompute
p2p RS+AG 36.67%

seq par (8, 64, 8) 1 2
Attn recompute
RS+AG
RS redo for SP

49.61%

Calculon
SW optim (8, 16, 32) 2 8

TP and DP overlap
optimizer sharding
fused activation
–RS redo for SP

70.96%

Calculon
SW optim
+ offload

(8, 1, 512) 6 1
offload memory
weight + activation
+ optimizer offload

76.71%

A second counterintuitive finding is that a high HBM capacity is
not necessary for efficient LLM training. In fact, we would prefer to
have a large amount of slower and cheaper memory and rearrange
execution to better fit the application’s implicit data reuse patterns.

Overall, our findings support a hypothesis that a complete search
over the joint space of hardware and software configurations can
identify optimal configurations that may be hard or impossible
to discover using manual heuristics. Indeed, any heuristic-driven
process risks biasing exploration of the search space toward certain
known types of configurations, thereby missing others. We hope
the quick analysis facilitated by Calculon makes broad explorations
of unconventional designs more feasible.

(Note: Per Section 1, the full model description has been omitted
due to space constraints, but all details are available at the open-
source Calculon repository.)
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ARTIFACT IDENTIFICATION
The paper presents Calculon, a parameterized analytical perfor-
mance model of transformer-based Large Language Models (LLMs)
training implemented in Python. Calculon itself is the main contri-
bution of the paper. Calculon generated all of the studies and their
results presented in the paper. We made Calculon open-sourced
and available at https://github.com/paragraph-sim/calculon. We
are releasing the scripts and data needed for the result repro-
ducibility as part of a special sc23 reproducibility repository.
https://github.com/calculon-ai/sc23 The model derives from the
extensive survey of performance optimizations proposed for LLMs
training. The core analytical model performs a single calculation
of time and resource usage for a single application, system, exe-
cution strategy set. This model is given three specifications: the
LLM, the system the LLM is running on, and the execution strat-
egy describing how the LLM is run on the system, including all
the optimizations applied to execution. On top of this model, we
implemented a complete space search algorithm that concurrently
iterates on millions of specification combinations and reports the
ones that perform the best. Each calculation takes about 1 ms of
a CPU thread time, allowing it to perform extensive studies over
billions of configurations utilizing several thousand CPU core hours.
The tool can facilitate quick exploration of future LLM training
systems and a better understanding of the performance trade-offs
that exist.

REPRODUCIBILITY OF EXPERIMENTS
This document describes the structure of the project and the neces-
sary steps required to reproduce experiments from the paper. All
the plots and tables in the paper are generated using Calculon and
Python scripts that we share as part of our github repo. To repro-
duce results in the paper, simply cloning the code from github and
running reproducibility scripts locally is enough. Calculon depends
only on standard Python libraries and requires Python 3.9 or newer.
To regenerate data for larger experiments, only minimal changes to
the script are required to run it on slurm or using any similar task
manager. Details on how to run Calculon manually are provided
in the README.md file in the repository. All the necessary data
and scripts are located in the calculon-sc23 repository. The folder
is organized with subfolders for every chapter of the paper that
contains the results of the experiments. Each chapter folder has
further subfolders for every plot and table. These subfolders contain
all the data generation scripts, data itself if it cannot be generated
on a laptop promptly, and plotting scripts. The result of running the
reproducibility scripts should be identical to the results presented
in the corresponding chapter of the paper in the corresponding plot
or table. There is also a run_all script that produces results for all

of the experiments. We will also provide a colab notebook that can
regenerate all the plots for the paper. While a single Calculon cal-
culation takes about 1 millisecond, most of the experiments utilize
complete search space to find the best configuration with respect to
the study search space. Some of the studies involve running billions
of calculations. That results in O(1000) CPU core hours. Figures
2, 3, 4, 7, and 10, and Table 2, can be reproduced on a single CPU
system in less than an hour by simply running the scripts provided
in the corresponding subfolder. Figures 5, 6, 8, 9, and Table 3 take
longer to generate data and require a distributed multi-CPU sys-
tem to collect the data in a reasonable time. As such, we provide
the data generated by Calculon in the form of json files located
in the corresponding subfolder. Instead of a single reproducibility
script, we provide a script that generates the data and the script
that produces a plot from it.

ARTIFACT DEPENDENCIES REQUIREMENTS
Calculon is developed in Python 3 and requires Python 3.9 or later
and only depends on pypi available packages. As such, it is able to
run in any environment that runs Python 3.9+.We successfully used
CentOS, Ubuntu, MacOS, and Google colab during our experiments.
No pre-existing datasets are needed to run Calculon.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
General instructions on how to install and run Calculon can found
here: https://github.com/calculon-ai/calculon

For the SC ‘23 paper, a script is provided at
https://github.com/calculon-ai/calculon-sc23 that will run
Calculon and plot all results. It runs either locally on a single
machine or on a distributed cluster that has a global network
filesystem. The script performs all Calculon calculations by
issuing single machine jobs (no MPI, SHMEM, etc. needed). In
total O(10,000) jobs will be launched, many of which are only
a few minutes long. The script provides a mechanism for users
to customize the execution of jobs on their own cluster’s job
scheduler. A Chameleon Cloud interface is provided.
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