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ABSTRACT
Ab initio electronic-structure has remained dichotomous between
achievable accuracy and length-scale. Quantum many-body (QMB)
methods realize quantum accuracy but fail to scale. Density func-
tional theory (DFT) scales favorably but remains far from quantum
accuracy. We present a framework that breaks this dichotomy by
use of three interconnected modules: (i) invDFT: a methodological
advance in inverse DFT linking QMB methods to DFT; (ii) MLXC: a
machine-learned density functional trained with invDFT data, com-
mensurate with quantum accuracy; (iii) DFT-FE-MLXC: an adaptive
higher-order spectral finite-element (FE) based DFT implementa-
tion that integrates MLXC with efficient solver strategies and HPC
innovations in FE-specific dense linear algebra, mixed-precision al-
gorithms, and asynchronous compute-communication. We demon-
strate a paradigm shift in DFT that not only provides an accuracy
commensurate with QMB methods in ground-state energies, but
also attains an unprecedented performance of 659.7 PFLOPS (43.1%
peak FP64 performance) on 619,124 electrons using 8,000 GPU
nodes of Frontier supercomputer.
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1 JUSTIFICATION FOR ACM GORDON BELL
PRIZE

Largest materials simulation involving 619,124 electrons at an accu-
racy commensurate with quantum many-body methods, which is
100× larger in system-size, >100× improvement in time-to-solution
(3.3×10−2sec/GS/electron), compared to state-of-the-art quantum-
accurate methods. Unprecedented sustained performance of 659.7
PFLOPS (43.1% FP64-peak) for any ab initio ground-state (GS) cal-
culation1.

1High watermark for sustained performance is 64 PFLOPS on New Sunway (5% FP64-
peak) [37].

https://doi.org/10.1145/3581784.3627037
https://doi.org/10.1145/3581784.3627037
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3627037&domain=pdf&date_stamp=2023-11-11
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2 PERFORMANCE ATTRIBUTES

Category of peak performance,
achievement scalability, time-to-solution

Type of method used N/A
Results reported on the whole application

basis of including I/O
Precision reported mixed precision

System scale results measured on full-scale system
Measurement mechanism timers and FLOP count

3 OVERVIEW: BREAKING THROUGH THE
BARRIER ON ACCURACY/LENGTH-SCALE
TRADE-OFF IN AB INITIO METHODS

The design and discovery of new materials, be it for energy stor-
age, lightweight structures or quantum devices, relies on quantum
mechanical ab initio methods to predict wide ranging materials
properties. The efficacy of an ab initio method for materials de-
sign depends on simultaneously attaining quantum accuracy (1-5
mHa in energy/atom) and accessing large length-scales demanded
by materials applications. However, ab initio methods have been
restricted by a Pareto-like frontier, where any gain in accuracy
is met with a loss in accessible length-scale (see Fig. 1). On one
extreme (Level 4 and beyond) lie the Quantum many-body (QMB)
methods—configuration interaction (CI), coupled cluster (CC), and
quantum Monte Carlo (QMC)—which offer a direct solution to
the many-electron Schrödinger equation, and, hence, attain quan-
tum accuracy. However, they suffer from high computational com-
plexity of O(𝑒𝑁 ) –O(𝑁 6) (𝑁 : number of electrons), limiting their
reach to O(103) electrons. Density functional theory (DFT) (Level
1-3), on the other hand, provides a formally exact reduction of the
many-electron Schrödinger equation to an equivalent system of
non-interacting single electrons [1], offering an O(𝑁 3) ab initio
method that can scale. The cornerstone of this simplification is
the exchange-correlation (XC) functional, which encapsulates the
quantum many-electron interactions. The XC functional, expressed
as an energy (𝐸xc) or a potential (𝑣xc), is known to be a universal
functional of the electron density (𝜌 (r)), making DFT, in principle,
an exact theory. However, in practice, the unavailability of this
universal XC functional necessitates the use of approximations.
Existing approximations, in increasing accuracy and complexity,
can be categorized into three levels [2]: local density approxima-
tion (LDA) at Level 1, generalized gradient approximation (GGA) at
Level 2, and hybrid functionals at Level 3. However, as evident from
Fig. 1, all levels of XC approximation remain far from quantum
accuracy. Further, conventional approaches to model the XC func-
tional, based on either idealized model systems or semi-empirical
fitting, make systematic improvements difficult. Thus, with the
high computational complexity of QMB methods on one hand and
the inaccuracies of the XC approximations in DFT on the other,
breaking through the accuracy/length-scale trade-off has remained
elusive.

In this work, we present an advance that breaks through the bar-
rier on accuracy/length-scale trade-off to realize large-scale ab initio
simulations approaching quantum-accuracy (see Fig. 1). The main

Figure 1: The barrier of accessible system size at various levels
of increasingly accurate theories in ab initio electronic structure
calculations. Accuracy of various levels of theory is based on ground-
state energies from benchmark data sets.

idea is to integrate machine-learned modeling of the XC functional,
informed by data from QMB methods, with various numerical and
HPC innovations for large-scale DFT. This is realized by interfacing
three modules:
(i) invDFT: A methodology advance [3, 4] providing an accurate and
scalable solution to the numerically challenging inverse DFT prob-
lem of finding the exact XC potentials corresponding to electron
densities from QMB methods. This forms our interface between
QMB methods and DFT.
(ii) MLXC: A physics-informed deep neural network (DNN) based
XC functional trained using the exact XC potentials obtained from
invDFT.
(iii) DFT-FE-MLXC: A highly scalable hybrid CPU/GPU DFT code
based on spatially adaptive and systematically convergent higher-
order spectral finite-element (FE) basis that interfaces with MLXC to
enable large-scale DFT calculations at quantum accuracy. Here, we
build upon our DFT-FE code [5] (Finalist, 2019 Gordon Bell prize [6])
with a host of HPC innovations—high arithmetic intensity FE-cell-
level linear algebra, strategic use of mixed precision, asynchronous
compute and communication schemes—to enhance the scalability
and performance on exascale architectures. These HPC innovations
are also used in our scalable implementation of invDFT.

The combination of the above modules paves a path for quantum-
accurate ab initio calculations on systems with O(105) electrons—a
staggering improvement over the O(103) electrons accessible to ex-
isting QMB methods (see ‘Level 4 & beyond’ in Fig. 1). Notably, we
attain a sustained performance of 659.7 PFLOPS on 8,000 Frontier
nodes at a throughput efficiency of 43.1% of FP64 peak, which is un-
precedented for any ab initio calculation of ground-state properties,
let alone calculations approaching quantum accuracy. This advance
unlocks wide-ranging scientific applications from structural ma-
terials, energy materials, chemical sciences to catalysis, hitherto
constrained by the accuracy/length-scale trade-off in ab initiometh-
ods. We demonstrate the capabilities of this framework by focusing
on two such important scientific problems that are computation-
ally challenging, owing to the inherent long-ranged electronic and
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atomic interactions, and the requirement of higher quantum ac-
curacy that has been elusive at such scales. The first application
problem relates to quasicrystals—a novel class of materials with
long-ranged order but aperiodic structure [7]—which demonstrate
exotic physical, magnetic, and electronic properties compared to
conventional crystals [8–10]. One long-standing question in qua-
sicrystals has been the direct quantification of their thermodynamic
stability relative to crystalline phases with the same composition.
The developed framework has been used to address this challenge
for the first time, where the competition between bulk energies and
surface energies of quasicrystals compared to the crystalline phase
is revealed. The YbCd quasicrystal nanoparticles investigated in
this study required accurate ground-state calculations, with struc-
tural relaxation, on system sizes of ∼2,000 atoms (∼40,000 electrons
(e− )). The second example pertains to the study of magnesium (Mg)
pyramidal (<c+a>) dislocation system, which is critical to the de-
sign and realization of lightweight structural alloys [11]. The main
technological hurdle in the industrial use of Mg alloys is its low duc-
tility, making it challenging to form complex parts. The ductility of
Mg alloys can be improved by activating the pyramidal dislocation
system [12], which in turn is dependent on: (i) the energetics of pyra-
midal I, II dislocations; (ii) the interaction of pyramidal dislocations
with other defects—substitutional solutes, and extended defects
such as twin and grain boundaries. In [6], we computed the cell-
size converged energy difference of pyramidal I and II dislocations
(relaxed configurations), Δ𝐸𝐼−𝐼 𝐼 , in Mg—an outstanding question
in the field due to the need for highly accurate large-scale DFT cal-
culations. We obtained Δ𝐸𝐼−𝐼 𝐼=16 meV per nanometer dislocation
length, a result requiring simulation of ∼10,000 atoms (∼100,000 e− )
to attain cell-size convergence. Herein, we focus on the interaction
of dislocations with other defects—transition metal solutes and twin
boundary—and demonstrate the ability to accurately compute the
energetics of interacting extended defects using simulations with
O(105) e− . Further, in both science applications, the electronic
structure may not be well described by existing XC functionals
due to the presence of transition metals. Thus, the capability of
DFT-FE-MLXC to conduct fast and quantum-accurate large-scale
materials simulations is instrumental in addressing these problems.

4 CURRENT STATE OF THE ART
The development of increasingly accurate and efficient ab initio
methods is a subject of unending quest. Below, is a review of the
state-of-the-art in the two paradigms of ab initio methods—QMB
methods and DFT. In Table 1 we provide the attributes of a subset
of the works discussed below.
Quantum many-body (QMB) methods: Among the QMB meth-
ods, configuration interaction (CI), coupled cluster (CC) and quan-
tumMonte-Carlo (QMC) constitute the state-of-the-art, offering the
quantum accuracy of 1-5 mHa in ground-state energies (Level 4 &
beyond). The CI [13] method offers the most accurate description by
expanding themany-electronwavefunction,ΨQMB (r1, r2, . . . , r𝑁 ) ∈
R3𝑁 , as a linear combination of all Slater determinants possible in a
given basis. However, due to combinatorial increase in the number
of determinants, the problem is intractable beyond 𝑁 ∼ O(10) [14].

Incremental full-CI has pushed the limits of CI by providing a poly-
nomial scaling approximation to full-CI, while retaining similar ac-
curacy. However, its steep O(𝑁 8) scaling restricts 𝑁 ∼ O(102) [15].
The CC [16] methods are similar in approach to CI, albeit with
approximated linear coefficients for the Slater determinants, and,
hence, are less accurate than CI. While typical CC methods scale as
O(𝑁 6), recently, linear-scaling methods have been proposed [17].
However, linear-scaling CC methods have a high computational
prefactor and have not yet been demonstrated on multi-node, result-
ing in walltime of 18 days for 𝑁 ∼ 4000. QMC, in its most popular
variant of diffusion Monte Carlo [18], offers an O(𝑁 3) stochastic
Green’s function based approach that, although less accurate than
CI and CC, is still quantum accurate with ∼ 5mHa accuracy in
ground-state energies. However, QMC suffers from a high compu-
tational prefactor that limits its present reach to 𝑁 ∼ O(103) [19].
Density functional theory (DFT): DFT, by virtue of reducing the
many-electron problem to an effective single-electron problem, can
handle larger system sizes than QMB methods. Nonetheless, DFT
is faced with the dual challenges of accuracy and efficiency that
impede its use for large-scale materials modeling. The accuracy
challenge, more acute of the two, stems from the use of approxima-
tions to the XC functional that encapsulates the quantum many-
body interactions as a mean-field of the electron density. As noted
earlier, all the three levels of XC approximation—LDA (Level 1),
GGA (Level 2), and hybrid (Level 3)—are considerably away from
quantum accuracy. This accuracy limitation plagues all past efforts
at large-scale DFT, including those listed in Table 1 and discussed
below. Besides accuracy, DFT confronts an efficiency challenge
from its O(𝑁 3) scaling, entailed in solving the non-linear Kohn-
Sham (KS) eigenvalue problem (see Sec. 5). Additionally, meaning-
ful prediction of materials properties places stringent demands on
discretization schemes, requiring discretization errors below 10−4
Ha/atom and 10−4 Ha/Bohr in energy and forces. As a result, rou-
tine DFT calculations are limited to O(103) electrons. Past attempts
to improve efficiency progressed on two complementary paths. The
first aimed at efficient spatial discretization schemes that reduce
the cost of KS eigenvalue problem. The planewave (PW) basis—for
its systematic convergence and efficiency enabled by its spectral
convergence—remains the most popular basis and has been adopted
in many DFT codes, such as VASP [21], Quantum Espresso [22],
and QBox [23] (2006 Gordon Bell prize). Despite the popularity, the
extended nature of the PW basis greatly impedes its parallel scala-
bility. The other popular basis in quantum chemistry codes is the
Gaussian basis [24, 25], or those based on atomic orbitals [27]. The
CP2K code [25] was a key component in the work of [26] (2019
Gordon Bell). However, the Gaussian basis lacks systematic conver-
gence, making it difficult to attain the desired accuracy, especially
for metallic systems. These limitations have spurred the develop-
ment of systematically convergent real-space methods based on
finite-difference (FD) [28–30] discretization ( [31] 2011 Gordon Bell
prize) and the finite-element (FE) [5, 32, 33] basis ( [6] Finalist, 2019
Gordon Bell prize), both providing good parallel scalability. An-
other direction for improving efficiency of DFT calculations entails
the development of reduced-order scaling approaches that exploit
the locality of the density matrix, resulting in O(𝑁 )-O(𝑁 2) scal-
ing [34, 35]. In [36] (Finalist, 2016 Gordon Bell prize) large-scale ab
initio molecular dynamics was showcased by employing an O(𝑁 )
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Table 1: State-of-the-art for various levels of theory in electronic structure calculations (see Fig. 1) and their various attributes. For DFT
calculations (Levels 1-3), only works using a complete basis and methods that are generically applicable to any materials system are
provided, which is the case for DFT-FE and DFT-FE-MLXC. Section 4 provides a broader discussion, including other approaches. AE and PSP
denote all-electron and pseudopotential calculations, respectively. Wall times, as reported, are provided per self consistent field (SCF)
iteration or per full ground-state (GS) calculation. Typically, a ground-state calculation comprises of 30-50 SCF iterations.

Work Basis Versatility
AE/PSP

Benchmark System Machine
(CPU cores/GPUs)

Wall time
(mins)

PFLOPS
(% of peak)

RSDFT [31] (2011) FD PSP
Si nanowire

107K atoms, 430K e−
K

(450K cores) 73.6 / SCF 7.1 (43.6%)

Le
ve
l1

QBox [23] (2008) PW PSP
Mo

(1K atoms, 12K e−)×8 𝑘-pts¶
BlueGene/L
(125K cores) 8.8 / SCF 0.2 (56.5%)

DFT-FE [6] (2019) FE AE/PSP
Mg dislocation

10K atoms, 100K e−
Summit

(22,800 GPUs) 2.4 / SCF 46 (27.8%)

Le
ve
l2

PARSEC [30] (2023) FD PSP
Si nanocluster

100K atoms, 400K e−
Frontera

(115K cores) 2,808 / GS –

Le
ve
l3 Hybrid DFT,

ACE [38] (2017) PW PSP
Si bulk

4,096 atoms, 16K e− NERSC Cori-KNL
(8K cores)

30 / SCF –

QMCPACK [20]
(2018) PW PSP

NiO supercell
128 atoms, 1,536 e−

Titan
(18000 GPUs) 294.7 / GS –

QMCPACK [19]
(2020) PW PSP

NiO supercell
512 atoms, 6,144 e− – – –

LNO-CCSD(T) [17]
(2019) Gaussian AE

Lipid transfer protein
1,023 atoms, 3,980 e−

Intel Xeon PC
(6 cores) 26,064 / GS –

iFCI, QChem [15]
(2021) Gaussian AE

Transition metal complex
47 atoms, 192 e− – – –

MCSCF, NWChem [14]
(2017)

Gaussian AE
Cr trimer

3 atoms, 72 e−
Cori Haswell
(2048 cores) 57.8 / SCF –

This Work
DFT-FE-MLXC FE AE/PSP

Extended defects in Mg-Y alloy Frontier
I. (36K atoms, 76K e−)×4 𝑘-pts¶ (19,200 GCDs) 3.7 / SCF 226.3 (49.3%)

Le
ve
l4

&
be
yo

nd

II. (74K atoms, 155K e−)×4 𝑘-pts¶ (64,000 GCDs) 8.6 / SCF 659.7 (43.1%)
¶ In simulations using 𝑘-point sampling (QBox, DFT-FE-MLXC), the total number of electrons in the supercell are obtained by multiplying with the number of 𝑘-pts: number
of electrons in the supercell for QBox are 96K e− , DFT-FE-MLXC system I are 302K e− and system II are 619K e− .

method. In [37] (Finalist, 2022 Gordon Bell prize), the quasi-2D
geometry was exploited to conduct large-scale DFT calculations
with O(𝑁 1.5) scaling using a discontinuous Galerkin formulation
with PEXSI solver [35]. The work of [37] is the high watermark for
sustained performance in ground-state calculations—64 PFLOPS on
New Sunway at 5% efficiency. While reduced-order scaling meth-
ods provide access to larger systems sizes, they are not generically
applicable to all materials systems. Notably, on the accuracy front,
all the aforementioned works used either LDA or GGA approxima-
tions for the XC functional (Level 1, 2 in Fig. 1, Table 1). Hybrid
DFT calculations (Level 3) were demonstrated using PW basis on
4,000 atoms of bulk Silicon in [38].

Overall, the current state-of-the-art in electronic structure meth-
ods is either limited by the accuracy of DFT calculations due to
approximations in the XC functional, or limited by the accessible

system sizes of O(103) electrons using QMB methods. The frame-
work developed in this work integrates the accuracy of QMB meth-
ods with the computational efficiency afforded by DFT to enable
large-scale materials simulations at quantum accuracy. Notably, as
will be demonstrated, using XC functionals constructed from exact
XC potentials corresponding to QMB densities, DFT-FE-MLXC is
able to achieve systematically convergent materials simulations on
O(105) electrons at an accuracy commensurate with QMBmethods.

5 INNOVATIONS REALIZED
This work combines the accuracy provided by QMB methods with
the efficiency of DFT to access larger length scales at quantum
accuracy, which are otherwise beyond the reach of conventional
approaches. This ability to perform large-scale, fast, and system-
atically convergent materials simulations (on generic materials
systems) at an accuracy commensurate with QMB methods is a
result of advances in the methods and algorithms as well as HPC
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Figure 2: Overview of our approach, enabling large-scale materials simulations at quantum accuracy

innovations. Figure 2 provides an overview of the various aspects
of this work. Below, we discuss the details that are central to the
developed capabilities.

As noted, DFT provides a formally exact reduction of the many-
electron Schrödinger equation to an equivalent system of non-
interacting electrons in an effective mean field governed by the
electron density (𝜌 (r)). Computing the ground-state in DFT entails
a self consistent field (SCF) iteration solving the non-linear Kohn-
Sham (KS) eigenvalue problem:

(
− 1
2
∇2 + 𝑣N (r) + 𝑣H [𝜌 ] (r) + 𝑣xc [𝜌 ] (r)

)
𝜓KS
𝑖 (r) = 𝜖𝑖𝜓

KS
𝑖 (r), (1)

where 𝜌 (r) = ∑
𝑖 𝑓𝑖 |𝜓KS

𝑖
(r) |2 is electron density; {𝜖𝑖 ,𝜓KS

𝑖
} are the

eigenpairs of the KS Hamiltonian; 𝑣N and 𝑣H are electrostatic po-
tentials corresponding to the nuclei and electron density; 𝑣xc is XC
potential; 𝑓𝑖 denotes the occupancy of the 𝑖th state, evaluated using
the Fermi-Dirac distribution. The accuracy afforded by DFT is solely
governed by the XC functional, 𝐸xc [𝜌], with 𝑣xc [𝜌] =

𝛿𝐸xc
𝛿𝜌

. The
existing approximations for XC in DFT remain far from quantum
accuracy (see Fig. 1, Fig. 3), and this remains a major hurdle.

5.1 Inverse DFT: Solving an open problem
Inverse DFT [39] provides a powerful link between QMB methods
and DFT by finding the exact XC potential (𝑣xc (r)) corresponding
to an electron density (𝜌QMB (r)) obtained from a QMB calculation.
Subsequently, the {𝜌QMB, 𝑣

exact
xc } pairs obtained from inverse DFT

allows us to learn 𝑣xc as a functional of 𝜌 (i.e., model 𝑣xc [𝜌]), and
hence, model the XC functional in DFT. Though seemingly sim-
ple, an accurate solution to the inverse DFT problem has remained
an open problem for past 30 years, owing to its numerical chal-
lenges. Previous attempts suffered from ill-conditioning, resulting
in spurious oscillations and/or non-unique solutions in 𝑣xc. This ill-
conditioning stems from: (i) incompleteness of the Gaussian basis
employed [40]; (ii) incorrect asymptotics in the Gaussian densities
obtained from QMB methods [41], i.e., lack of cusp at nuclei and
incorrect far-field decay. We recently proposed an accurate and
robust solution to inverse DFT, using FE basis [3, 4]. We use sys-
tematically convergent (complete) adaptive higher-order FE to: (i)
render the discrete inverse problem well-conditioned; (ii) efficiently
handle the oscillatory electronic fields, characteristic of all-electron
DFT. Importantly, we mitigate the spurious artifacts arising from
the Gaussian densities by: (i) adding a cusp-correction to 𝜌QMB (r)
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near the nuclei; (ii) applying the physical −1/𝑟 boundary condi-
tion on 𝑣xc (r) in the far-field. These asymptotic corrections rely
on two key attributes of FE: 𝐶0 continuity (which admits a cusp)
and the seamless handling of general boundary conditions. For-
mally, inverse DFT finds the 𝑣xc (r) that minimizes the difference
between target (𝜌QMB (r)) and KS (𝜌KS (r)) densities, subject to the
condition that 𝜌KS (r) is obtained from the KS eigenvalue problem
(cf. ‘Inverse DFT’ in Fig. 2). We solve this as a PDE-constrained
optimization that results in two key equations. The first is the KS
eigenvalue problem (Eq. 1), albeit with 𝑣xc being unknown (i.e.,
updated iteratively). The second is the adjoint equation, given as(

−1
2
∇2 + 𝑣N (r) + 𝑣H (r) + 𝑣xc (r) − 𝜖𝑖

)
𝑝𝑖 (r) = 𝑔𝑖 (r) , (2)

where 𝑝𝑖 (r) is the adjoint function enforcing the KS eigenvalue
problem for𝜓KS

𝑖
(r), and𝑔𝑖 (r) is defined in terms of 𝜌QMB (r), 𝜌KS (r)

and 𝜓KS
𝑖

(r). Subsequently, 𝑢 (r) = ∑
𝑖 𝑝𝑖 (r)𝜓KS

𝑖
(r) provides the it-

erative update to 𝑣xc (r). Our invDFT module encapsulates this
approach.

5.2 Learning density functionals from exact XC
potentials

We use the {𝜌QMB, 𝑣
exact
xc } pairs, obtained from the invDFT mod-

ule, to learn a deep neural-network (DNN) based XC functional
(𝐸ML

xc [𝜌]). We note that learning 𝐸ML
xc [𝜌] entails a map from a

field (𝜌) to a scalar (𝐸ML
xc ), which can result in a brittle model.

Thus, we transform the learning into a field-to-field map by re-
casting it in terms of the XC energy density (𝑒ML

xc [𝜌]), as 𝐸ML
xc [𝜌] =∫

𝑒ML
xc [𝜌] (r) 𝑑r. We model 𝑒ML

xc [𝜌] as

𝑒ML
xc [𝜌] (r) = 𝜌4/3 (r)𝜙 (r)𝐹DNN (𝜌, 𝜉, 𝑠) . (3)

In the above, 𝐹DNN is modeled as a DNN with 𝜌 , 𝜉 , 𝑠 as input
descriptors, where 𝜉 is the relative spin density 𝜉 (r) = (𝜌↑ (r) −
𝜌↓ (r))/𝜌 (r); 𝜙 (r) = 1

2

(
(1 + 𝜉 (r))4/3 + (1 − 𝜉 (r))4/3

)
; and 𝑠 (r) =

(3𝜋2)1/3 |∇𝜌 (r) |/(2𝜌4/3 (r)). This form of 𝑒ML
xc , by design, satisfies

translational and rotational equivariance. The explicit inclusion
of spin information via 𝜉 is crucial in describing spin-polarized
systems. The choice of the 𝜌4/3 and 𝜙 as prefactors enforces known
coordinate- and spin-scaling relations. Given that the exact 𝑒xc (r)
is unknown, we use a composite loss function comprising of mean
squared errors (MSE) in XC energy (𝐸xc) and density-weighted
XC potential (𝜌QMB𝑣xc), with 𝑣ML

xc (r) = 𝛿𝑒ML
xc [𝜌 ] (r)
𝛿𝜌 (r) inexpensively

obtained via back-propagation. Our DNN has 5 layers, 80 neu-
rons/layer, with ELU activation. We train the DNN using a small
training set of {𝜌QMB, 𝑣

exact
xc } for two molecules (H2 and LiH) and

three atoms (Li, N, and Ne). The resultant model, termed MLXC,
is tested against a standard thermochemistry dataset [42] of main
groupmolecules, routinely used to evaluate XC functionals. Figure 3
compares accuracy of MLXC against widely used XC approximations
(Level 1-3), in terms of energy/atom, with MLXC remarkably better
than existing XC approximations. Notably, MLXC attains an accu-
racy of 7 mHa/atom—very close to accuracy of QMB methods. The
promising accuracy of MLXC, trained with limited data, underscores
the importance of using exact XC potentials and physics-informed
modeling to improve the XC functional.

Figure 3: Comparison of MLXC with XC approximations in DFT.

5.3 Efficient and scalable solver strategies
The solution to KS eigenvalue problem (Eq. 1) constitutes most of
the computational cost in DFT. In Inverse DFT, each iteration of
PDE-constrained optimization is dominated by: (i) KS eigenvalue
problem (same as DFT); (ii) adjoint problem (Eq. 2). We provide
efficient numerical strategies to solve the eigenvalue and adjoint
problems, discretized in an adaptive higher-order spectral (Löwdin
orthonormalized) FE basis [43].

5.3.1 Adjoint Solve. We solve (H̃ − 𝜖𝑖 I)p̃𝑖 = g̃𝑖 using a precondi-
tioned block-MINRES solver. The key idea is to construct Krylov
subspaces, within the MINRES solver, for blocks of p̃𝑖 ’s, i.e., apply
H̃ to a block P̃ of p̃𝑖 ’s. This allows us to exploit high arithmetic
intensity linear algebra tailored for FE (see Sec. 5.4.1). We also
precondition the MINRES solver with the inverse diagonal of the
discrete Laplacian, an inexpensive yet effective preconditioner. No-
tably, this provides a ∼ 5× reduction in the number of MINRES
iterations.

5.3.2 Chebyshev filtered eigensolver (ChFES). We solve the discrete
KS eigenvalue problem, H̃𝝍̃𝑖 = 𝜖𝑖 𝝍̃𝑖 , by employing a fast and effi-
cient eigensolver for 𝑁 ∼ O(105) (see ‘Large-scale DFT’ in Fig. 2).
We use the Chebyshev filtering procedure [43, 44] that exploits
the fact that the eigenstates of interest are the occupied states at
lower end of eigenspectrum (wanted eigenspectrum). A scaled-and-
shifted Hamiltonian (H̄ = 𝑐1H̃ + 𝑐2) is constructed such that the
‘wanted eigenspectrum’ of discrete KS Hamiltonian (H̃) is mapped
to (-∞, -1) and the remainder to (-1,1). Chebyshev polynomials
grow fast in (-∞, -1) but take small values in [-1,1]. Thus, upon
applying a Chebyshev polynomial filter of degree𝑚 (𝑇𝑚 (H̄)) on an
input subspace 𝚿̃in, we obtain a resultant subspace of Chebyshev
filtered vectors, 𝚿̃𝑓 , that is a good approximation to the ‘wanted
eigenspace’. The approximation error decreases systematically with
𝑚. We efficiently cast the Chebyshev filtering as recursive evalu-
ation of H̄𝚿̃in (see CF in Algorithm 1). Further, the Chebyshev
filter is applied to a block of wavefunction vectors simultaneously
which lends to efficient implementation (Sec. 5.4.1). Subsequently,
the desired eigenstates are computed by projecting the discrete KS
eigenvalue problem onto the subspace spanned by 𝚿̃𝑓 (see RR in
Algorithm 1).
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Algorithm 1 ChFES procedure: [𝚿̃,D] = ChFES
(
𝚿̃in, H̄

)
𝚿̃:𝑀 × 𝑁 matrix 𝑀 : # FE basis (DoF) 𝑁 : # electrons.
𝚿̃in = 𝚿̃ from previous SCF step.

1: [CF] Chebyshev polynomial filtering: 𝚿̃𝑓 = 𝑇𝑚 (H̄)𝚿̃in, 𝑇𝑚+1 (H̄) =

2H̄𝑇𝑚 (H̄) − 𝑇𝑚−1 (H̄) . (O(𝑀𝑁 ))
2: [CholGS]: Cholesky Gram-Schmidt Orthonormalization

a: [CholGS-S] Overlap matrix, S = 𝚿̃

†
𝑓 𝚿̃𝑓 . (O(𝑀𝑁 2 ))

b: [CholGS-CI] Cholesky Inverse. Compute L−1, s.t. S = LL†. (O(𝑁 3 ))
c: [CholGS-O] Orthonormalization: 𝚿̃o=𝚿̃𝑓 L−1†. (O (𝑀𝑁 2 ) )

3: [RR] Perform Rayleigh-Ritz step:
a: [RR-P] Projected Hamiltonian: Ĥ = 𝚿̃

†
oH̃𝚿̃o. (O(𝑀𝑁 2 ))

b: [RR-D] Diagonalization: ĤQ = QD. (O(𝑁 3 ))
c: [RR-SR] Subspace rotation: 𝚿̃ = 𝚿̃oQ. (O(𝑀𝑁 2 ))

5.4 HPC Innovations
The overall trend in pre-exascale and exascale architectures has
been a significant increase in single-node peak compute perfor-
mance relative to modest increases in inter-node and intra-node
data movement bandwidths. Thus, high throughput performance
at large node counts requires strategies that increase arithmetic
intensity but reduce data movement. To that end, we use a com-
bination of four broad strategies to boost the GPU acceleration
and extreme parallel scaling of the key computational kernels in
DFT-FE-MLXC (Algorithm 1) and invDFT (adjoint solve). Below, we
discuss these strategies and provide relevant performance bench-
marks for them.
5.4.1 FE cell level dense linear algebra. Y𝑏 = HX𝑏 is the main
computational kernel in CF and adjoint solve, involving the FE
discretized sparse matrix, H, and a dense matrix, X𝑏 , representing
a column block of 𝚿̃in in Algorithm 1 (or P̃ in adjoint solve) with
block size 𝐵𝑓 . This operation incurs high memory access costs if
performed using conventional approaches at the global level. We
significantly reduce the access costs by recasting Y𝑏 = HX𝑏 as
Y𝑏 = AssemblyFE

{
H𝑐𝑖 X

𝑏
𝑐𝑖

}
(cf. ‘Exascale Computational Frame-

work’ Fig. 2), where AssemblyFE denotes the assembly operation of
contributions from all FE cells into Y𝑏 . Using this form, which ex-
ploits the FE cell structure, we efficiently perform small dense-dense
matrix multiplications by using massive fine-grained parallelism
available on GPUs through xGEMMStridedBatched BLAS calls. Im-
portantly, we employ a recent reformulation [33] of the problem
that decouples the FE mesh nodes from the positions of nuclei,
allowing the use of higher-order FE of polynomial degree 𝑝 = 6− 8,
as compared to 𝑝 = 4 − 5 used previously. This provides faster
convergence in the discretization error (O(ℎ2𝑝 ) in energy, ℎ being
the size of the FE cell) leading to significant reduction in degrees of
freedom (DoF) required to achieve the desired discretization errors
of 10−4 Ha/atom and 10−4 Ha/Bohr in energy and ionic forces. Co-
incidentally, a large 𝑝 also results in relatively larger FE cell matrix
sizes—93 × 93 for H𝑐𝑖 for 𝑝 = 8—that provides higher throughput
efficiency on GPUs.

These implementation innovations provided high throughput
performance for CF step on hybrid CPU-GPU architectures, see
Fig. 4. Performance is measured on a dislocation system in Mg-Y
alloy with (6,016 atoms, 12,041 e−)×2𝑘-points, using 𝑝 = 8. The

Figure 4: Chebyshev filtering (CF) performance for various wave-
function block sizes 𝐵𝑓 , using DislocMgY (see Sec 6.2) with (6,016
atoms, 12,041 e−)×2𝑘-pts. FE DoF: ∼ 96 × 106; FE poly. degree: 8.

performance, measured as percentage of the theoretical FP64 peak
FLOPS, increases with block size 𝐵𝑓 due to improved arithmetic in-
tensity of xGEMMStridedBatched operations, improved utilization
of memory and interconnect bandwidths in level 1 BLAS and FE
partition boundary communication operations in CF step (cf. Fig. 2).
Comparing the performance achieved for 𝐵𝑓 = 500 on various
architectures, we obtain high throughput efficiencies of 56.3% and
41.1% on Summit NVIDIA V100 and Crusher AMD M1250X GPU
nodes. The 1.4× reduction of throughput efficiency on Crusher rel-
ative to Summit correlates well with the 1.7× increase in the peak
FP64 FLOPS to HBM memory bandwidth ratio of a Crusher node
relative to a Summit node. On Perlmutter A100 GPU nodes, we
achieve a very high efficiency of 85.7%. This is attributed to the use
of FP64 tensor cores that provide 2× higher peak FLOPS compared
to FP64 cores, which we verified via NVIDIA’s Nsight profiler2.

5.4.2 Mixed precision algorithms. We employed mixed precision
strategies to reduce communication and computational costs in
the key computational steps (Algorithm 1). First, in CF step, the
AssemblyFE operation in HX kernel (Sec. 5.4.1) involves point-to-
point MPI communication across FE domain decomposition par-
tition boundaries. The FE nodes on partition boundaries are far
fewer than the total number of FE nodes. In view of this, we use
FP32 arithmetic for boundary communication, and this has been
observed to retain FP64 accuracy, while reducing the communica-
tion cost by ∼ 2×. Further, as the Chebyshev filtered wavefunctions
(𝚿̃f) iteratively approach the eigenvectors corresponding to the 𝑁
lowest eigenstates, the off-diagonal entries of S = 𝚿̃

†
𝑓 𝚿̃𝑓 , computed

in the CholGS step, converge to zero as the SCF approaches con-
vergence. Thus, as shown in Fig. 2, we compute the diagonal block
entries of S in FP64 arithmetic, while the off-diagonal entries are
computed in FP32 arithmetic. We also use similar mixed-precision
strategies in the RR step, significantly reducing the computational

2We are unable to verify usage of AMD MI250X’s FP64 matrix cores on Crusher due to
technical issues of using the ROCm profiler in the GNU compiler environment, which
is the only environment that presently worked for compiling the full DFT-FE-MLXC
application.
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prefactor of the O(𝑀𝑁 2) steps. The accuracy and robustness of
these mixed precision strategies have recently been demonstrated
in [5, 33], with the error in energy and forces being well within the
target discretization accuracy.
5.4.3 Asynchronous GPU compute and data-movement. The blocked
approach employed in ChFES (cf. Fig. 2) allowed us to devise strate-
gies to overlap GPU computations with data movement—MPI com-
munication and host-device data transfers. In the CF step, HX is
computed using column blocks of X. If X𝑘 denotes the 𝑘th block of
X, the GPU compute of HX𝑘 is executed concurrently with partition
boundary communication calls in computation of HX𝑘−1 (previous
block). Considering CholGS-S step, S = X†X, the GPU computa-
tions of S𝑘𝑝 = X†

𝑝X𝑘
𝑝 for block-𝑘 (in every task 𝑝) are executed

concurrently with GPU aware allreduce collective operation in
forming S𝑘−1 =

∑
𝑝 S𝑘−1𝑝 , followed by data movement of copy-

ing S𝑘−1 to a parallel (ScaLAPACK) matrix. Our implementation
makes use of two GPU streams, one for compute operations, the
other handling data movement. We pass the data movement tagged
GPU stream 𝑖𝑑 to GPU direct optimized collective communication
libraries (NCCL/RCCL), as will be discussed below. Along simi-
lar lines, we also implemented asynchronous compute and data
movement for the RR-P and RR-SR steps.
5.4.4 Efficient use of GPU aware MPI libraries. We further boost
the strong scaling of CF, CholGS and RR steps by efficient use
of hardware aware MPI communication libraries that exploit fast
interconnects between the GPUs inside a node. For FE boundary
communication in CF, we perform non-blocking point-point MPI
communication using GPU aware MPI library such as the Cray
MPICH on Frontier/Crusher and Perlmutter, which provides around
1.5× speedup in wall-times for the CF step. In the CholGS and RR
steps, we use GPU aware NCCL and RCCL libraries to perform
allreduce calls. Our internal benchmarks on RCCL with AWS-OFI-
RCCL plugin demonstrate an order of magnitude improvement in
allreduce bus bandwidth achieved on Frontier compared to Cray
MPICH. However, we restrict RCCL usage in DFT-FE-MLXC to under
1000 Frontier nodes, as beyond that RCCL has stability issues3.

We now present the improvements in strong scaling performance
realized by our mixed precision and asynchronous compute/data
movement. We consider YbCd quasicrystal nanoparticle comprising
of 1,943 atoms (40,040 e−). Figure 5 shows the wall-time per SCF
iteration step for 240 to 1,920 Summit nodes. As evident, the mixed
precision and asynchronous compute/data movement strategies
provide a substantial improvement of 1.8× in the minimum wall-
time over the baseline. The strong parallel scaling efficiency at 1920
nodes improved to 54% from the baseline of 36% at the same 1920
nodes.

6 HOW PERFORMANCEWAS MEASURED
6.1 Systems and Environment
All simulations are executed on OLCF Frontier/Crusher4, Summit
and NERSC Perlmutter supercomputers. Frontier is currently the
fastest supercomputer, with ∼1.8 exaFLOPS FP64 theoretical peak.

3This is a known issue. When fixed, we anticipate up to a 1.5× reduction in computa-
tional times for the O(𝑀𝑁 2 ) steps.
4Crusher is a test system with same architecture as Frontier

Figure 5: Strong scaling of DFT-FE-MLXC on Summit. Case study:
YbCd quasicrystal nanoparticle (Yb295Cd1648) with 1,943 atoms,
40,040 e− . FE DoF: 75,069,290.

Each Frontier node consists of 4 AMD MI250X GPUs with two
Graphic Compute Dies (GCDs) in each GPU and 64-core AMD
“Optimized 3rd Gen EPYC” CPU. The theoretical peak FP64 per-
formance5 per GPU in the above machines are 47.8 TFLOPS, 7.8
TFLOPS and 9.7 TFLOPS for Frontier, Summit and Perlmutter, re-
spectively, which are used in our throughput efficiency analysis.
On Frontier, we have compiled DFT-FE-MLXC using ROCm/5.4.0,
GNU/11.2.0 and Cray-MPICH/8.1.26.

6.2 Applications used to Measure Performance
We consider two challenging application problems due to the pres-
ence of transition metal elements, where existing XC approxima-
tions are deficient, and the requirement of large length scales. Our
first application problem is computing the bulk and surface energy
of a Tsai-type icosahedral quasicrystal [10]–YbCd5.7. This is aimed
at understanding size-dependent stability of the aperiodic, long-
range ordered quasicrystal relative to their crystal counterparts.
Accordingly, we choose a large Yb295Cd1648 nanoparticle with 1,943
atoms, 40,040 e− (Fig. 6) as our benchmark system.

The second application problem is the magnesium (Mg) pyra-
midal (<c+a>) dislocation system. Accurate ab initio computed
energetics of <c+a> dislocations and their interactions with other
defects are crucial for aiding the design of lightweight structural
alloys [11]. However, these calculations require well-converged
simulations on systems with many tens of thousands of atoms that
have been out of reach.We demonstrate the capability of computing
interactions between extended defects in Mg-1 at.% Y alloy, Y being
a transition metal element. Accordingly, we create four benchmark
systems at relevant length-scales: (i) “DislocMgY " is a pyramidal II
<c+a> screw dislocation interacting with an Y solute in the disloca-
tion core. This system contains (6,016 atoms, 12,041 e− )×2 𝑘-points,
with 2 𝑘-points used for the BZ zone sampling along the periodic
dislocation line direction, for a total of 24,082 e− in the supercell;
(ii) “TwinDislocMgY(A)" comprises of a pyramidal II <c+a> screw
dislocation interacting with reflection twin boundary (pyramidal I

5Considering only the vector registers, not the FP64 Tensor/Matrix cores.
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Figure 6: Benchmark systems. Top: YbCd quasicrystal (Yb295Cd1648)
nanoparticle: 1,943 atoms, 40,040 e− . Width of nanoparticle: ∼3 nm.
FE DoF: ∼ 75 × 106. Bottom: TwinDislocMgY(C) system: reflection
twin boundary (extended defect) in pyramidal I plane interacting
with a <c+a> pyramidal II screw dislocation (line defect) in Mg-
1%Y alloy with (74,164 atoms, 154,781 e−)×4 𝑘-points, for a total of
619,124 e− in the supercell. FE DoF: ∼ 1.7 × 109.

plane) in a random environment of Y solutes at 1 at.% concentration.
This system comprises of (36,344 atoms, 75,667 e−)×4 𝑘-points, for
a total of 302,668 e− ; (iii) “TwinDislocMgY(B)" is a larger version
of TwinDislocMgY(A) comprising of (74,164 atoms, 154,781 e−)×3
𝑘-points, for a total of 464,343 e− in the supercell; and (iv) “TwinDis-
locMgY(C)" (cf. Fig. 6) which is the largest system comprising of
(74,164 atoms, 154,781 e−)×4 𝑘-points, for a total of 619,124 e− in
the supercell. FE mesh parameters are chosen to provide discretiza-
tion errors of ∼ 10−4 Ha/atom and ∼ 10−4 Ha/Bohr in energy and
ionic forces, respectively.

6.3 Measurement Methodology
Time measurements for the various computational steps and the
total run-times in invDFT and DFT-FE-MLXC were obtained using a
combination of MPI_Barrier, MPI_Wtime and cudaDeviceSynchronize
/ hipDeviceSynchronize. FLOP counts on GPUs were measured
for the key computational steps: CF, CholGS-S, CholGS-O, RR-P and
RR-SR. In the case of the CF step, we measured the FLOP count for
the DislocMgY system using nvprof on Summit. We measured the
FLOP counts at two different MPI tasks, and used the average FLOP
count per MPI task multiplied by the total number of MPI tasks to

obtain the total FLOP count. The total FLOP count thus obtained
is expected to be very close to explicitly measuring and adding
FLOP counts for all MPI tasks, as the load-balanced partitioning in
DFT-FE-MLXC results in an almost equal number of FE DoF in each
MPI task6. Subsequently, we compute the CF FLOP count for the
largest systems TwinDislocMgY(A),(B),(C) using the linear scaling
relation of CF’s FLOP count with respect to number of FE cells and
wavefunctions, with the computational prefactor being the same
for DislocMgY and TwinDislocMgY(A),(B),(C) systems as they have
the same FE mesh parameters and Chebyshev polynomial degree.
Next, in the case of O(𝑀𝑁 2) CholGS-S, CholGS-O, RR-P and RR-SR
steps involving relatively large GEMM operations of𝑀×𝑁 and 𝑁 ×𝑁
sized matrices, we manually compute a lower bound 7 for the FLOP
count as 𝛼 ∗4∗𝑁 ∗𝑀 ∗𝑁 . The factor 4 results from complex datatype
usage for the aforementioned 𝑘-point sampling in DislocMgY and
TwinDislocMgY(A),(B),(C) systems, and 𝛼 is either 1 or 2 dependent
upon whether matrix Hermiticity is exploited.

7 PERFORMANCE RESULTS
We demonstrate parallel scaling performance, time-to-solution and
sustained performance of interlinked invDFT and DFT-FE-MLXC frame-
work on pre-exascale (Perlmutter, Summit) and exascale (Frontier)
machines. First, we demonstrate the performance of invDFT on
molecular systems involving accurate all-electron inverse DFT cal-
culations. Subsequently, using the MLXC functional trained on exact
XC potentials obtained from invDFT, we demonstrate the perfor-
mance of DFT-FE-MLXC on large-scale quasicrystal nanoparticles
and extended defect interactions in metallic alloys. We use ONCV
pseudopotentials for all DFT-FE-MLXC simulations.

7.1 Scalability & Time-to-Solution
7.1.1 invDFT. We demonstrate the performance of invDFT mod-
ule using ortho-benzyne (C6H4), a strongly correlated system—
a paradigmatic case where existing XC approximations perform
poorly. Employing the various GPU acceleration strategies dis-
cussed in Sec. 5.4, we attain a 17.7× CPU-GPU speedup (in node-
hours) on 4 nodes of Perlmutter. We present the strong scaling of
the GPU-accelerated invDFT on Perlmutter in Fig. 7. We attain a
5.2× speedup, reducing the wall time per iteration from 104 sec on
4 nodes to 20 sec on 32 nodes. Given the typical 500−600 iterations in
inverse DFT calculations, the advances in invDFT—preconditioned
block-MINRES, the Chebyshev filtered eigensolver, FE cell level
dense linear algebra—now make possible the evaluation of exact
XC potentials, computed only once and stored for each system, in
merely ∼ 3 hours of wall time. This is a 50× improvement over a
wall time of ∼7 days needed in our previous implementation [3].
These advances in invDFT not only solve a hitherto open problem
of accurate solution to the inverse DFT problem, but also enable
rapid generation of exact XC potentials—an aspect that we expect
will further spur the development of MLXC as training data becomes

6We verified this on a small systemwith 250K FE DoF and using 6 MPI tasks on Summit,
where we find the difference in the FLOP count between the two approaches for the
CF step is ∼ 3%.
7Due to the blocked approach utilized in the CholGS and RR steps, the actual FLOP
count is around 5% higher than estimated using the manual approach based on internal
checks on medium scale system sizes.
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Figure 7: Strong scaling of invDFT. Case study: Ortho-benzyne, C6H4
(strongly correlated system).

Figure 8: Strong scaling of DFT-FE-MLXC. Case study: YbCd quasicrys-
tal nanoparticle (Yb295Cd1648) with 1,943 atoms, 40,040 e− . FE DoF:
75,069,290.

more readily available to improve MLXC in sophistication and target
accuracy.

7.1.2 DFT-FE-MLXC. Weexamine the strong scaling of DFT-FE-MLXC
on YbCd quasicrystal (cf. Fig. 6) consisting of 1,943 atoms (40,040 e− ).
The study conducted on Frontier and Perlmutter GPU nodes is
shown in Fig. 8. We obtain a remarkable ∼80% strong scaling effi-
ciency at 240 Frontier nodes (39.1K DoF/GCD) and 560 Perlmutter
nodes (33.5K DoF/GPU). Even at 1,120 Perlmutter nodes, with just
16.8K DoF/GPU, we attain a scaling efficiency of ∼60%, reducing
the walltime/SCF to ∼25 sec from ∼125 sec on 140 nodes—a rel-
ative speedup of 5×. Also, from Fig. 8, we note that the Level 4+
MLXC functional incurs only a small overhead over Level 2 PBE
functional, with similar wall-times on Perlmutter.

To underscore the implications of this strong-scaling perfor-
mance, we conduct a full ground-state calculation on YbCd qua-
sicrystal nanoparticle with MLXC functional on Perlmutter using
1,120 nodes. The timings are reported in Table 2. It is notable that
we are able to complete the full ground-state of a 40,000 e− system
at Level 4+ quantum-accuracy in ∼30 mins.

Table 2: Time-to-solution (in sec) of YbCd quasicrystal nanoparticle
(40,040 e−) using 1,120 Perlmutter nodes.

Initialization Total SCF Total run
69 2023 (34 SCF steps8) 2092

7.2 Sustained Performance: Extended defects in
Mg-Y alloy

We demonstrate the performance of DFT-FE-MLXC on interacting
extended defects in Mg-Y alloy—TwinDislocMgY(A),(B),(C) with
302,668 e− , 464,343 e− , 619,124 e− in the supercells, respectively.
Table 3 reports the sustained performance measured for these calcu-
lations. On the TwinDislocMgY(C) system, the largest system in this
work with𝑀=1.7 billion (FE DoF) and 𝑁=356,000 eigenstates (∼605
trillion wavefunction values), we obtain a sustained performance
of 659.7 PFLOPS on 8,000 nodes of Frontier (43.1% throughput
efficiency), which is unprecedented for electronic structure ground-
state calculations. On the TwinDislocMgY(A) system, we obtain a
sustained performance of 226.3 PFLOPS on 2,400 Frontier nodes
with 49.3% throughout efficiency. Further, on the TwinDislocMgY(B)
system, we obtain a sustained performance of 508.9 PFLOPS on
6,000 Frontier nodes (44.4% efficiency), demonstrating consistently
high performance on various system sizes and node counts. We
remark that in spite of using a sufficiently large block size of 250 in
the Chebyshev filtering (CF) step for the TwinDislocMgY(A),(B),(C)
systems, we observe a drop in efficiency for the CF step to ∼30% in
comparison to ∼40% efficiency obtained on the smaller DislocMgY
system using 160 nodes (cf. Fig. 4). This is attributed to the present
instability in the Frontier machine beyond ∼1,000 nodes that pre-
vented us from running the larger simulations with optimal GPU
aware MPI for the FE partition boundary communication, while
the DislocMgY system simulation was able to use optimal GPU
aware routing settings9. We anticipate further improvement in effi-
ciency for TwinDislocMgY(A),(B),(C) upon being able to use optimal
hardware aware communication patterns for large node counts on
Frontier.

Notably, this sustained performance using ML-XC, providing an
accuracy commensurate with QMB methods, is a staggering 10×
improvement over the previous high watermark10 of 64 PFLOPS
(5% efficiency on new Sunway) [37] obtained for a Level 2 XC func-
tional. The overall high throughput efficiency obtained for these
calculations is a consequence of the high efficiency realized for
all main kernels (cf. Table 3). A wall-time of ∼4–8 mins per SCF
iteration for ∼300,000-600,000 e− using MLXC marks an improve-
ment of 100× in system-size and > 100× in time-to-solution over
state-of-the-art QMB methods11. It underscores that large-scale
materials simulations at an accuracy commensurate with quantum
8includes multiple passes of Chebyshev filtering in the initial SCF step
9RCCL with OFI plugin is also not used in these large-scale runs due to aforementioned
instability issues (cf. Sec 5.4.4).
10The high watermark for ground-state DFT calculations using a complete basis, and
a method that is generically applicable for any materials system, is 46 PFLOPS (28%
efficiency on Summit) [6].
11Comparing with QMC [20]—the most efficient of QMBmethods. Since both QMC and
DFT-FE-MLXC are O(𝑁 3 ) scaling, their time-to-solution is expected to scale similarly.
Comparing DFT-FE-MLXC (Tables 2 & 3) with QMC based on data in [20], this amounts
to 220–350× speedup in time-to-solution in terms of sec/GS/electron.
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Table 3: Wall-time and sustained performance for a single SCF
iteration of TwinDislocMgY(A) (302,668 e− in supercell), TwinDis-
locMgY(B) (464,343 e− in supercell) and TwinDislocMgY(C) (619,124
e− in supercell) systems, with a breakdown for the key steps shown
for TwinDislocMgY(A),(C). Simulations performed on Frontier us-
ing 2,400 nodes (FP64 peak: 458.9 PFLOPS), 6,000 nodes (FP64 peak:
1147.2 PFLOPS) and 8,000 nodes (FP64 peak: 1529.6 PFLOPS) for
TwinDislocMgY(A),(B),(C) systems, respectively. FLOP count for
operations—CholGS-CI, RR-D, discrete Hamiltonian construction
(DH), electrostatic potential solve (EP) and Others—that constitute
a minor portion of the total FLOP count are not measured, though
their wall-times are included in the total time.

System Wall-time FLOP count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

TwinDislocMgY(A) 223 50,456.7 226.3 (49.3%)
TwinDislocMgY(B) 499.4 254,147.5 508.9 (44.4%)
TwinDislocMgY(C) 513.7 338,863.4 659.7 (43.1%)

Breakdown for TwinDislocMgY(A)
Step Wall-time FLOP count PFLOPS

(sec) (PFLOP) (% of FP64 peak)
CF 102.3 14,854.2 145.2 (31.6%)

CholGS-S 24.8 6,917.3 278.9 (60.8%)
CholGS-CI 3.8 - -
CholGS-O 12.1 6,917.3 571.7 (124.6%)

RR-P 22.7 7,341.7 323.4 (70.5%)
RR-D 9.7 - -
RR-SR 23.5 13,834.6 588.7 (128.3%)
DC 3.3 591.6 179.3 (39.1%)

DH+EP+Others 20.8 - -

Breakdown for TwinDislocMgY(C)
Step Wall-time FLOP count PFLOPS

(sec) (PFLOP) (% of FP64 peak)
CF 135.4 57,809.5 427 (27.9%)

CholGS-S 79.3 54,428.9 686.4 (44.9%)
CholGS-CI 8.8 - -
CholGS-O 49.6 54,428.9 1097.4 (71.7%)

RR-P 66.7 61,035.7 915.1 (59.8%)
RR-D 22.3 - -
RR-SR 93.5 108,857.9 1164.3 (76.1%)
DC 4.3 2,302.5 535.5 (35%)

DH+EP+Others 53.8 - -

many-body methods are now possible on systems with O(105)
electrons.

8 IMPLICATIONS
Conducting large length-scale ab initio calculations at quantum
accuracy is a cherished, yet, elusive goal in materials modeling.

Ab initio methods suffer from a longstanding accuracy and length-
scale dichotomy—QMB methods provide quantum accuracy but
scale poorly; DFT can scale but is far from quantum accuracy.
DFT-FE-MLXC breaks through this dichotomy. We realize, for the
first time, calculations on O(105) electrons while being commen-
surate with quantum accuracy. The combination of invDFT and
MLXC that lends DFT-FE-MLXC an exceptional 7 mHa/atom accuracy,
marks only the beginning of a new and systematic means to model
accurate XC functionals in DFT. It now paves the way to the coveted
1 mHa/atom accuracy by use of more expressive and sophisticated
forms for MLXC. This would, invariably, demand more training data
to model the MLXC’s. Therein, the low time-to-solution attained in
invDFT will enable rapid generation of exact XC potentials. These
developments can unlock the door to numerous consequential sci-
entific applications, heretofore hindered by the unavailability of a
large-scale quantum accurate method. DFT-FE-MLXC is capable of
fast, systematically converged, ground-state calculations at close
to quantum accuracy, with wall-time per SCF of ∼8 mins on large-
scale systems with ∼600,000 electrons—hitherto infeasible by any
state-of-the-art method—as showcased on quasicrystals and realistic
metallic alloys with defects. These two case studies on the thermo-
dynamics of quasicrystals and defect interaction in Mg alloys has
direct bearing on the design of novel magnetic, and lightweight
structural materials, respectively. As DFT-FE-MLXC is generic and
material-agnostic, it can aid in tackling a diverse set of key scien-
tific and technological problems, including, designing new catalytic
materials for clean fuel production, devising materials and mech-
anisms for CO2 sequestration, pharmaceutical drug development,
discovering novel qubit materials for quantum computers, to name
a few.
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