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ABSTRACT
We detail our developments in the high-fidelity spectral-element
code Neko that are essential for unprecedented large-scale direct
numerical simulations of fully developed turbulence. Major inno-
vations are modular multi-backend design enabling performance
portability across a wide range of GPUs and CPUs, a GPU-optimized
preconditioner with task overlapping for the pressure-Poisson
equation and in-situ data compression. We carry out initial runs
of Rayleigh–Bénard Convection (RBC) at extreme scale on the
LUMI and Leonardo supercomputers. We show how Neko is able
to strongly scale to 16,384 GPUs and obtain results that are not pos-
sible without careful consideration and optimization of the entire
simulation workflow. These developments in Neko will help resolv-
ing the long-standing question regarding the ultimate regime in
RBC.
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1 JUSTIFICATION FOR ACM GORDON BELL

PRIZE
We present a workflow to enable the resolution of a long-standing
open issue in turbulence regarding theultimate regime in Rayleigh–
Bénard convection. Scaling and proof of concept on thousands of
Nvidia/AMD GPUs puts answering this question within reach of
modern computational science with regards to time-to-solution,
storage requirements, and pre/post-processing.

2 PERFORMANCE ATTRIBUTES
Performance attributes Our submission

Category of achievement Scalability, time-to-solution
Type of method used Explicit/Implicit
Results reported Whole application
Precision reported Double-precision
System scale Full-scale system
Measurements mechanism Timers
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3 OVERVIEW OF THE PROBLEM
In fluid dynamics, the study of turbulent thermal convection is an
area of both fundamental and applied importance, with ubiquitous
applications to diverse phenomena in nature and technology. In the
latter category, one can name thermal convection in chip cooling
devices, heat exchangers in power plants, and energy-efficient in-
door ventilation. Important natural phenomena include convection
in the Earth’s atmosphere, oceans and the interior of its mantle, as
well as astronomical applications, such as convection in the Sun
and other stars [24]. The canonical Rayleigh–Bénard convection
(RBC), as illustrated in Fig. 1, is commonly used to study these
turbulent flows, and it can be assessed in a controlled manner, yet
has enough complexity to contain the key features of turbulence
and convective heat transfer. As RBC is integral to understanding
the transfer mechanisms between heat and momentum, this prob-
lem has been studied for decades. In particular, as early as 1962
Robert Kraichnan made several predictions that are yet to be veri-
fied [17]. As heat transfer is typically measured by the Nusselt num-
ber 𝑁𝑢, and depends strongly on the driving force of the convection
given by the Rayleigh number 𝑅𝑎, the question is in exactly which
way 𝑁𝑢 depends on 𝑅𝑎 in the limit of large 𝑅𝑎. Kraichnan conjec-
tured that, as the boundary layers forming on the heated plates
undergo laminar–turbulent transition, the dependency foregoes
the classical scaling of 𝑁𝑢 ∼ 𝑅𝑎1/3 and asymptotically converges
towards the so-called ultimate regime, characterized by the scal-
ing 𝑁𝑢 ∼ 𝑅𝑎1/2. However, more than 60 years later, there is still no
conclusive evidence whether and in case when the ultimate regime
may be reached [7, 19, 24]. Examining the scaling at high enough
𝑅𝑎 would, therefore, end this open debate in turbulence research
and be a major breakthrough in our understanding of some of the
core geo- and astrophysical flows that occur at various scales in
the universe.

In order to understand RBC, the study of flow in cylindrical
cells has gained a lot of attention in recent years, both experimen-
tally and computationally. One of the main issues that arise in
experiments, however, is that at high enough 𝑅𝑎 they show an
extreme sensitivity to the exact experimental conditions [19], in-
cluding homogeneity of the boundaries, temperatures and other
disturbances. Consequently, Direct Numerical Simulation (DNS)
of RBC in slender cells has been the focus of recent research [9].
These simulations are among the largest DNS ever carried out on
conventional CPUs, and the produced data volume quickly becomes
unmanageable. Still, the largest 𝑅𝑎 simulated is 𝑅𝑎 = 1015, which is
just about when the transition to the ultimate regime is expected to
occur. In addition, the focus was on a slender cell with aspect ratio
1:10, meaning that the walls of the cell may delay the transition to
fully turbulent boundary layers at lower 𝑅𝑎. In order to carry out
simulations at higher 𝑅𝑎 and for larger aspect ratios, the issues of
computational time and data management must be resolved via a
suitable simulation workflow. The development of such a workflow
is a major contribution in this work, where we accommodate mod-
ern computer architectures, reduce the data volume of the output
and leverage in-situ techniques to be able to investigate the true
nature of the ultimate regime.

Figure 1: Visualization of RBC at moderate 𝑅𝑎 = 1011 to illus-
trate the canonical physical problem. The flow in a cylindri-
cal container is heated from below and cooled from the top,
thus driving convective turbulence. Red and blue illustrate
warm and cold fluid, respectively. We also show cross-section
AA close to the heated bottom wall. The upper cross-section
shows the velocity magnitude and the bottom one the tem-
perature field.

4 CURRENT STATE OF THE ART
4.1 Governing Equations
The incompressible Navier–Stokes equations are a highly nonlinear
set of coupled partial differential equations. Commonly referred to
as one of the most important unsolved problems of modern science,
solutions for turbulent flows can only be obtained via numerical
approximation, i.e. DNS, at a computational cost, which is in many
practical cases beyond the capabilities of modern supercomputers.
In this work, we consider the Navier–Stokes equations coupled with
a scalar temperature field under the Boussinesq approximation:

∇ · u = 0,

𝜕u
𝜕𝑡

+ (u · ∇)u = −∇𝑝 +
√︂

𝑃𝑟

𝑅𝑎
∇2u +𝑇 e𝑧

𝜕𝑇

𝜕𝑡
+ (u · ∇)𝑇 =

1
√
𝑅𝑎𝑃𝑟

∇2𝑇,

(1)

where𝑇 is the temperature field, u, 𝑝 the instantaneous velocity and
pressure, and 𝑃𝑟 the Prandtl number, with 𝑃𝑟 = 1 in our considered
case. The quantities are non-dimensionalised by the cylinder height
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𝐻 , the free-fall velocity𝑈𝑓 and the temperature difference between
the top and bottom plate Δ𝑇 , see e.g. [19] for more details. The
reason for the large computational cost is that turbulent flow is
inherently multiscale, which necessitates resolving vortical motions
of size ranging from ∼ 𝐻 down to the Kolmogorov length scale 𝜂,
at which they are dissipated. Typically, 𝐻/𝜂 ∼ 𝑅𝑎3/8, and as such,
the number of grid points quickly becomes unmanageable even for
moderately turbulent flows. Furthermore, the numerical method
used to discretize the system (1) has to exhibit minimal dissipative
and dispersive errors to accurately capture and track the small
scales in time. In addition, the numerics need to be able to handle
complex curved geometries, and allow for efficient implementation
on modern hardware.

4.2 Numerical Methods
For high-fidelity turbulence simulations, various types of high-
order discretization methods serve as the primary tools due to their
favorable properties [23]. In particular, finite difference and Fourier
methods have been considered for canonical cases of RBC [16].
However, both suffer from limitations with regards to the geometry
of the computational domain, making them unsuitable as candi-
dates for a general-purpose flow simulation framework, including
cylindrical RBC.

The spectral-element method (SEM) provides an alternative. This
approach falls into the category of high-order finite element meth-
ods, thus allowing the computational mesh to have a complex topol-
ogy, while at the same time retaining the beneficial properties of
high-order discretization, and data locality. In particular, the SEM
can be formulated in a matrix-free fashion, leading to a high op-
erational intensity and only unit-depth communication between
elements. The SEM has been used for simulating a large variety
of laminar, transitional and turbulent flows and has, due to the
method’s design, shown exemplary scaling. In particular, it has been
used to carry out the above-mentioned RBC simulation at𝑅𝑎 = 1015,
leading to high-fidelity predictions of the Nusselt number as well
as other instantaneous and integral quantities of interest. Those
simulations used the full size of the Blue-Gene Supercomputer at
the Argonne Leadership Supercomputing Facility and the spectral-
element code Nek5000 [9]. Nek5000 has been shown to scale up
to millions of CPU cores and is currently the main workhorse for
spectral-element simulations on CPU machines.

However, most machines, as we approach exascale, are incor-
porating GPU accelerators as their main source of computational
power. As such, the SEMhas been carried over to GPUs through ded-
icated efforts such as the present approach, in the code Neko [11].
A more direct development of Nek5000 to GPUs is NekRS [3] re-
lying on part of the original code structure. What distinguishes
Neko is that it incorporates a new codebase in modern Fortran, and
does not rely on the original solver Nek5000. This leads to gran-
ular control of memory allocation, modularity and extensibility
via object-oriented design, which includes adding support for new
compute architectures. However, the basic solution approach of
Nek5000, Neko and NekRS is very similar, and shares some of the
routines.

4.3 Direct numerical simulation of RBC
As mentioned, the highest 𝑅𝑎 that has been simulated to date is 1015
in a slender cell with aspect ratio 1:10 [9]. It is, however, conjectured
that the aspect ratio plays a role in the transition to the ultimate
regime [1], and experiments with larger aspect ratios might be
necessary to investigate the onset of the ultimate regime, even
though the flow already at 𝑅𝑎 = 1015 with aspect ratio 1:10 exhibits
all characteristics of a fully turbulent flow. In preparation to settle
this debate, we are in the process of carrying out a series of runs of
RBC at high 𝑅𝑎 and different aspect ratios, considerably pushing
forward the state-of-the-art with regards to RBC simulation.

5 INNOVATIONS REALIZED
In this work, we leveraged the capabilities of modern computer
architectures for the simulation workflow of Rayleigh–Bénard con-
vection, using a number of innovations both in pre-/post-processing,
and simulation efficiency.

5.1 Performance Portability
To address the exascale computing challenge and to enable per-
formant high-fidelity fluid-dynamics simulations across various
platforms, we have developed Neko, a portable framework for high-
order spectral-element-based simulations, focusing on incompress-
ible flow simulations. The framework is implemented in Fortran
2008 and adopts a modern object-oriented approach, allowing for
multi-tier abstractions of the solver stack and facilitating various
hardware backends[10, 11, 14, 15]. Using Fortran as the language
of choice instead of recently more popular languages, such as C++
or Python, might at first seem like an odd choice, particularly for
developing a new code. However, Neko has its roots in the spectral-
element code Nek5000 [22] from UChicago/ANL, introduced in
the mid-nineties, tracing its origins to MIT’s older NEKTON 2.0.
Furthermore, research groups at KTH have extensively used the
scalable Nek5000 and also further developed its Fortran 77 codebase,
thus leaving a non-negligible trace of more than thirty years of ver-
ified and validated Fortran code, which, if rewritten into, e.g., C++
would have to go through a very expensive and time-consuming
revalidation and reverification process before it could be used in
production. Therefore, by using modern Fortran, already validated
Fortran 77 kernels can directly be integrated into Neko, with only
a minimal revalidation process.

Neko integrates in time the incompressible Navier–Stokes equa-
tions, ensuring single-core/accelerator efficiency via fast tensor
product operator evaluations. For high-order methods, assembling
either the local element matrix or the full stiffness matrix is prohib-
itively expensive. Therefore, a key to achieving good performance
in spectral-element methods is to consider a matrix-free formula-
tion, where one always works with the unassembled matrix on a
per-element basis. Gather–scatter operations ensure the continuity
of functions on the element level, operating on both intra-node and
inter-node element data. Currently, Neko uses MPI for inter-node
parallelism and parallel I/O for production runs, but one-sided com-
munication options such as Coarray Fortran based gather-scatter
kernels are under development.
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When designing a flexible and maintainable framework for com-
putational science, a major issue is finding the right level of abstrac-
tion. Too many levels might degrade performance, while too few
results in a code base with many specialized kernels at a high main-
tenance cost. The weak form of the equation used in the spectral-
element method allows Neko to recast equations in the form of
the abstract problem to keep the abstractions at the top level and
reduce the amount of platform-dependent kernels to a minimum.
In Neko, this is realized using abstract Fortran types, with deferred
implementations of required procedures. For example, to allow
for different formulations of a simulation’s governing equations,
Neko provides an abstract type, defining the abstract problem’s
matrix-vector product. The type comes with a deferred procedure
“compute” that would return the action of multiplying the stiffness
matrix of a given equation with a vector. In a typical object-oriented
fashion, whenever a routine needs a matrix-vector product, it is
always expressed as a call to “compute” on the abstract base type
and never on the actual concrete implementation. Abstract types
are all defined at the top level in the solver stack during initializa-
tion and represent large, compute-intensive kernels, thus reducing
overhead costs associated with the abstraction layer. Furthermore,
this abstraction also accommodates the possibility of providing
tuned matrix-vector products for specific hardware, only providing
a particular implementation of “compute” without having to modify
the entire solver stack.

However, regardless of the abstraction, modern Fortran does
not provide a built-in method for interfacing with accelerators. De-
spite a popular choice to rely on vendor-specific solutions, domain-
specific languages (DSL) or directives-based approaches when port-
ing Fortran codes to accelerators, due to portability issues and
reduced performance, a decision has been made to not use these
solutions (e.g. CUDA Fortran, OpenACC). Instead, Neko uses a de-
vice abstraction layer to manage device memory, data transfer and
kernel launches from Fortran. Behind this interface, Neko calls the
native accelerator implementation written in, e.g., CUDA, HIP or
OpenCL, with all data fully GPU-resident throughout a simulation.
The interface also allows for vendor-specific optimizations, with
auto-tuning of key kernels for sustained performance while keep-
ing most of the solver written in a hardware-neutral yet performant
way. Furthermore, if present, device-aware MPI is also exploited
to minimize necessary data movement between host and device
in communication kernels. Device-initiated communication, e.g.
SHMEM is also under development.

5.2 Compression and In-Situ Data Analysis
The study of physical flow phenomena such as RBC through Com-
putational Fluid Dynamics transcends the computation step alone
and is a workflow. Pre-processing steps such as meshing are always
required, and post-processing via modal decomposition such as
Proper Orthogonal Decomposition [8] or the calculation of flow
statistics is desirable. Thus, data management is a relevant issue,
especially in view of increased efforts to produce suitable databases
for training of data-driven models [2] and related methods.

To correctly study the flow dynamics in any post-processing
technique, it is necessary to sample the instantaneous flow fre-
quently, and for a long enough period, such that both the slow

and fast dynamics are captured with sufficient accuracy and resolu-
tion. Since each flow sample for extensive turbulence simulations
poses considerable storage requirements, post-processing the data
generated becomes a bottleneck.

A solution to this limitation is to utilize the computational in-
frastructure available to the solver at run-time to facilitate the
subsequent handling of the data by performing in-situ data anal-
ysis and transformation directly on the compute nodes. Several
strategies of in-situ analysis were initially studied in Nek5000 on
CPUs [12] but are now expanded to GPUs with the Neko frame-
work. The most basic and perhaps crucial data transformation is
data compression, which directly addresses the storage bottleneck.
The performance of lossless compressors is typically limited by
the Shannon entropy [25], i.e., the information content or vari-
ance of the data. Given that data produced by turbulence has a
naturally high entropy due to the chaotic nature of the velocity
fields in that regime, lossless compression alone is typically not
sufficient to efficiently reduce the storage requirements. For this
reason, the compression algorithm implemented in Neko relies on
a lossy step [21] specifically designed for spectral-element data: It
decreases the variance in the data set by performing an 𝐿2 projec-
tion of the data set 𝑢 (𝑥) to an orthogonal polynomial basis 𝜙𝑖 (𝑥)
such that:

𝑢 (𝑥) =
𝑁∑︁
𝑖=0

𝑢𝑖𝜙𝑖 (𝑥) . (2)

The 𝑢𝑖 are the coefficients of the modal representation of 𝑢 (𝑥), and
exhibit a much lower variance for a correct choice of basis and
can be further truncated to reduce the storage requirements. In
Neko, we transform the field, truncate it and encode it through a
lossless compression algorithm synchronously at run time to finally
compress the data.

As a supporting tool, we choose ADIOS2 [6] to manage I/O op-
erations during data compression, since it is an efficient instrument
to control the information produced by the multiple MPI processes
active during the simulation. An added benefit of this tool is that
it naturally includes engines for performing asynchronous in-situ
tasks. This means that while the main simulation is running on
the GPUs, the data can be easily streamed to a data processing
routine, running on the mostly unused CPUs of the compute nodes
to post-process the data online, taking advantage of the fully allo-
cated compute power. This is, in fact, the approach that we follow
to perform streaming Proper Orthogonal Decomposition in paral-
lel [18, 26], using a data processor written in Python. This approach
is a promising addition, as the integration to Python allows for
the potential to use large simulations to directly incorporate data-
driven model training while avoiding storing the large amounts of
data typically needed for this purpose, with a low impact on the
simulation performance.

5.3 Pressure Preconditioner
Efficient preconditioning for the pressure is essential in incom-
pressible fluid dynamics, as the Poisson equation that arises as a
consequence of incompressibility is the main source of stiffness
when computing a solution. We use a two-level additive overlap-
ping Schwarz mutligrid method [4, 5] combined with a coarse grid
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solver to precondition the linear system,

𝑀−1
0 = 𝑅𝑇0𝐴

−1
0 𝑅0 +

𝐾∑︁
𝑘=1

𝑅𝑇
𝑘
𝐴̃−1
𝑘

𝑅𝑘 , (3)

for a general 𝑘-level formulation, where 𝑅𝑘 and 𝑅𝑇
𝑘
are the restric-

tion and prolongation operations to move between different grid
levels. The coarse grid problem 𝐴0, on linear elements, is solved
for using an approximate Krylov solver, a preconditioned Conju-
gate Gradient method, with a fixed number of iterations (≈ 10)
and an element-wise block Jacobi preconditioner. This has proven
to be both an effective and scalable preconditioner on both CPUs
and GPUs [14]. However, in terms of computational efficiency, the
coarse grid’s smaller problem size will reduce the preconditioners
ability to fully utilize the GPU.

It is possible to decouple the coarse grid solve (first part of the
right-hand side in (3)) from the rest of the multigrid solver which
allows computing the two parts in parallel. One potential approach
is to solve the coarse grid problem on the CPU and better utilize
the available resources. However, transferring data to and from the
GPU memory quickly becomes the limiting factor for different con-
figurations, in particular for architectures where the interconnect is
directly connected to the GPUs, since the CPU then has to transfer
data back and forth (several times) to the GPU to perform commu-
nication inside each Krylov iteration due to e.g. inner products and
reductions. The remaining parts of the preconditioner smoother,
restriction and prolognation requires less communication. Solving
for 𝐴−1

𝑘
in the right part of (3) is performed with an element wise

(local) fast diagonalization method. Albeit better suited for GPUs,
neither of these kernels will fully saturate the GPU as well. To
increase GPU utilization, amortize communication costs, acceler-
ate the critical path, and thus improve strong scalability, we have
developed a new parallelization method of the additive Schwarz
preconditioner. The idea with our new formulation is to exploit the
available task-parallelism and launch the left and the right part of
(3) in parallel on the device. We accomplish this by launching the
independent work in parallel from different threads in an OpenMP
parallel region. Tasks are launched in separate streams to allow
overlap and increase GPU utilization, as illustrated in Fig. 2. The
work in coarse grid solve is dominated by kernel launch latency
(which throttles GPU execution) and small device kernels (typically
too small to keep the GPU utilization high). Launching GPU work
in parallel allows hiding this launch latency. It also exposes device-
side concurrency enabling overlap of kernels and data movement
on different streams, in particular the typically short coarse-solve
kernels with other larger kernels. To maximize kernel overlap and
ensure progress on both streams, we use stream priorities and as-
sign higher priority to the stream where the coarse-solve work
is launched. This is necessary on NVIDIA GPUs to allow small
coarse-solve kernels to progress even in the presence of already ex-
ecuting larger kernels. This is not a concern on AMD GPUs, which
can schedule concurrent kernels for parallel execution regardless
of priorities. In addition, this approach also allows hiding some
of the latency overheads incurred by host-initiated GPU-aware
communication inherent to current MPI implementations which
lack tight integration with accelerator programming models and
require waiting on the host for data to be ready on GPU prior to

communication. Stream-aware MPI approaches like that proposed
by Namashivayam et al. [20] would integrate well with our ap-
proach and we expect these to further improve efficiency of our
additive Schwarz preconditioner parallelization1.

6 HOW PERFORMANCEWAS MEASURED
We evaluated the performance of Neko on a RBC case of unprece-
dented size in a cylinder with an aspect ratio of 1:10. In preparation
for even higher 𝑅𝑎 runs, we considered the simulation at 𝑅𝑎 = 1015
as our benchmarking case. We then measured the performance of
the entire application and assessed the scalability of Neko.

For our simulations at 𝑅𝑎 = 1015, we use a significantly larger
mesh than for the DNS by Iyer et al. [9]. Our mesh is composed
of 108M elements and polynomial degree 7, corresponding to 37B
unique grid points and more than 148B degrees of freedom. The
mesh is designed carefully to get an adequate refinement in the near-
wall regions on both side walls and the bottom and top walls, while
still capturing all relevant dynamics in the center of the cylinder,
which will be necessary as we reach even higher 𝑅𝑎.

For our simulation with Neko, we utilize the splitting scheme
as proposed in [13] in order to decouple the velocity and pressure
solve at each time step. For the discretization in time, we utilize a
mixed implicit-explicit scheme, combining an extrapolation scheme
and a backwards difference scheme, both of order 3. We perform
dealiasing (overintegration) according to the 3/2-rule. While the
pressure is solved through a hybrid-Schwarz multigrid precondi-
tioner combined with GMRES, as described in the previous section,
the velocity and temperature field use a block-Jacobi preconditioner
and conjugate gradient iterative solver.

As previously discussed, the spatial discretization in Neko is
based on the spectral-element method, obtaining a high-order con-
vergence and accurate results. The key component of the scalability
in Neko is due to the so-called gather-scatter operation, perform-
ing the communication along element boundaries and enabling a
fast evaluation of differential operators in a matrix-free fashion.
In Neko, the gather-scatter is executed in native Fortran with a
gather-scatter backend fully aware of the topology of the mesh.
This lets the gather-scatter operation be carried out in two phases,
one for the local and one for the shared elements between differ-
ent MPI ranks. This approach has been successful to scale on both
conventional CPUs and GPUs, but also more novel (and exotic)
architectures such as vector processors [11].

Furthermore, on accelerators, Neko uses backends with heavily
optimized native GPU kernels for the computation, and distributed
the work along the GPUs with one MPI rank per logical GPU (one
rank per Graphics Compute Die (GCD) on AMD devices and one
rank per Nvidia device). For all experiments, both the Fortran and
accelerator codes were compiled with full optimization (-O3) and
only double precision floating point numbers were used throughout.

6.1 Strong Scalability
Strong-scaling results were obtained by measuring the average
time per time-step for a given number of MPI ranks, with the
average taken over 250 time-steps, with initial transient iterations

1The stream-aware MPI proposed in [20] was not available on the HPE Cray systems
used in this work.
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Figure 2: Trace timeline view of the serial (A) and task-parallel (B) version of the additive Schwarz preconditioner executing on
an NVIDIA A100 GPU as part of a single-node 4-GPU run of a small test case representative of the strong-scaling regime of
typical production workloads. The task-parallel execution shows: improved GPU utilizaton (fewer gaps “GPU HW activity”),
overlap of the coarse-solve GPU kernels with other work, and overlap of host (“CUDA API”) activities across the two OpenMP
threads scheduling work and MPI communication as well as with GPU execution. For this small test-case running four NVLink
connected A100 GPUs the approximate wall-time reduction in the Schwarz preconditioner phase over 50 time-steps is 20%.

removed. Measurements were performed using MPI_Wtime timings
around relevant code regions, with global synchronisation points.
For all our experiments, we use the same 108M element mesh, while
increasing the number of MPI ranks until we almost fill the entire
machine.

6.2 Data Compression
For the specific case of compression performance, we used an RBC
case at 𝑅𝑎 = 1011. The compression ratio was measured as the rela-
tive difference between the original and compressed data size of an
instantaneous flow sample. The reconstruction error was measured
using a weighted 𝐿2 norm of the error between the reconstructed
and original field, which amounts to the calculation of the Root
Mean Squared error, accounting for the nonuniform nature of the
mesh.

7 PERFORMANCE RESULTS
The performance measurements were carried out on two of the
European High-Performance Computing Joint Undertaking (Eu-
roHPC JU) pre-exascale supercomputers LUMI and Leonardo. LUMI,
a 309.10 PFlop/s HPE Cray EX, is located at CSC in Finland and is
ranked as the world’s third fastest supercomputer on the November
2022 Top500 list2. Leonardo, a 174.70 PFlop/s Atos BullSequana
XH2000, is hosted by CINECA in Italy and is ranked number four

2https://www.top500.org/lists/top500/list/2022/11/

on the November 2022 Top500 list. Performance is measured on
both machines since they have two different computer architec-
tures; Leonardo is primarily powered by Nvidia A100 GPUs and
LUMI is utilizing the AMD MI250X; a detailed description of the
experimental platforms is given in table 1. Experiments were per-
formed between March–April 2023 on LUMI and during April 2023
on Leonardo during its early, pre-production state.

Table 1: Hardware and software details for our experimental
platforms. Bandwidth and performance is per GPU.

System LUMI Leonardo

Computing device AMD MI250X Nvidia A100
Peak TFlop FP64/s 47.9 (95.7 Matrix) 9.7 (19.5 Tensor)
Peak BW/s 3300 1550
No. devices 10240 13824
Interconnect HPE Slingshot 11 Nvidia HDR

200 GbE NICs (4x200 Gb/s) 2x(2x100 Gb/s)
MPI Cray MPICH 8.1.18 OpenMPI 4.1.4
Compiler CCE 14.0.2 GCC 8.5.0
GPU Driver 5.16.9.22.20 520.61.05
CUDA/ROCm ROCm 5.2.3 CUDA 11.8
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Figure 3: Strong scaling of Neko for the RBC case, with
performancemeasured in average time per time-step. Logical
GPUs refers to one MI250X Graphics Compute Die (GCD) on
LUMI and one A100 GPU on Leonardo. Perfect strong scaling
is illustrated as black dashed lines for both systems, and the
99% confidence intervals is illustrated as error bars.

7.1 Strong Scaling
Strong scalability tests were performed for the outlined RBC case
on both machines. On LUMI we used 4096, 8192 and 16384 GCDs,
corresponding to 20%,40% and 80% of the full machine capacity,
and on Leonardo 3456 and 6912 GPUs corresponding to 25% and
50% of the full machine capacity. We would again like to stress that
we were given access to Leonardo very early in its pre-production
state. Thus there was not enough time to obtain results for more
than half of the machine before the nomination deadline.

The results for bothmachines, presented in Fig. 3, show that Neko
achieves close to perfect parallel efficiency for the studied turbulent
Rayleigh–Bénard convection case on both LUMI and Leonardo and
their different GPUs, demonstrating the performance portability
of the code. Furthermore, the results also show that Neko obtains
close to perfect parallel efficiency with less than 7000 elements per
logical GPU, significantly reducing the smallest required problem
size for strong scalability limits compared to previously reported
results [14]. The main reason for the improvements is the new
overlapped pressure preconditioner (see Section 5.3). With pressure
constituting more than 85% of the time for computing a time-step,
as illustrated in Fig. 4, the new overlapped formulation addresses
one of the major performance/scalability bottlenecks in Neko and
similar spectral-element codes, significantly improving upon state
of the art.

7.2 Data Compression
Fig. 5 shows the result of applying the compression scheme to a
stream-wise velocity field in RBC, for which the method produced
a 97% of data reduction with a relative error of 2.5%. Even at this
level of compression, no visual difference can be observed, and

Pressure

85.58%

Velocity

9.50%
Temperature

4.92%

Figure 4: Wall-time distribution of one time-step in the
16,384 GCD simulation on LUMI, where Pressure, Velocity
and Temperature incorporate all components necessary to
advance each quantity in time, e.g., generating right-hand
sides, initial guesses and solving the equations.

thus the main characteristics of the flow remain unaffected. The
reason that such a reduction of data is possible while conserving
quality is that while all energetic scales of turbulence are required
to solve the dynamics of the problem at run-time, some of them can
be removed strategically for post-processing. Neko removes this
information while respecting the error bounds specified by the user
before executing the simulation. We note that the compression level
always depends on the post-processing task to be performed on the
data by the user, but we have found that conservative compression
levels of 85–90% allow for high-fidelity results.

8 IMPLICATIONS
This work has several implications, both regarding the HPC aspects
of said work and for the scientific community studying turbulence
and Rayleigh–Bénard convection.

8.1 Insight into Rayleigh–Bénard Convection
As discussed in the Introduction, turbulence research has identified
a number of relevant questions inherent to fundamental turbulent
convective flows. As the control of the flow parameters in experi-
mental studies is very challenging and at times even impossible due
to unavoidable inaccuracies, physicists and engineers alike resort
to numerical simulations as the tool for assessing flow observables
under exactly controlled conditions.

This work considers the high-resolution simulation of turbu-
lent flows at extreme parameters, under complex conditions yet
in canonical geometries. In the case at hand, Rayleigh–Bénard
convection is considered, at high Rayleigh numbers. This is chal-
lenging from a computational point of view as the viscosity in the
system is low, and the flow is mainly driven by convection and in-
ertia. Small excited scales, yet slow overall dynamics are the typical
consequence in these situations, which directly leads to immense
computational requirements.

Therefore, the development of sustainable workflows tailored
for largest-scale simulations on modern hardware are essential to
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Figure 5: Two-dimensional slice of a compressed stream-wise velocity field at 𝑅𝑎 = 1011. The data size was reduced by 97% with
a relative error between the reconstructed and original fields of 2.5%. Only the compressed data set is shown as no appreciable
differences exist for this visualization. In the picture, 𝑧 = 0 represents the lower (hot) wall, and 𝑧 = 1 the upper (cold) wall.

address fundamental questions in turbulence. For RBC, the scaling
of the heat transfer (measured as the Nusselt number) as a function
of 𝑅𝑎 is heavily debated in the limit of very high 𝑅𝑎. Our ambition
is to use the workflow described in this work to settle this debate.
What is however needed for that is the ability to perform large
simulations (on tens of billions degrees of freedom) for a sufficiently
long time, to collect statistics and modal data during the simulation
lifetime, and to store selected instantaneous data.

The main aspect is the question of whether there is an ultimate
regime in RBC, and when it could be reached. For this, one needs
to consider a variety of aspect ratios of the RBC and sequences of
Rayleigh numbers; all with careful validation of the setup, resolution
and simulation development and duration. The consideration of
the ultimate regime is very timely. The recent literature points out
two completely diverse propositions: first that the ultimate domain
might have already been reached [19], or that the ultimate regime
is just within reach [1], or that it has not been reached [9]. This
can only be settled through a numerical simulation made possible
through the developments we have detailed in this work.

Direct implications of these results will allow for more detailed
understanding of convective processes in e.g. the atmosphere and
stars, eventually leading to refined turbulencemodels and low-order
representations. These in turn will make engineering predictions
more accurate which relate, for instance, to climate simulation.

8.2 HPC Impact
Detailed simulations of turbulence quickly reach unmanageable
amounts of data. In this work we have illustrated how we can
leverage modern computer architectures, high-order methods, and
compression to overcome several of the obstacles for these large
simulations. By adopting similar techniques in other codes and
workflows, we anticipate that the productivity and scale of other
simulations can increase as well. In particular, through in-situ data
processing, we foresee that completely new ways of analyzing and
processing data from large simulations will be made possible. This
will in turn enable use to obtain new knowledge into complex
phenomena across a large number of computational domains.

From our efforts, it is also clear that heterogeneous architec-
tures with high-bandwidth accelerator devices such as GPUs offer
a performance unmatched by previous architectures. This is only
true however for codes and methods such as the spectral-element
method that are able to utilize high-throughput, high-bandwidth
architectures efficiently. Moving away from formulations requiring

sparse matrix multiplications and instead looking towards for exam-
ple matrix-free methods is crucial in order to efficiently utilize these
upcoming architectures with a high memory bandwidth. In the cur-
rent architectural transition of HPC toward dense accelerator-based
machines with complex intra- and inter-node topologies and vary-
ing level of integration, it is critical to keep revising algorithms
and parallelization techniques and adapt them to the fast changing
landscape of HPC architectures. The GPU-resident parallelization
and expressing more of the available concurrency in the applica-
tion, here in the form of task-decomposed overlapped pressure-
conditioner, have been key ingredient to achieve the good strong
scalability on the LUMI and Leonardo pre-exascale machines. This
algorithmic approach is expected to remain highly beneficial on fu-
ture generations of HPC architectures. At the same time, integration
of CPU and GPU resources on-package, which allows fine-grained
task scheduling across both without expensive data movement, will
likely require revisiting and re-tuning these algorithms.
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