
REPORTS AND ARTICLES

ACCOMMODATING UNCERTAINTY
IN SOFTWARE DESIGN

Recognition that most software is domain dependent (DD) is extremely
important because the most commonly used software life-cycle models are
not adequate for DD software. The nature of DD software, and the need to
manage its life cycle effectively, calls for a new approach to software design
and the implementation of software development environments.

RICHARD V. GIDDINGS

A review of current literature would lead one to be-
lieve that the "software crisis" is a recent development.
Such is not the case. There has always been a software
crisis.

Software development techniques, which have ma-
tured little, require large amounts of highly skilled la-
bor. Because the necessary labor has rarely been avail-
able, personnel with marginal skill levels have been,
and are increasingly, in high demand.

The impact of the ongoing shortage of skilled labor is
staggering. For example, it is estimated that up to 90
percent of the data processing intellectual effort in a
large corporation is devoted to maintenance (namely,
redesign, reprogramming, and error correction [6]).

Successful resolution of the software crisis requires a
significant change in the manpower-intensive nature of
the development process. It must be based on a redefi-
nition of the process rather than on further value engi-
neering. Such a redefinition must start by examining
the basic assumptions about the nature of the software
development process.

It has been recognized that software is not homoge-
neous, but only recently have software classifications
begun to appear that are based on the relationship of
the software to the environment within which it oper-

© 1984 ACM 0001-0782/84/0500-0428 75¢

A portion of this paper was originally published in the Scientific Honeyweller 4,
2 {lune 1983}. 11-13.

ates [5]. These classifications, one of which is proposed
in this paper, provide an improved model for explain-
ing program dynamics and developing life-cycle man-
agement strategies.

SOFTWARE MODELS AND LIFE CYCLES
Perhaps the most commonly used model of the software
life cycle was developed by Boehm [2] and is shown in
Figure 1. At a high level, the development process is
viewed as a progression from problem definition to im-
plementation to maintenance.

For many interesting classes of software, Boehm's life
cycle does not adequately model the development pro-
cess. Consider the following scheme that classifies soft-
ware according to the way in which the universe of
discourse (the class of problems to be computed) and
the software interact.

Domain Independent (DI)
This class of software is distinguished by the independ-
ence of the problem statement and the universe of dis-
course (that is, solutions need to be verified but not
validated). Figure 2 provides a model for this type of
software.

For this class of software, the development process
can be described as a search for one of many "good"
solutions. The essential problem is proving that one has
in fact obtained a solution (verification).

428 Communications of the ACM May 1984 Volume 27 Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358189.358066&domain=pdf&date_stamp=1984-05-01

Reports and Articles

ISyatom
I Requirements I - , J - -
I v - . , i I ISoflware
[atm~ on - " ' .JRegulrements i ' , I .

i r • , I u~qa~io " J JPrellmlna y
{Design I - ~ I - -

' n Detailed d _ _

I ,,~ Vsfldatio ~ I I Code and
{Debug I - , '. L .

,,~,,,,~11 Oeveion hi I ITest and _ .
pme i IPreoperations I ' , _ . I ,

/ ~ " z , j , - I Valldatio ~ / i operations I J ,.a . a , uouu, n " Ja d M a ntenance |
........ I... ~1 Revaltdatton

FIGURE 1. Boehm's Sofhvare Life Cycle

Examples of this type of software include numerical
algorithms or, from a practical point of view, software
developed under a contract with predetermined specifi-
cations and no ongoing responsibility for the developer
other than bug fixing.

Domain Dependent Software (DD)
Two distinct types of software make up the class of DD
software: experimental (DDEX) and embedded (DDEM).
DDEX software is characterized by an intrinsic uncer-
tainty about the universe of discourse (see Figure 3).
The development process is embedded within a search
for knowledge about the universe of discourse. The es-
sential problem is producing software useful for testing
a hypothesis or exploring unknown characteristics of
the universe.

Examples of this class of software are models being
used as vehicles for conducting research to discover
information about a universe of discourse. In such ef-
forts, one is trying to identify necessary data, data col-
lection constraints (for example, accuracy or fre-
quency}, relationships, and systems dynamics.

The use of DDEX software may eventually lead to the
development of a specification for software with other
uses (for example, an economic model that can be used
to improve decision making). However, that software
would not be DDEX.

A model for DDEM software is shown in Figure 4.
This software is characterized by interdependence be-
tween the universe of discourse and the software. The
use of the software may change both the form and the

substance of the universe of discourse and, as a result,
the nature of the problem being solved.

Examples of DDEM software include business sys-
tems, office automation systems, software engineering
systems, design automation systems, and successive
generations of a large-scale operating system. In each of
these, the development process is a search for a "good"
problem statement. The essential difficulty lies in antic-
ipating the impact of likely changes in the universe of
discourse resulting from the introduction of the soft-
ware.

An interesting phenomenon often associated with
this type of development is that the introduction of the
software serves as a catalyst for changes in its environ-
ment that far exceed those anticipated by the software
designers. For example, some experts believe that 80
percent of the gain from office automation will result
from concomitant factors such as work reorganization
or job redesign, whereas only 20 percent will be de-
rived directly from the application of advanced auto-
mation technology [4].

Domain Dependent Software Life Cycle
Historically, software methodologies have focused on
programming techniques. Today, many focus on design.
The few that address the entirety of Boehm's software
life cycle rest on the a priori assumption that the de-
signer has, or can obtain, a detailed understanding of
the problem and can implement a solution and move
on to another project leaving a rather mundane as-
p e c t - m a i n t e n a n c e - t o others.

Problem
Relates ...--- ~ Statement

to
i Design

possibly of

Interest to

FIGURE 2. Domain Independent

"i Program

May 1984 Volume 27 Number 5 Communications of the ACM 429

Reports and Articles

J
f

f
J

FIGURE 3.

f

..,....

I

/ / i
ExperlmentaUon

\
\

Observation I

Abstraction]
+

Problem Statement J

Design I

Program I

Domain Dependent Soflware--Experimental

For DD software, the above is only trivially true (that
is, the designer knows the current problem statement
but does not know the relationship between that prob-
lem statement and a problem statement that leads to a
useful solution). Rather than implementing a solution,
one is really refining a sequence of imperfect proto-
types over an extended time (see Figure 5). For this
reason, conducting experiments to validate the problem
statement and to provide feedback for successive proto-
types is an essential part of the development process.

Before proceeding, it is worth noting that one very
common event is not explicitly represented in Figure 5.
At some point, a prototype typically becomes useful to
others besides the developers or experimenters. When
this occurs, the prototype can be made available as a
product or the specifications for the prototype can be
used as the problem statement for a DI software devel-
opment effort to produce a reengineered product. If the
prototype is made available as a product, a "frozen"

copy of the software enters a maintenance phase lim-
ited to bug fixing.

Treating a product as a "spin-off" from the software
development cycle with maintenance limited to bug
fixing is useful for three reasons. First, it allows one to
distinguish between bug fixing and program evolution.
These two distinct activities have been traditionally
clumped under the term, maintenance. Second, having
made such a distinction, one can contrast management
procedures designed to insure the short-term stability
of a product with those designed to cope with a long-
term process where continuing change is intrinsic.
Third, one can conduct field evaluations as a check on
the reliability of experimental validation efforts.

DOMAIN DEPENDENT SOFTWARE
DEVELOPMENT LIFE-CYCLE IMPLICATIONS
Much of the current software crisis is a result of not
recognizing and not managing the empirical, ongoing

/
/

Experimentation

f
J

f

FIGURE 4.

\

\

k
Observation]

Abstraction I

Problem Statement]

Design I

Program]

f

Domain Dependent Softwa~Embedded

430 Communications of the ACM May 1984 Volume 27 Number 5

Reports and Articles

FIGURE 5. Domain Dependent Software Life Cycle

nature of DD software development (that is, using inap-
propriate DI development procedures). In fact, when
one considers the perceptual and communication prob-
lems inherent in the software development process, DI
software development may be quite rare.

Because the development of DD software is a process
of refining prototypes, the basic management tradeoffs
are both the total life-cycle cost and the time necessary
to produce successive prototypes. Clearly, to be opti-
mal, any methodology based on designing each of a
sequence of prototypes from scratch will require a min-
imum amount of effort to build each prototype. Also,
hierarchical system designs do not lend themselves to
program evolution [5].

Using the tools and techniques available today, proto-
type development can be accomplished with very little
effort for some types of problems. The trend toward
using very high-level programming languages will in-
crease the number and type of problems that can be
effectively managed by building successive prototypes
from scratch. However, for the foreseeable future, we
will be faced with the recurring requirement of reduc-
ing the total life-cycle cost by increasing the probability
that work invested in one prototype can be easily car-
ried forward to succeeding prototypes.

One approach to protecting the investment made in
any given prototype is to collect modules into libraries
for reuse--either modules resulting from the structured
design for each prototype or modules developed for
other projects that happen to be accessible. However,
module libraries of this type (that is, collections of mod-
ules that happen to be available) have been around
since the 1950s and have failed to offer significant ad-
vantage.

The essential problem is that the individuality and
creativeness of a software designer are reflected in the
hierarchical decomposition of a problem statement.
There is no reason to believe that madules obtained
through such a process would ever be directly applica-
ble to another, or a succeeding, development effort. The
time and effort spent in searching for and modifying
modules that are "close" to the desired functionality
typically outweigh the cost advantages of reusing code.

Other problems deal with poor organization of the
module libraries. For example, a useful library must
provide quick and easy access to modules that might
provide the necessary functionality, must specify
clearly module function and implementation con-
straints, and must ensure that modules are "high qual-
ity."

As an alternative to the module library, Wasserman
and Belady [8] proposed the establishment of a "soft-
ware inventory." Later, Belady [7] proposed the concept
of "evolved software." Parnas [7] described "designing
software for ease of extension and contraction." I have
proposed the idea of "component software" and, based
on experience gained with the REAP system [3], the
idea of a "component software development environ-
ment."

In each of the above proposals, the essential idea is to
design software components for reuse. The internals of
the components (parts or building blocks) are to be
"unknowable" to the user, thus allowing the compo-
nent designer the freedom to experiment with imple-
mentation strategies.

Each of these approaches offers the potential for
overcoming the difficulties associated with the typical
module library. However, significant problems remain.

The first difficulty with designing software compo-
nents for reuse is identifying the components that
should be provided. There is intuitive appeal to the
idea that, for a given universe of discourse, there
should be "optimal" sets of components. These sets are
optimal in the sense that the cost of the component
library (that is, component development cost; library
development and operational costs; and cost of search-
ing for a component, verifying its suitability, and incor-
porating it into a design) plus the total cost for a se-
quence of prototypes is minimized. The second diffi-
culty is determining an effective environment within
which to develop prototypes using components.

The next section proposes a method for addressing
these two difficulties.

DOMAIN DEPENDENT SOFTWARE
DEVELOPMENT ENVIRONMENTS
Before proceeding, it is necessary to establish
definitions for a number of commonly used terms.

• A task is a narrowly focused activity usually
performed by a single worker.

• A tool is something that facilitates the performance of
a task.

• Mechanization is the use of tools.
• A problem-solving environment is an integrated set of

tools used to accomplish a function.
• Automation is the use of that class of systems that

requires no human intervention other than at
initiation and at termination.

• A problem-solving strategy is a procedure followed by
a human in obtaining some "end."

May 1984 Volume 27 Number 5 Communications of the ACM 431

Reports and Articles

With these definitions, one can observe that

• Mechanization requires embedding a knowledge of
tasks into the tools. Most existing software
development environments focus on mechanization
of software development tasks.

• Problem-solving environments require embedding a
knowledge of ends, tasks, and problem-solving
strategies into integrated systems (that is, they are
"knowledge-based systems" or "expert systems").

• Automated systems require embedded knowledge of
an end and an algorithm for achieving the end.

For all types of software, we are already seeing an
increasing focus on the development of problem-solving
environments because mechanization does not produce
the productivity advantages of an integrated set of
"intelligent" tools and, except for trivial cases,
automation is not feasible.

Problem-Solving Environments and DD Software
The economics associated with managing the DD soft-
ware life cycle are significantly different than those
associated with the DI software life cycle. When one
considers life cycles that typically extend over many
years and may result in expenditures of millions of
dollars, long-term cost tradeoffs are available that are
often in conflict with the short-term nature of the DI
development process.

The most important of these cost tradeoffs is the
front-end development of problem-solving environ-
ments and management procedures designed to mini-
mize the DD life-cycle cost. Cost reductions can
be achieved in three complementary ways. First, a
problem-solving environment can be designed to mini-
mize the work invested in a sequence of prototypes
(that is, an environment can be designed to increase the
probability that effort invested in one prototype will be
effectively utilized in successive prototypes; hence the
cost can be prorated over a larger base). Second, a prob-
lem-solving environment can reduce the cycle t ime--
the time from requirements analysis to experimental
validation of a prototype. This reduced cycle time re-
sults in more effective products and reduced personnel
costs. Third, a problem-solving environment can be de-
signed for use by personnel with marginal data process-
ing skills, thus conserving highly skilled manpower [3].

At present there are three forms an effective
problem-solving environment may take:

{1) generic environments applicable to all software de-
velopment,

(2) special-purpose environments for use with a spe-
cific universe of discourse (that is, a specific class of
software development problems), or

(3) extensible environments that not only provide sup-
port for the development life cycle but are simply
"extended" to produce prototypes and products.

It is my opinion that the development of generic en-
vironments, the bulk of current efforts, will not yield
significant results. A problem-solving environment

must have an embedded knowledge of ends, tasks, and
problem-solving strategies; at a generic level, knowl-
edge about software development can be embedded,
but the amount of knowledge about any other universe
of discourse will, by necessity, be small.

Special-purpose problem-solving environments have
been shown to offer cost advantages and to hold signifi-
cant potential for DD software. For example, the REAP
system was built using a special-purpose environment
designed specifically for use in building environmental
systems. Overall development cost was reduced from
an estimated $8 million to an actual $1.6 million [3].
Productivity of software development personnel was
the equivalent of 1300 lines of production FORTRAN
code per person-month at a cost of $2.84 per line of
operational code. The end product, consisting of over
360,000 lines of FORTRAN code, is maintained by one
person working part time at this task.

Extensible environments are interesting.to think
about; however, there are more questions than answers
about cost and effectiveness. They are mentioned here
primarily because the approach to problem-solving en-
vironment, design described in the next section may
also provide an approach to the design of extensible
environments.

The Design of Problem-Solving
Environments for DD Software
At this point, we need to return to the two issues left
hanging earlier: how do we identify the set of compo-
nents to be provided, and what is an effective problem-
solving environment for using components? We can
restate these issues a little more precisely as follows:

• Given a universe of discourse, how does one identify
an "appropriate" set of components?

• Given that one has an "appropriate" set of compo-
nents, what is the effect of changing the universe of
discourse? (Or, given a set of components, what is the
effect of adding or deleting components?)

• If there is a procedure for determining both of the
above, does it make a difference how one selects a
universe of discourse? (For example, if the universe
of discourse I am interested in is the "class of all
business problems," but I anticipate dealing also with
the "class of all integrated circuit design problems,"
what is the effect of selecting a universe of discourse
that is the union of those two sets?)

• How does answering the above affect the design of
problem-solving environments?

Using concepts from formal mathematical model the-
ory, one can formalize the first two of the above quite
easily. In particular, the first two questions deal with
"closure" and "consistency" of mathematical models.

Although it may not be obvious, the third question
can be viewed primarily as a human factors tradeoff.
Formal models can be easily developed for universes of
discourse ranging from the class of all computable prob-
lems to a single, simple problem statement. As we shall

432 Communications of the ACM May 1984 Volume 27 Number 5

Reports and Articles

see later, selection of the universe of discourse affects
our ability to produce a model that is "easy to use" (in a
sense defined later).

The fourth question boils down to, "If one goes to the
effort of developing a formal model for a universe of
discourse, can a problem-solving environment be devel-
oped that implements the formal model in a straightfor-
ward way and would such an implementation be usa-
ble?" The answer to this question is yes.

A methodology based on a formal modeling approach
consists of four phases:

(1) describing the universe of discourse--an in-depth
analysis of tasks, work flow, end-user behaviors
(namely, problem-solving strategies), and organiza-
tional goals and objectives:

(2) developing a formal model;
(3) implementing the model;
(4) developing applications.

This approach is simplified by the following hy-
potheses:

(1) Human problem-solving strategies and behaviors
can be represented as algorithms, which in turn can
be represented as recursive functions (Church's the-
sis).

{2) The set of an individual's problem-solving strategies
and cognitive processes, although dynamic, has a
small cardinality.

(3) For any given class of problems, the cardinality of
the set of human behaviors used to solve problems
is small.

The first, a thesis that has held for 40 years, allows
one to develop a formal model of the desired problem-
solving environment and assures that it can be imple-
mented in a straightforward manner. The second two,
basic premises of cognitive psychology that have been
studied since the turn of the century, allow one to
build "easy to use" systems--easy to use in the sense
that they

(1) minimize the number of end-user steps required to
achieve a solution, and

(2) minimize impedance (that is, the steps a user is
required to follow reflect both what tasks the user
believes to be important and the order in which
they should be performed).

It follows immediately that ease of use is not an abso-

lute measure. Rather, it is a measure with respect to a
single problem domain and a specific class of end users.
It also follows that the complexities associated with de-
signing an "easy to use" system are related to human
factors and cognitive psychology more than to data
processing.

Several advantages are provided by formally model-
ing the problem domain and the behaviors of users that
interact with that domain. First, a formal model pro-
vides the information necessary to build easy-to-use
systems. Second, a formal model provides a natural
way to identify and design "code" for reuse. Third, veri-
fication is simplified (that is, because the approach is
constructive, one needs only to verify the correctness of
the composition and, independently on a one-time ba-
sis, the model itself). Fourth, a formal model offers the
potential of developing hardware and software archi-
tectures optimized for the universe of discourse.

For example, the nature of a "program" lends itself to
the development of very high-level programming lan-
guages. Also, in my opinion, Wilner's [9] novel hard-
ware architecture (particularly well suited to VLSI
technology and avoiding the "Von Neumann bottle-
neck") would provide a good vehicle for the implemen-
tation of formal models.

Nested Development
The development of a problem-solving environment for
DD software development adds confusion to the issue of
life-cycle management. Because one is normally con-
ducting two development efforts concurrently (that is,
both the problem-solving environment and the applica-
tion are DD software), there is a nesting of life cycles
(see Figure 6). This nesting suggests the idea of extensi-
ble problem-solving environments and an approach to
the design of that type of an environment (again, see
Figure 6}.

CONCLUSION
DD software development is an empirical, ongoing pro-
cess. As such, it is not surprising that the front-end
implementation of a problem-solving environment of-
fers a high return-on-investment opportunity as well as
a means for conserving skilled data-processing person-
nel and increasing product effectiveness.

Reusing tested, verified code is essential if software
productivity is to be significantly improved by increas-
ing our ability to effectively carry the investment in

I
FIGURE 6. A Nested Development Cycle

May 1984 Volume 27 Number 5 Communications of the ACM 433

Reports and Articles

one p ro to type fo rward to s u c c e e d i n g pro to types . How-
ever , r eusab l e code wil l not be a n a c c i d e n t a l spin-off of
c u r r e n t pract ices . Code w i t h a h igh p robab i l i t y for
reuse m u s t be iden t i f i ed a n d des igned for reuse, a n d a n
e n v i r o n m e n t t h a t e n c o u r a g e s r euse m u s t be crea ted .

Spec ia l -purpose a n d e x t e n s i b l e p r o b l e m - s o l v i n g env i -
r o n m e n t s (wi th t h e i r p r o d u c t i v i t y i m p r o v e m e n t s , b e t t e r
abi l i ty to c o n s e r v e sk i l led m a n p o w e r , a n d h i g h e r po ten-
t ial for r eu s i ng code) wil l be i nc rea s ing ly e m p h a s i z e d
over gener ic p r o b l e m - s o l v i n g e n v i r o n m e n t s . T h e ques-
t ion of w h e t h e r a n op t i m a l set of e x t e n s i b l e p r o b l e m -
so lv ing e n v i r o n m e n t s cou ld be de f ined a n d e x t e n d e d to
c rea te spec ia l -purpose p r o b l e m - s o l v i n g e n v i r o n m e n t s
wil l r equ i r e a s ign i f ican t a m o u n t of r e s e a r c h to resolve.
However , if s u c h a set w e r e ident i f ied , so f tware devel -
o p m e n t costs cou ld be s ign i f i can t ly r educed .

Issues a b o u t t he des ign of p r o b l e m - s o l v i n g e n v i r o n -
m e n t s c an be f o r m a l i z e d by m e a n s of m o d e l theory .
Mode l s de r i ved t h r o u g h s u c h a process cou ld be di-
r ec t ly i m p l e m e n t e d a n d ho ld t he po t en t i a l of offer ing
a l t e rna t i ve s to c u r r e n t prac t ice .

REFERENCES
1. Belady, L.A. Evolved software for the 80s. Computer (Feb. 1979),

79-82.
2. Boehm, B.W. Software engineering. IEEE Trans. Comput. C-25 (Dec.

1976), 1226-1241.
3. Giddings, R.V, A graphics-oriented computer system to support en-

vironmental decision-making. In Computer Graphics and Environmen-

tal Planning, E. Teicholz and B. Berry, Eds. Prentice-Hall, Engiewood
Cliffs, N.J., 1983.

4. Hammer, M. What is office automation? Off. Autom. Memo 12,
Laboratory for Computer Science. Massachusetts Institute of Tech-
nology, Cambridge, Jan. 1980.

5. Lehman, M.M. Programs, life cycles, and laws of software evolu-
tion. Proc. IEEE 68, 9 {Sept. 1980), 1060-1076.

6. Martin, J. What to plan for to manage the future of your data
center. Can. Datasyst. 9, 3 (Mar. 1977), 28-32.

7. Parnas, D.L. Designing software for ease of extension and contrac-
tion. IEEE Trans. Comput. SE-5, 2 (Mar. 1979), 128-137.

8. Wasserman, A.I., and Belady, L.A. Software engineering: The turn-
ing point. Computer (Sept. 1978), 30-39.

9. Wilner, W.T. Recursive Machines. Rep. P.800054, Xerox Palo Alto
Research Center, Palo Alto, Calif., June 1980.

CR Categories and Subject Descriptors: C.O [General]: system archi-
tectures; D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming; D.2.2 [Software Engineering]: Tools and Techniques--soft-
ware libraries, user interfaces; D.2.6 [Software Engineering]: Programming
Environments; D.2.9 [Software Engineering]: Management--life cycle,
productivity; D.2 [Software Engineering]: Miscellaneous--rapid phototyp-
ing, reusable software

General Terms: Design, Economics, Human Factors, Languages, Man-
agement

Additional Key Words and Phrases: problem-solving environments

Author's Present Address: Richard V. Giddings, Manager, Local/Office
Systems, Corporate Information Management, Honeywell Inc., Honey-
well Plaza, Minneapolis, MN 55408.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

ACM Algorithms
Collected Algorithms from ACM (CALGO) now includes quar-
terly issues of comple te a lgor i thm listings on microfiche as part
of the regular CALGO supp lemen t service.

The ACM Algori thms Distribution Service now offers microfiche
containing comple te listings of ACM algorithms, and also offers
compi la t ions of a lgor i thms on tape as a substi tute for tapes
containing single algorithms. T he fiche and tape compila t ions
are available by quar ter and by year. Tape compila t ions covering
five years will also be available.

To subscr ibe to CALGO, request an order form and a free
A C M Publ icat ions Catalog from the A C M Subscr ip t ion De-
par tment , Associat ion for Compu t ing Machinery , 11 Wes t
42nd Street, New York, NY 10036. To order f rom the A C M
Algor i thms Dis t r ibut ions Service, refer to the order form that
appears in every issue of A C M Transactions on Mathematical
Software.

454 Communications of the ACM May 1984 Volume 27 Number 5

