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ABSTRACT: Considerable resources are devoted to the 
maintenance of programs including that required to correct 
errors not discovered until after the programs are delivered 
to the user. A number of factors are believed to affect the 
occurrence of these errors, e.g., the complexity of the 
programs, the intensity with which programs are used, and 
the programming style. Several hundred programs making 
up a manufacturing support system are analyzed to study 
the relationships between the number of delivered errors and 
measures of the programs' size and complexity (particularly 
as measured by software science metrics), frequency of use, 
and age. Not surprisingly, program size is found to be the 
best predictor of repair maintenance requirements. Repair 
maintenance is more highly correlated with the number of 
lines of source code in the program than it is to software 
science metrics, which is surprising in light of previously 
reported results. Actual error rate is found to be much 
higher than that which would be predicted from program 
characteristics. 

1. INTRODUCTION 
Whenever a piece of software is released for produc- 
tion, management information systems (MIS) executives 
make a commitment to devote resources in the future 
to the maintenance of that software. Some of this main- 
tenance is unavoidable and its occurrence unpredicta- 
ble since it is due to changes in user requirements or 
the computing environment. Unless the software is 
trivially simple, it will also undergo maintenance to 
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correct errors present but undetected at the time of 
release. Predicting the number of such errors, and 
therefore, the extent of the requirement for corrective 
or repair maintenance, would provide management 
with valuable planning information. 

A number of theories exist relating program charac- 
teristics to the expected occurrence of errors in the 
programs. This study examines those theories and hy- 
pothesized relationships between program characteris- 
tics and repair maintenance rates using data on 346 
programs in a system used by a large electronics manu- 
facturing firm. Results show that the occurrence of er- 
rors are in fact strongly related to measures of size and 
complexity of the programs and less strongly to the 
intensity with which the programs are used. Surpris- 
ingly, the actual number of errors reported against the 
program is larger than that predicted by software sci- 
ence measures. For these programs, size (numbers of 
lines of code) is found to be the best predictor of the 
number of errors remaining in a program after pre- 
release testing. 

2. REPAIR MAINTENANCE AND FACTORS 
BELIEVED TO AFFECT IT 

2.1 The Repair Maintenance Issue 
Maintenance refers to changes made to operational pro- 
grams in order to keep the programs operational and 
responsive to user needs. Maintenance activities can be 
broken down into several categories {e.g., [25, 27]) one 
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of which is corrective or repair maintenance. This es- 
sentially refers to fixing errors or "bugs," discovered 
after the program has been made operational. Other 
types of maintenance involve adapting programs to 
meet changing user needs or a changing computing en- 
vironment. 

Maintenance activities can account for a significant 
fraction of the cost and effort expended on a program 
during its life cycle. Lientz et al. [16] surveyed a num- 
ber of studies which estimated that fraction to range 
between 40 and 75 percent. Less information is avail- 
able specifying which part of that is repair mainte- 
nance. Lientz and Swanson [15] found it to be about 20 
percent in one study of 487 data processing (DP) organi- 
zations, whereas Vessey and Weber [27] found it to be 
"a minor problem" without making a specific resource- 
expenditure estimate. Popular wisdom, as reflected in 
MIS textbooks [4] and MIS management publications 
[6] holds that the cost is significant enough to be a real 
management concern. 

2.2 Program Complexity 
Most research on factors affecting program repair main- 
tenance has focused on the relationship between the 
number of bugs and some measure or measures of the 
"complexity" of the program. This complexity has been 
defined in a number of ways, most often utilizing the 
software science metrics developed by Halstead [14]. 
The basic idea is that the more complex the program or 
module, the more likely it is that the programmer made 
logic errors and failed to detect the errors before the 
module was released. 

2.2.1 Program Size. A number of empirical studies- 
have been reported using different complexity meas- 
ures and with varying results. A common approach in- 
volves some measure of program size as an indicator of 
complexity. Lientz and Swanson [15] found that larger 
systems (as measured by numbers of source language 
statements) seemed to require more maintenance effort 
including debugging, as perceived by their respondents. 
Bell and Sullivan [2] examined a number of published 
algorithms and found a strong relationship between an 
algorithm's length and the occurrence of errors. Thayer 
[26], in a study of 249 modules, reported that the larger 
modules did experience a greater number of bugs, but 
he did not report correlation coefficients. Bowen [3] 
examined the correlations between errors and program 
length for 75 modules in three projects for the Depart- 
ment of Defense, and found correlation coefficients 
ranging from 0.51 to 0.91. (He found similar correlations 
when using McCabe's measure of cyclomatic complex- 
ity [18] as a predictor variable.) Vessey and Weber used 
categorical complexity measures, "simple," "moderately 
complex," and "complex," derived from the number 
of procedure-division statements and subjective evalua- 
tions as a predictor variable for 447 commercial pro- 
grams in three organizations. They found only a weak 
relationship between this variable and the rate of repair 
maintenance for one organization's programs. 

2.2.2 Software Science Program Complexity Measures. 
A complexity measure which has had some empirical 
support is Halstead's E-- the  measure of mental effort 
required to create a program. E is derived from two 
other measures of a program--difficulty and volume. A 
program's difficulty is a function of the number of oper- 
ators used in the program and the number of times 
variables are manipulated within the program. As 
pointed out by Christensen et al. [7], it appears to be a 
measure of both the "ease of writing" and "ease of read- 
ing" of the program. Volume is a function of the total 
usage of operators and operands and the number of 
unique operators and operands appearing in the pro- 
gram. It is a measure of the number of bits required to 
specify the program. E is the product of these two meas- 
ures: As the size (volume) and /o r  difficulty of an algo- 
rithm increases, so should the effort required to code it 
into a program. (For a more complete explanation of 
these and other software science metrics, see [14].) 

Some very impressive results have been obtained us- 
ing these measures. Funami and Halstead [12] calcu- 
lated the value of E for nine modules reported by Aki- 
yama [1] and found a 0.98 correlation between the E 
measurement and the reported number of errors. Fitz- 
simmons and Love [11] calculated E measures for 140 
programs in three large General Electric software de- 
velopment projects, and found correlations ranging 
from 0.75 to 0.81 between E and the number of docu- 
mented errors for the programs. 

Fitzsimmons and Love [11] pointed out that a likely 
problem in comparing their results with those of Hal- 
stead and his colleagues was a difference in the way 
the dependent variable was defined. For them, "deliv- 
ered bugs" meant those discovered after the initial 
round of testing. The arguments made by Halstead [14] 
for the relationship between E and the number of bugs 
refers to all bugs initially coded into the program and 
the correlations reported by Funami and Halstead [12] 
were derived on that basis. Managers interested in fu- 
ture repair maintenance rates will be concerned with 
the bugs remaining in a program after all pre-release 
testing and debugging has been done. One issue that is 
addressed in this study is the strength of the correlation 
between E and only those bugs which remain after for- 
mal debugging is complete. 

Ottenstein et al. [21] further argued that the number 
of bugs coded into a program was a function of two 
factors: the number of mental discriminations required 
to code the program (E) and the average amount of 
work (i.e., number of mental discriminations) a pro- 
grammer can do without making an error. They claim 
that this function can be approximated by 

B -- E2/3/3000 

where B is the predicted number of bugs in a module. 
They found that the predictive power of this model was 
supported by Akiyama's data [1] and by Bell and Sulli- 
van's suggested maximum module size [2]. 
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2.3 Intensity of Program Use 
A second factor which might affect the occurrence of 
repair maintenance is the intensity with which a pro- 
gram is used. Musa [20] and Littlewood [17], for exam- 
ple, suggested that the more "stress" a program under- 
goes, that is, the more it is executed, the shorter the 
expected time to failure, the sooner a bug will be 
discovered and have to be fixed. Gilb [13], likewise, 
pointed out that one should measure program reliabil- 
ity not in terms of absolute number of bugs but in 
terms of the number of transactions with failures as a 
fraction of the total number of transactions. The idea 
here is that the more a program is exercised, the more 
likely it is that the logic path with the hidden bug will 
be taken, sooner rather than later. Thus, all other 
things being equal, a program which is run more fre- 
quently would be expected to have a higher incidence 
of repair maintenance than one which is run less fre- 
quently. Vessey and Weber [27] cite this logic in using 
repair maintenance rate (the number of repairs carried 
out divided by the number of production runs) for a 
program as their dependent variable. 

2.4 Program Age 
A related but slightly different issue is that of program 
age. Vessey and Weber [27] reflected the common be- 
lief that the rate of discovery of bugs declines as the 
program grows older--fewer and fewer untried logic 
paths remain. On the other hand, it is only with the 
passage of time that some of these logic paths will be 
tried, when certain unusual circumstances arise. For 
example, there is the (possibly apocryphal) story related 
by Moore [19] about the early days of the SABRE sys- 
tem which crashed when a reservation was attempted 
in which the names totaled 244 characters ending with 
an "n." This bug was not discovered until one day 
when an agent attempted to book a flight for the Boston 
Bruins hockey team. Because only unusual circum- 
stances will activate some logic paths, one would ex- 
pect to find a correlation between program age and the 
incidence of repair maintenance, beyond that attributa- 
ble to frequency of production runs. The older a pro- 
gram is, the more likely it is that those rarely encoun- 
tered bugs have, in fact, been encountered. 

2.5 Programming Style 
There is popular support for the notion that certain 
programming practices, specifically modular program- 
ming and structured programming, tend to reduce the 
number of delivered bugs in a program [5]. (Shell [22], 
however, shows that support for this notion in the re- 
search literature is very weak indeed.) The basic idea is 
that the factoring, in the case of modular programming 
or formal structuring, in the case of structured pro- 
gramming, of the program makes it easier to under- 
stand and to debug more completely before release. 
These effects may be interpreted as resulting from a 
reduction in program complexity due to the use of the 
techniques. Christensen et al. [7] pointed out that the 
use of structured programming techniques should be 

captured in the Halstead difficulty measure which, in 
turn, affects the effort measure E. Breaking a program 
into modules reduces the number of unique operators 
used, which therefore reduces both difficulty and vol- 
ume, reducing E. Thus, a larger, that is, nonmodular- 
ized or unstructured implementation of a given algo- 
rithm would be expected to require more mental dis- 
criminations (higher E measurement) than the same al- 
gorithm implemented using these programming tech- 
niques. 

2.6 Programmer Competence 
A final factor which might be expected to affect the 
number of delivered bugs is the competence of the pro- 
grammer who wrote the program. Published findings 
on this question are sparse and conflicting. Endres [10] 
found evidence that programmer quality was an impor- 
tant determinant in the number of bugs in a release of 
an IBM operating system. Vessey and Weber, on the 
other hand, were unable to find any relationship be- 
tween programmer quality and repair maintenance in 
their study [27]. Unfortunately, the data used in this 
study was captured for other purposes, and does not 
include information on the competence or experience 
of the programmers involved. This issue, therefore, will 
not be addressed, except to recognize it as a possible 
confounding variable. 

2.7 Hypotheses 
Several hypotheses can be identified which this study 
will test. These are: 

HI: The more complex a program is, in terms of size 
(lines of code or volume), difficulty or Halstead 
E, the greater the number of errors the program 
will contain when released. 

H2: The more intensively a program is used, the 
more errors will be discovered in it. 

H3: The older a program is, in terms of time since 
release, the more errors will have been discov- 
ered in it. 

Each of these can be stated in the form of a null hy- 
pothesis; that is, there is no statistically significant rela- 
tionship between number of delivered bugs in a pro- 
gram and any of the other factors mentioned. An addi- 
tional prediction to be tested, although it is not in hy- 
pothesi's form, is that the actual number  of delivered 
bugs discovered in the programs will be related to but 
less than the number derived from the formula by 
Ottenstein et al. [21]. 

3. RESEARCH METHODOLOGY 
To test these hypotheses, an anal~/sis was performed on 
the 346 programs making up a manufactur!ng support 
system (manufacturing database maintenance and re- 
quirements planning) used by a large electronics equip- 
ment manufacturer. This system was developed and 
maintained by a central programming group which de- 
velope d and maintained other systems as well. It is 
currently installed in 28 locations worldwide (all in- 
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TABLE I. Complexity Measurements and Repair Requests for Programs Included in the Analysis* 

Haistead Volume (Kbits) 45.5 52.7 0.4 290.1 
Halstead Difficulty 70.2 67.4 3.0 1,129 
Halstead E (000) 4,769 8,521 1.6 81,965 
Lines of Code (excluding c0'~nments) 1,173 1,168 51 6,572 

* n = 346 

house). All software maintenance done, for whatever 
reason, is performed by the central programming group. 
For repair maintenance, the user who discovers an er- 
ror submits a formal request to this group for correction 
of the error. 

The programs themselves are written in PL/I  and 
vary in length from 51 to 6,572 source statements. All 
were written in a highly structured style according to 
the organization's programming standards. Halstead 
metrics were computed for each of these programs by 
means of a program which took as input the PL/1 
source code. It counted the number of unique operators 
and operands and the number of total occurrences of 
operators and operands along with the total lines of 
code for each program. Further, Halstead metrics were 
computed from these counts according to the proce- 
dures described in [14]. Table I summarizes this infor- 
mation. 

The Halstead measurements were taken at one point 
in time, and, therefore, do not reflect changes in a pro- 
gram's complexity due to adaptive or perfective main- 
tenance. The few programs which were so substan- 
tially rewritten as to significantly change their complex- 
ity measures were from the analysis. Changes in com- 
plexity over time for the remaining programs should 
have been small, and should not have biased the re- 
suits. 

User records were examined to determine the fre- 
quency of use of each program. Table II shows the cate- 
gorizations which were made and the distribution of 

TABLE II. Distribution of Programs by Frequency of Use 

Level Descrip'don N % 

0 Used rarely (monthly or less) 113 32.7 
1 Used at least monthly but not daily 99 28.6 
2 Usually used once per day 84 24.3 
3 Used several times per day 28 8.1 
4 Used many times per day 2___22 6.4 

Total 346 100.0 

TABLE IlL Distribution of Programs by Age 
(Number of Years since Initial Release) 

Age N % 

Less than one year 7 2.0 
At least one year but less than two 4 1.2 
At least two years but less than three 9 2.6 
At least three years but less than four 1 0.3 
At least four years but less than five 325 93.9 
Total 346 100 

programs by category. Although it would have been 
more desirable to use a continuous measure of fre- 
quency of use (e.g., number of times the program was 
run per month), this was not possible. The different 
system users kept their usage records in different for- 
mats and at differing levels of detail, so that only cate- 
gorizations as shown in Table II could be made accu- 
rately. 

Age of the programs was obtained from records 
showing the date of initial release. Table III shows the 
distribution of programs by age. One shortcoming in 
this data becomes apparent from an examination of Ta- 
ble iII--the lack of variation in program age. This re- 
flects the fact that most of the programs were initially 
released as a group when the system as a whole was 
released. This severely limits the extent to which the 
effects of program age on repair maintenance (H3) can 
be tested. 

The dependent variable is the total number of repair 
requests made for each program over its life. (One re- 
pair request represents one bug to be fixed.) This was 
obtained from records maintained by the programming 
group. For the 346 programs included in the study, the 
number of requests per program ranged from zero to a 
high of 268 with an average of 16.8 per program, and a 
standard deviation of 31.7. 

4. ANALYSIS 
4.1 Correlations Among Variables 
The first step in the analysis of the data is to look at the 
paired (zero-order) correlations among variables as 
shown in Table IV. Several points should be noted in 
this data. The correlation between volume and diffi- 
culty is significant, but not perfect, suggesting that 
these measure related, but different, aspects of the pro- 
gram. The number of lines of code is mare highly corre- 
lated with volume than with difficulty, lending support 
to the notion that a longer program is not necessarily a 
more difficult one. Age is not very highly correlated 
with anything, including the number of repairs. The 
apparently significant negative correlation between age 
and difficulty is probably spurious due to the limited 
variability in age. Frequency of use is significantly cor- 
related with the number of repairs, as anticipated, but 
is also significantly correlated with volume, difficulty, 
E, and lines of code. These latter correlations are unex- 
pected, and may indicate some coincidental patterns in 
the programs, for example, that the biggest and most 
difficult programs happen to be run fairly frequently. 

The data lends support to H1, that the number of 
delivered errors increases as program complexity in- 
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TABLE IV. Paired (Zero-Order) Correlations among Variables** 

Vol Diff E Loc Age Freq 

DIFF 0.44* 
E 0.85* 0.79* 
LOC 0.97* 0.47* 0.82* 
AGE 0.05 -0 .18*  - 0 . 07  0.04 
FREQ 0.19" 0.20* 0.21 * 0.22* 
REPAIRS 0.72* 0.25* 0.57* 0.74* 

*p < 0.001 ** n = 346 

0.05 
0.08 0.27* 

creases. The number of repairs is significantly corre- 
lated with E, although at a lower level than would be 
expected from previously reported findings. There is 
also a significant, but somewhat weak correlation be- 
tween difficulty and number of repairs. Most striking, 
however, is the correlation between the measures of 
size of the program--volume and lines of code- -and  
the number of repairs. It would appear that for these 
programs, lines of code would be the best measure of 
complexity to use for predicting repair requests. 

4.2 Regression Model 
Regression analysis lets us look at the combined effects 
of these variables. To do this, a series of regression 
analyses were run, in which the dependent variable 
was number of repairs. All the possible combinations of 
difficulty, volume, lines of code, E, program age, and 
frequency of use were used as independent variables. 
Table V shows the "best" regression model that could 
be built from the data predicting repair requests as a 
function of the independent variables mentioned above. 
This model is best in the sense that substituting any 
other measure of program complexity for number of 
lines of code reduced the overall R 2. Also, if any other 
complexity measure was added to the equation along 
with number of lines of code, the model's explanatory 
power was not significantly enhanced. Program age was 
not a significant variable in any formulation. The varia- 
bility in the two measures used accounted for 56 per- 

TABLE V. Results of Least-Squares Regression (Dependent 
Variable = Number of Repair Requests) 

Variable Beta t Statistic 

Constant term - 9 , 8 5  - 5 . 2 *  
Number of lines of code 0,0194 19.5" 
Frequency of use 3,12 3.2* 

R 2 = 0.56 F = 218.5 (Significance of F < 0.001) 
* Significance of t < 0.001 

TABLE Vl. Results of Least-Squares Regression (Dependent 
Variable = Number of Repair Requests per 1,000 Lines 
of Code) 

Variable Beta t Statistic 

Constant term 4.46 3.9* 
Number of lines of code 0.0017 2.84** 
Frequency of use 3.87 6.5* 

R 2 = 0.15 F = 30.7 (Significance of F < 0.001) 
* Significance of t < 0.001 ** Significance of t < 0.01 

cent of the variability in the number of repair requests. 
Although both independent variables were significant 
at the 0.001 level, most of the explanatory power of the 
model lies in the lines of code measure. As was shown 
in the correlation matrix, there was statistical support 
for H2, that the number of errors discovered increases 
with increasing intensity of program use, but operation- 
ally, this relationship was weak. 

Beta in Table VI was the coefficient in the regression 
equation for each variable. It was the amount the de- 
pendent variable changes for each unit change in the 
independent variable. Since frequency of use was an 
ordinal variable, its actual coefficient value was less 
meaningful than is the coefficient for lines of code, 
which was a ratio-level variable [23]. 

4.3 Program-Error Characteristics 
The number of bugs in these programs, as reflected by 
the number of repair requests, was significantly greater 
than that predicted by Ottenstein et al. [21]. Actual 
repair requests showed a total of 5,822 bugs (an average 
of 16.8 per program) while the predicted number was 
2,613 (an average of 7.6 per program). These results 
were particularly surprising in light of our expectation 
that the actual number of discovered bugs should be, if 
anything, less than the predicted number due to some 
having been caught in pre-release testing. Instead, it 
appears that the larger the program (number of lines of 
code), the greater the error in the prediction. The corre- 
lation coefficient between number of lines of code and 
the difference between actual and predicted number  of 
bugs was 0.58, which was significant at the 0.001 level. 

Four possible explanations for this discrepancy come 
to mind. The first is that the formula proposed by Ot- 
tenstein et al. is incorrect for programs such as the ones 
studied here. Size of the programs may be a factor--  
there are some very large programs in this set, and it is 
for these large programs that the discrepancy is great- 
est. It may be that programs become more error prone 
as they increase in complexity at a rate even faster 
than that predicted. 

A second possibility is that we are seeing the effects 
of uncontrolled intervening variables. Ottenstein et al. 
point out that the relationship they postulate may be 
confounded by factors such as programmer experience, 
method of programming, and amount of machine time 
available for testing. Since programmer characteristics 
and test time are not measured in this study, their 
effect is impossible to determine. 
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TABLE Vll. 

Number of Frequency 
Repair Requests 

Frequency of Repair Requests 

% 

0 59 17.1 
1- 5 127 36.7 
6-10 32 9.2 

11-20 42 12.1 
21-30 30 8.7 
31-40 15 4.3 
41-50 9 2.6 
51-1 O0 26 7.5 

101-200 3 0.9 
201-300 3 0.9 

Totals 346 100.0 

Third, it may be that some of the repairs were to fix 
bugs introduced by previous maintenance efforts. In 
particular, one would expect some bugs to be intro- 
duced by adaptive maintenance which added code to a 
program. Since extensively rewritten programs were 
excluded from the data set, however, it seems unlikely 
that this would account for such a large discrepancy 
between predicted and actual bugs. 

Finally, there is the possibility that some of the "re- 
pair requests" were actually requests for adaptive 
maintenance (i.e., changes to the program's function, 
not fixes). As Swanson [24] points out, MIS organiza- 
tions tend to resist requests for repair maintenance less 
than they do requests for adaptive maintenance, lead- 
ing users to try to disguise their requests for changes as 
requests to fix bugs. While there is no evidence that 
this has occurred with the programs included in this 
study, it is a possibility that must be recognized. 
Clearly, this is an area which merits further study. 

We can look at the distribution of frequency of repair 
requests as shown in Table VII. While a number of 
programs (59) have had no repair maintenance at all, 
most have had some repairs, and almost half have had 
more than five repair requests. For the 346 programs as 
a group, there were almost 6,000 repairs requested over 
a 41/2-year period. These findings are in sharp contrast 
to those reported by Vessey and Weber [27]. One possi- 
ble explanation for this discrepancy would be that Ves- 
sey and Weber studied systems with much shorter pro- 
grams. This is supported by the fact that they classify 
programs with more than 600 source statements as 
"complex," while the average length of programs in- 
cluded in this study was 1,168 lines of code. 

5. CONCLUSIONS 
In drawing conclusions from this data, one must re- 
member that it represents only one particular situation, 
utilizing one programming language and style, and it 
would be improper to generalize beyond this situation. 
Still, it is instructive to look at the results obtained 
from particular cases in light of predictions which have 
been made concerning factors affecting the occurrence 
of delivered bugs. Only through the examination of em- 
pirical evidence can the theories be tested and refined. 

The most surprising result was the large number of 
bugs discovered in the programs relative to the number 
of bugs which would be predicted by the formula de- 
veloped by Ottenstein et al. Unfortunately, measures of 
possible intervening variables which may account for 
this difference--programmer characteristics and the 
extent of adaptive maintenance performed on the pro- 
grams--were not available in the data used. Given the 
strong correlations reported by Ottenstein et al. in sup- 
port of their model, and the potential usefulness of that 
model, the need for further investigation is clearly indi- 
cated. 

The data analyzed above agree with the widely held 
view that the number of delivered bugs in a program is 
strongly related to the complexity of that program. Sur- 
prisingly, however, the best measure of this complexity 
appears to be simple count of the lines of code in the 
program, rather than such measures as Halstead's E, 
which have been used successfully in previously re- 
ported research. The correlation between E and num- 
ber of repair requests, while significant, is lower than 
that reported in previous studies. The number of men- 
tal discriminations a programmer makes in creating a 
program (measured as E) may be an important determi- 
nant of the number of bugs initially coded into the 
program. It appears, however, that the size of the pro- 
gram (as measured by lines of code or volume) is more 
important in determining the number of those errors 
which are found during debugging, and, therefore, the 
number of remaining bugs which are delivered to the 
user. These findings appear to vindicate those who ad- 
vocate limiting program module size in order to help 
reduce delivered bugs (see [2, 21]). 

Frequency of use of the programs studied does not 
seem to be as important a predictor of repair mainte- 
nance as the literature suggests. While the correlation 
between frequency of use and number of repair re- 
quests is statistically significant, the amount of varia- 
tion explained is small, only about 6 percent. Perhaps 
the fact that most of the programs were over four years 
old influenced this. After four years, one might hypoth- 
esize, all the programs would have been run so many 
times that any effect of frequency of use would be lost. 
This badly skewed distribution of program age also 
made it possible to test the hypothesis that the occur- 
rence of repairs increases with program age. 

The need is clearly indicated for further research to 
refine our understanding of what factors relate to deliv- 
ered bugs and, therefore, to repair maintenance. Almost 
one half of the variability in occurrence of repair main- 
tenance among the programs included in this study re- 
mains unexplained--despite the fact that program size, 
complexity, intensity of use, and age were included as 
predictor variables, and programming style was com- 
mon across all modules. As mentioned above, other 
factors not included as predictor variables or controlled 
for in the experimental design may be at work. This is 
a disadvantage of using existing data captured for pur- 
poses other than the one under study--important con- 
structs may simply not have been measured. 
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T h i s  p r o b l e m  is b e s t  a d d r e s s e d  b y  s t u d i e s  in  w h i c h  

c o n s t r u c t s  a n d  t h e  w a y  i n  w h i c h  t h e y  wi l l  be  m e a s u r e d  

a r e  d e t e r m i n e d  b e f o r e  o r  d u r i n g  t h e  t i m e  t h e  p r o g r a m s  

a r e  a c t u a l l y  w r i t t e n ,  In  a d d i t i o n ,  w h e r e  c e r t a i n  f a c t o r s  

do  n o t  v a r y  w i t h i n  a p a r t i c u l a r  s t u d y  (e.g., p r o g r a m -  

m i n g  s t y l e  d i d  no t  d i f fe r  in  t h i s  s t u d y ) ,  m u l t i p l e  c o m -  

p a r a t i v e  s t u d i e s  a r e  r e q u i r e d  to s e e  t h e  e f fec t  o f  t h a t  

fac tor .  T h e  j u s t i f i c a t i o n  for  s u c h  s t u d i e s  is c l e a r - - t h e  

m o r e  w e  k n o w  a b o u t  t h e  f a c t o r s  a f f e c t i n g  t h e  o c c u r -  

r e n c e  o f  b u g s  in  d e l i v e r e d  p r o g r a m s ,  t h e  b e t t e r  w e  

s h o u l d  b e  ab l e  to p r e d i c t ,  a n d  u l t i m a t e l y ,  c o n t r o l  t h o s e  

b u g s .  
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