
RESEARCH CONTRIBUTIONS

Management of
Computing

Gordon B. Davis
Editor

Determinants of Program
Repair Maintenance
Requirements

LEE L. GREMILLION

ABSTRACT: Considerable resources are devoted to the
maintenance of programs including that required to correct
errors not discovered until after the programs are delivered
to the user. A number of factors are believed to affect the
occurrence of these errors, e.g., the complexity of the
programs, the intensity with which programs are used, and
the programming style. Several hundred programs making
up a manufacturing support system are analyzed to study
the relationships between the number of delivered errors and
measures of the programs' size and complexity (particularly
as measured by software science metrics), frequency of use,
and age. Not surprisingly, program size is found to be the
best predictor of repair maintenance requirements. Repair
maintenance is more highly correlated with the number of
lines of source code in the program than it is to software
science metrics, which is surprising in light of previously
reported results. Actual error rate is found to be much
higher than that which would be predicted from program
characteristics.

1. INTRODUCTION
Whenever a piece of software is released for produc-
tion, management information systems (MIS) executives
make a commitment to devote resources in the future
to the maintenance of that software. Some of this main-
tenance is unavoidable and its occurrence unpredicta-
ble since it is due to changes in user requirements or
the computing environment. Unless the software is
trivially simple, it will also undergo maintenance to

© 1984 ACM 0001-0782/84/0800-0826 75¢

correct errors present but undetected at the time of
release. Predicting the number of such errors, and
therefore, the extent of the requirement for corrective
or repair maintenance, would provide management
with valuable planning information.

A number of theories exist relating program charac-
teristics to the expected occurrence of errors in the
programs. This study examines those theories and hy-
pothesized relationships between program characteris-
tics and repair maintenance rates using data on 346
programs in a system used by a large electronics manu-
facturing firm. Results show that the occurrence of er-
rors are in fact strongly related to measures of size and
complexity of the programs and less strongly to the
intensity with which the programs are used. Surpris-
ingly, the actual number of errors reported against the
program is larger than that predicted by software sci-
ence measures. For these programs, size (numbers of
lines of code) is found to be the best predictor of the
number of errors remaining in a program after pre-
release testing.

2. REPAIR MAINTENANCE AND FACTORS
BELIEVED TO AFFECT IT

2.1 The Repair Maintenance Issue
Maintenance refers to changes made to operational pro-
grams in order to keep the programs operational and
responsive to user needs. Maintenance activities can be
broken down into several categories {e.g., [25, 27]) one

826 Communications of the ACM August 1984 Volume 27 Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358198.358228&domain=pdf&date_stamp=1984-08-01

Research Contributions

of which is corrective or repair maintenance. This es-
sentially refers to fixing errors or "bugs," discovered
after the program has been made operational. Other
types of maintenance involve adapting programs to
meet changing user needs or a changing computing en-
vironment.

Maintenance activities can account for a significant
fraction of the cost and effort expended on a program
during its life cycle. Lientz et al. [16] surveyed a num-
ber of studies which estimated that fraction to range
between 40 and 75 percent. Less information is avail-
able specifying which part of that is repair mainte-
nance. Lientz and Swanson [15] found it to be about 20
percent in one study of 487 data processing (DP) organi-
zations, whereas Vessey and Weber [27] found it to be
"a minor problem" without making a specific resource-
expenditure estimate. Popular wisdom, as reflected in
MIS textbooks [4] and MIS management publications
[6] holds that the cost is significant enough to be a real
management concern.

2.2 Program Complexity
Most research on factors affecting program repair main-
tenance has focused on the relationship between the
number of bugs and some measure or measures of the
"complexity" of the program. This complexity has been
defined in a number of ways, most often utilizing the
software science metrics developed by Halstead [14].
The basic idea is that the more complex the program or
module, the more likely it is that the programmer made
logic errors and failed to detect the errors before the
module was released.

2.2.1 Program Size. A number of empirical studies-
have been reported using different complexity meas-
ures and with varying results. A common approach in-
volves some measure of program size as an indicator of
complexity. Lientz and Swanson [15] found that larger
systems (as measured by numbers of source language
statements) seemed to require more maintenance effort
including debugging, as perceived by their respondents.
Bell and Sullivan [2] examined a number of published
algorithms and found a strong relationship between an
algorithm's length and the occurrence of errors. Thayer
[26], in a study of 249 modules, reported that the larger
modules did experience a greater number of bugs, but
he did not report correlation coefficients. Bowen [3]
examined the correlations between errors and program
length for 75 modules in three projects for the Depart-
ment of Defense, and found correlation coefficients
ranging from 0.51 to 0.91. (He found similar correlations
when using McCabe's measure of cyclomatic complex-
ity [18] as a predictor variable.) Vessey and Weber used
categorical complexity measures, "simple," "moderately
complex," and "complex," derived from the number
of procedure-division statements and subjective evalua-
tions as a predictor variable for 447 commercial pro-
grams in three organizations. They found only a weak
relationship between this variable and the rate of repair
maintenance for one organization's programs.

2.2.2 Software Science Program Complexity Measures.
A complexity measure which has had some empirical
support is Halstead's E-- the measure of mental effort
required to create a program. E is derived from two
other measures of a program--difficulty and volume. A
program's difficulty is a function of the number of oper-
ators used in the program and the number of times
variables are manipulated within the program. As
pointed out by Christensen et al. [7], it appears to be a
measure of both the "ease of writing" and "ease of read-
ing" of the program. Volume is a function of the total
usage of operators and operands and the number of
unique operators and operands appearing in the pro-
gram. It is a measure of the number of bits required to
specify the program. E is the product of these two meas-
ures: As the size (volume) and /o r difficulty of an algo-
rithm increases, so should the effort required to code it
into a program. (For a more complete explanation of
these and other software science metrics, see [14].)

Some very impressive results have been obtained us-
ing these measures. Funami and Halstead [12] calcu-
lated the value of E for nine modules reported by Aki-
yama [1] and found a 0.98 correlation between the E
measurement and the reported number of errors. Fitz-
simmons and Love [11] calculated E measures for 140
programs in three large General Electric software de-
velopment projects, and found correlations ranging
from 0.75 to 0.81 between E and the number of docu-
mented errors for the programs.

Fitzsimmons and Love [11] pointed out that a likely
problem in comparing their results with those of Hal-
stead and his colleagues was a difference in the way
the dependent variable was defined. For them, "deliv-
ered bugs" meant those discovered after the initial
round of testing. The arguments made by Halstead [14]
for the relationship between E and the number of bugs
refers to all bugs initially coded into the program and
the correlations reported by Funami and Halstead [12]
were derived on that basis. Managers interested in fu-
ture repair maintenance rates will be concerned with
the bugs remaining in a program after all pre-release
testing and debugging has been done. One issue that is
addressed in this study is the strength of the correlation
between E and only those bugs which remain after for-
mal debugging is complete.

Ottenstein et al. [21] further argued that the number
of bugs coded into a program was a function of two
factors: the number of mental discriminations required
to code the program (E) and the average amount of
work (i.e., number of mental discriminations) a pro-
grammer can do without making an error. They claim
that this function can be approximated by

B -- E2/3/3000

where B is the predicted number of bugs in a module.
They found that the predictive power of this model was
supported by Akiyama's data [1] and by Bell and Sulli-
van's suggested maximum module size [2].

August 1984 Volume 27 Number 8 Communications of the ACM 82?

Research Contributions

2.3 Intensity of Program Use
A second factor which might affect the occurrence of
repair maintenance is the intensity with which a pro-
gram is used. Musa [20] and Littlewood [17], for exam-
ple, suggested that the more "stress" a program under-
goes, that is, the more it is executed, the shorter the
expected time to failure, the sooner a bug will be
discovered and have to be fixed. Gilb [13], likewise,
pointed out that one should measure program reliabil-
ity not in terms of absolute number of bugs but in
terms of the number of transactions with failures as a
fraction of the total number of transactions. The idea
here is that the more a program is exercised, the more
likely it is that the logic path with the hidden bug will
be taken, sooner rather than later. Thus, all other
things being equal, a program which is run more fre-
quently would be expected to have a higher incidence
of repair maintenance than one which is run less fre-
quently. Vessey and Weber [27] cite this logic in using
repair maintenance rate (the number of repairs carried
out divided by the number of production runs) for a
program as their dependent variable.

2.4 Program Age
A related but slightly different issue is that of program
age. Vessey and Weber [27] reflected the common be-
lief that the rate of discovery of bugs declines as the
program grows older--fewer and fewer untried logic
paths remain. On the other hand, it is only with the
passage of time that some of these logic paths will be
tried, when certain unusual circumstances arise. For
example, there is the (possibly apocryphal) story related
by Moore [19] about the early days of the SABRE sys-
tem which crashed when a reservation was attempted
in which the names totaled 244 characters ending with
an "n." This bug was not discovered until one day
when an agent attempted to book a flight for the Boston
Bruins hockey team. Because only unusual circum-
stances will activate some logic paths, one would ex-
pect to find a correlation between program age and the
incidence of repair maintenance, beyond that attributa-
ble to frequency of production runs. The older a pro-
gram is, the more likely it is that those rarely encoun-
tered bugs have, in fact, been encountered.

2.5 Programming Style
There is popular support for the notion that certain
programming practices, specifically modular program-
ming and structured programming, tend to reduce the
number of delivered bugs in a program [5]. (Shell [22],
however, shows that support for this notion in the re-
search literature is very weak indeed.) The basic idea is
that the factoring, in the case of modular programming
or formal structuring, in the case of structured pro-
gramming, of the program makes it easier to under-
stand and to debug more completely before release.
These effects may be interpreted as resulting from a
reduction in program complexity due to the use of the
techniques. Christensen et al. [7] pointed out that the
use of structured programming techniques should be

captured in the Halstead difficulty measure which, in
turn, affects the effort measure E. Breaking a program
into modules reduces the number of unique operators
used, which therefore reduces both difficulty and vol-
ume, reducing E. Thus, a larger, that is, nonmodular-
ized or unstructured implementation of a given algo-
rithm would be expected to require more mental dis-
criminations (higher E measurement) than the same al-
gorithm implemented using these programming tech-
niques.

2.6 Programmer Competence
A final factor which might be expected to affect the
number of delivered bugs is the competence of the pro-
grammer who wrote the program. Published findings
on this question are sparse and conflicting. Endres [10]
found evidence that programmer quality was an impor-
tant determinant in the number of bugs in a release of
an IBM operating system. Vessey and Weber, on the
other hand, were unable to find any relationship be-
tween programmer quality and repair maintenance in
their study [27]. Unfortunately, the data used in this
study was captured for other purposes, and does not
include information on the competence or experience
of the programmers involved. This issue, therefore, will
not be addressed, except to recognize it as a possible
confounding variable.

2.7 Hypotheses
Several hypotheses can be identified which this study
will test. These are:

HI: The more complex a program is, in terms of size
(lines of code or volume), difficulty or Halstead
E, the greater the number of errors the program
will contain when released.

H2: The more intensively a program is used, the
more errors will be discovered in it.

H3: The older a program is, in terms of time since
release, the more errors will have been discov-
ered in it.

Each of these can be stated in the form of a null hy-
pothesis; that is, there is no statistically significant rela-
tionship between number of delivered bugs in a pro-
gram and any of the other factors mentioned. An addi-
tional prediction to be tested, although it is not in hy-
pothesi's form, is that the actual number of delivered
bugs discovered in the programs will be related to but
less than the number derived from the formula by
Ottenstein et al. [21].

3. RESEARCH METHODOLOGY
To test these hypotheses, an anal~/sis was performed on
the 346 programs making up a manufactur!ng support
system (manufacturing database maintenance and re-
quirements planning) used by a large electronics equip-
ment manufacturer. This system was developed and
maintained by a central programming group which de-
velope d and maintained other systems as well. It is
currently installed in 28 locations worldwide (all in-

828 Communications of the ACM August 1984 Volume 27 Number 8

Research Contributions

TABLE I. Complexity Measurements and Repair Requests for Programs Included in the Analysis*

Haistead Volume (Kbits) 45.5 52.7 0.4 290.1
Halstead Difficulty 70.2 67.4 3.0 1,129
Halstead E (000) 4,769 8,521 1.6 81,965
Lines of Code (excluding c0'~nments) 1,173 1,168 51 6,572

* n = 346

house). All software maintenance done, for whatever
reason, is performed by the central programming group.
For repair maintenance, the user who discovers an er-
ror submits a formal request to this group for correction
of the error.

The programs themselves are written in PL/I and
vary in length from 51 to 6,572 source statements. All
were written in a highly structured style according to
the organization's programming standards. Halstead
metrics were computed for each of these programs by
means of a program which took as input the PL/1
source code. It counted the number of unique operators
and operands and the number of total occurrences of
operators and operands along with the total lines of
code for each program. Further, Halstead metrics were
computed from these counts according to the proce-
dures described in [14]. Table I summarizes this infor-
mation.

The Halstead measurements were taken at one point
in time, and, therefore, do not reflect changes in a pro-
gram's complexity due to adaptive or perfective main-
tenance. The few programs which were so substan-
tially rewritten as to significantly change their complex-
ity measures were from the analysis. Changes in com-
plexity over time for the remaining programs should
have been small, and should not have biased the re-
suits.

User records were examined to determine the fre-
quency of use of each program. Table II shows the cate-
gorizations which were made and the distribution of

TABLE II. Distribution of Programs by Frequency of Use

Level Descrip'don N %

0 Used rarely (monthly or less) 113 32.7
1 Used at least monthly but not daily 99 28.6
2 Usually used once per day 84 24.3
3 Used several times per day 28 8.1
4 Used many times per day 2___22 6.4

Total 346 100.0

TABLE IlL Distribution of Programs by Age
(Number of Years since Initial Release)

Age N %

Less than one year 7 2.0
At least one year but less than two 4 1.2
At least two years but less than three 9 2.6
At least three years but less than four 1 0.3
At least four years but less than five 325 93.9
Total 346 100

programs by category. Although it would have been
more desirable to use a continuous measure of fre-
quency of use (e.g., number of times the program was
run per month), this was not possible. The different
system users kept their usage records in different for-
mats and at differing levels of detail, so that only cate-
gorizations as shown in Table II could be made accu-
rately.

Age of the programs was obtained from records
showing the date of initial release. Table III shows the
distribution of programs by age. One shortcoming in
this data becomes apparent from an examination of Ta-
ble iII--the lack of variation in program age. This re-
flects the fact that most of the programs were initially
released as a group when the system as a whole was
released. This severely limits the extent to which the
effects of program age on repair maintenance (H3) can
be tested.

The dependent variable is the total number of repair
requests made for each program over its life. (One re-
pair request represents one bug to be fixed.) This was
obtained from records maintained by the programming
group. For the 346 programs included in the study, the
number of requests per program ranged from zero to a
high of 268 with an average of 16.8 per program, and a
standard deviation of 31.7.

4. ANALYSIS
4.1 Correlations Among Variables
The first step in the analysis of the data is to look at the
paired (zero-order) correlations among variables as
shown in Table IV. Several points should be noted in
this data. The correlation between volume and diffi-
culty is significant, but not perfect, suggesting that
these measure related, but different, aspects of the pro-
gram. The number of lines of code is mare highly corre-
lated with volume than with difficulty, lending support
to the notion that a longer program is not necessarily a
more difficult one. Age is not very highly correlated
with anything, including the number of repairs. The
apparently significant negative correlation between age
and difficulty is probably spurious due to the limited
variability in age. Frequency of use is significantly cor-
related with the number of repairs, as anticipated, but
is also significantly correlated with volume, difficulty,
E, and lines of code. These latter correlations are unex-
pected, and may indicate some coincidental patterns in
the programs, for example, that the biggest and most
difficult programs happen to be run fairly frequently.

The data lends support to H1, that the number of
delivered errors increases as program complexity in-

August 1984 Volume 27 Number 8 Communications of the ACM 820

Research Contributions

TABLE IV. Paired (Zero-Order) Correlations among Variables**

Vol Diff E Loc Age Freq

DIFF 0.44*
E 0.85* 0.79*
LOC 0.97* 0.47* 0.82*
AGE 0.05 -0 .18* - 0 . 07 0.04
FREQ 0.19" 0.20* 0.21 * 0.22*
REPAIRS 0.72* 0.25* 0.57* 0.74*

*p < 0.001 ** n = 346

0.05
0.08 0.27*

creases. The number of repairs is significantly corre-
lated with E, although at a lower level than would be
expected from previously reported findings. There is
also a significant, but somewhat weak correlation be-
tween difficulty and number of repairs. Most striking,
however, is the correlation between the measures of
size of the program--volume and lines of code- -and
the number of repairs. It would appear that for these
programs, lines of code would be the best measure of
complexity to use for predicting repair requests.

4.2 Regression Model
Regression analysis lets us look at the combined effects
of these variables. To do this, a series of regression
analyses were run, in which the dependent variable
was number of repairs. All the possible combinations of
difficulty, volume, lines of code, E, program age, and
frequency of use were used as independent variables.
Table V shows the "best" regression model that could
be built from the data predicting repair requests as a
function of the independent variables mentioned above.
This model is best in the sense that substituting any
other measure of program complexity for number of
lines of code reduced the overall R 2. Also, if any other
complexity measure was added to the equation along
with number of lines of code, the model's explanatory
power was not significantly enhanced. Program age was
not a significant variable in any formulation. The varia-
bility in the two measures used accounted for 56 per-

TABLE V. Results of Least-Squares Regression (Dependent
Variable = Number of Repair Requests)

Variable Beta t Statistic

Constant term - 9 , 8 5 - 5 . 2 *
Number of lines of code 0,0194 19.5"
Frequency of use 3,12 3.2*

R 2 = 0.56 F = 218.5 (Significance of F < 0.001)
* Significance of t < 0.001

TABLE Vl. Results of Least-Squares Regression (Dependent
Variable = Number of Repair Requests per 1,000 Lines
of Code)

Variable Beta t Statistic

Constant term 4.46 3.9*
Number of lines of code 0.0017 2.84**
Frequency of use 3.87 6.5*

R 2 = 0.15 F = 30.7 (Significance of F < 0.001)
* Significance of t < 0.001 ** Significance of t < 0.01

cent of the variability in the number of repair requests.
Although both independent variables were significant
at the 0.001 level, most of the explanatory power of the
model lies in the lines of code measure. As was shown
in the correlation matrix, there was statistical support
for H2, that the number of errors discovered increases
with increasing intensity of program use, but operation-
ally, this relationship was weak.

Beta in Table VI was the coefficient in the regression
equation for each variable. It was the amount the de-
pendent variable changes for each unit change in the
independent variable. Since frequency of use was an
ordinal variable, its actual coefficient value was less
meaningful than is the coefficient for lines of code,
which was a ratio-level variable [23].

4.3 Program-Error Characteristics
The number of bugs in these programs, as reflected by
the number of repair requests, was significantly greater
than that predicted by Ottenstein et al. [21]. Actual
repair requests showed a total of 5,822 bugs (an average
of 16.8 per program) while the predicted number was
2,613 (an average of 7.6 per program). These results
were particularly surprising in light of our expectation
that the actual number of discovered bugs should be, if
anything, less than the predicted number due to some
having been caught in pre-release testing. Instead, it
appears that the larger the program (number of lines of
code), the greater the error in the prediction. The corre-
lation coefficient between number of lines of code and
the difference between actual and predicted number of
bugs was 0.58, which was significant at the 0.001 level.

Four possible explanations for this discrepancy come
to mind. The first is that the formula proposed by Ot-
tenstein et al. is incorrect for programs such as the ones
studied here. Size of the programs may be a factor--
there are some very large programs in this set, and it is
for these large programs that the discrepancy is great-
est. It may be that programs become more error prone
as they increase in complexity at a rate even faster
than that predicted.

A second possibility is that we are seeing the effects
of uncontrolled intervening variables. Ottenstein et al.
point out that the relationship they postulate may be
confounded by factors such as programmer experience,
method of programming, and amount of machine time
available for testing. Since programmer characteristics
and test time are not measured in this study, their
effect is impossible to determine.

830 Communications of the ACM August 1984 Volume 27 Number 8

Research Contributions

TABLE Vll.

Number of Frequency
Repair Requests

Frequency of Repair Requests

%

0 59 17.1
1- 5 127 36.7
6-10 32 9.2

11-20 42 12.1
21-30 30 8.7
31-40 15 4.3
41-50 9 2.6
51-1 O0 26 7.5

101-200 3 0.9
201-300 3 0.9

Totals 346 100.0

Third, it may be that some of the repairs were to fix
bugs introduced by previous maintenance efforts. In
particular, one would expect some bugs to be intro-
duced by adaptive maintenance which added code to a
program. Since extensively rewritten programs were
excluded from the data set, however, it seems unlikely
that this would account for such a large discrepancy
between predicted and actual bugs.

Finally, there is the possibility that some of the "re-
pair requests" were actually requests for adaptive
maintenance (i.e., changes to the program's function,
not fixes). As Swanson [24] points out, MIS organiza-
tions tend to resist requests for repair maintenance less
than they do requests for adaptive maintenance, lead-
ing users to try to disguise their requests for changes as
requests to fix bugs. While there is no evidence that
this has occurred with the programs included in this
study, it is a possibility that must be recognized.
Clearly, this is an area which merits further study.

We can look at the distribution of frequency of repair
requests as shown in Table VII. While a number of
programs (59) have had no repair maintenance at all,
most have had some repairs, and almost half have had
more than five repair requests. For the 346 programs as
a group, there were almost 6,000 repairs requested over
a 41/2-year period. These findings are in sharp contrast
to those reported by Vessey and Weber [27]. One possi-
ble explanation for this discrepancy would be that Ves-
sey and Weber studied systems with much shorter pro-
grams. This is supported by the fact that they classify
programs with more than 600 source statements as
"complex," while the average length of programs in-
cluded in this study was 1,168 lines of code.

5. CONCLUSIONS
In drawing conclusions from this data, one must re-
member that it represents only one particular situation,
utilizing one programming language and style, and it
would be improper to generalize beyond this situation.
Still, it is instructive to look at the results obtained
from particular cases in light of predictions which have
been made concerning factors affecting the occurrence
of delivered bugs. Only through the examination of em-
pirical evidence can the theories be tested and refined.

The most surprising result was the large number of
bugs discovered in the programs relative to the number
of bugs which would be predicted by the formula de-
veloped by Ottenstein et al. Unfortunately, measures of
possible intervening variables which may account for
this difference--programmer characteristics and the
extent of adaptive maintenance performed on the pro-
grams--were not available in the data used. Given the
strong correlations reported by Ottenstein et al. in sup-
port of their model, and the potential usefulness of that
model, the need for further investigation is clearly indi-
cated.

The data analyzed above agree with the widely held
view that the number of delivered bugs in a program is
strongly related to the complexity of that program. Sur-
prisingly, however, the best measure of this complexity
appears to be simple count of the lines of code in the
program, rather than such measures as Halstead's E,
which have been used successfully in previously re-
ported research. The correlation between E and num-
ber of repair requests, while significant, is lower than
that reported in previous studies. The number of men-
tal discriminations a programmer makes in creating a
program (measured as E) may be an important determi-
nant of the number of bugs initially coded into the
program. It appears, however, that the size of the pro-
gram (as measured by lines of code or volume) is more
important in determining the number of those errors
which are found during debugging, and, therefore, the
number of remaining bugs which are delivered to the
user. These findings appear to vindicate those who ad-
vocate limiting program module size in order to help
reduce delivered bugs (see [2, 21]).

Frequency of use of the programs studied does not
seem to be as important a predictor of repair mainte-
nance as the literature suggests. While the correlation
between frequency of use and number of repair re-
quests is statistically significant, the amount of varia-
tion explained is small, only about 6 percent. Perhaps
the fact that most of the programs were over four years
old influenced this. After four years, one might hypoth-
esize, all the programs would have been run so many
times that any effect of frequency of use would be lost.
This badly skewed distribution of program age also
made it possible to test the hypothesis that the occur-
rence of repairs increases with program age.

The need is clearly indicated for further research to
refine our understanding of what factors relate to deliv-
ered bugs and, therefore, to repair maintenance. Almost
one half of the variability in occurrence of repair main-
tenance among the programs included in this study re-
mains unexplained--despite the fact that program size,
complexity, intensity of use, and age were included as
predictor variables, and programming style was com-
mon across all modules. As mentioned above, other
factors not included as predictor variables or controlled
for in the experimental design may be at work. This is
a disadvantage of using existing data captured for pur-
poses other than the one under study--important con-
structs may simply not have been measured.

August 1984 Volume 27 Number 8 Communications of the ACM 831

Research Contributions

T h i s p r o b l e m is b e s t a d d r e s s e d b y s t u d i e s in w h i c h

c o n s t r u c t s a n d t h e w a y i n w h i c h t h e y wi l l be m e a s u r e d

a r e d e t e r m i n e d b e f o r e o r d u r i n g t h e t i m e t h e p r o g r a m s

a r e a c t u a l l y w r i t t e n , In a d d i t i o n , w h e r e c e r t a i n f a c t o r s

do n o t v a r y w i t h i n a p a r t i c u l a r s t u d y (e.g., p r o g r a m -

m i n g s t y l e d i d no t d i f fe r in t h i s s t u d y) , m u l t i p l e c o m -

p a r a t i v e s t u d i e s a r e r e q u i r e d to s e e t h e e f fec t o f t h a t

fac tor . T h e j u s t i f i c a t i o n for s u c h s t u d i e s is c l e a r - - t h e

m o r e w e k n o w a b o u t t h e f a c t o r s a f f e c t i n g t h e o c c u r -

r e n c e o f b u g s in d e l i v e r e d p r o g r a m s , t h e b e t t e r w e

s h o u l d b e ab l e to p r e d i c t , a n d u l t i m a t e l y , c o n t r o l t h o s e

b u g s .

REFERENCES
1. Akiyama, F. An example of software system debugging. Proceedings

of the IFIPS Congress, 1971, 353-359.
2. Bell, D.E., and Sullivan, J,E. Further investigations into the complex-

ity of software. MITRE Technical Report MTR 2874, vol. IL Bedford,
Maine, 1974.

3. Bowen, J.B. Are current approaches sufficient for measuring soft-
ware quality? Proc. Softw. Quality Assurance Workshop, 3, 5, 148-155.

4. Burch, J.G., Strater, F.R.. and Grudnitski, G. Information Systems:
Theory and Practice. New York: John Wiley and Sons, Inc., 1983.

5. Canning, R.G. Modular COBOL programming. EDP Anal. 10, 7 (July
1972}. 1-14.

6, Canning, R.G. That maintenance "iceberg." EDP Anal. 10, 10 (Oct.
1972}, 1-14.

7. Christensen, K., Fitsos, G.P., and Smith, C.P. A perspective on soft-
ware science. IBM Syst. J. 20, 4 (1981}, 372-387.

8, Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A., and Love, T.
Measuring the psychological complexity of software maintenance
tasks with the Halstead and McCabe metrics. IEEE Trans. Softw. Eng.
SE-5, 2 (Mar. 1979), 96-104.
Elshoff, J.L. Measuring commercial PL/I programs using Halstead's
criteria. SIGPLAN Not. (May 1976}, 38-46.
Endres, A. An analysis of errors and their causes in systems pro-
grams. IEEE Trans. Softw. Eng. SE-1, 2 (June 1975), 140-149.
Fitzsimmons, A. and Love, T. A review and evaluation of software
science. Comput. Surv. 10, 1 (Mar. 1978), 3-18.
Funami, Y., and Halstead, M.H, A software physics analysis of Aki-
yama's debugging data. CSD-TR-144, Purdue University, Lafayette,
Ind., May 1975.
Gilb, T. Software Metrics. Winthrop Publishers, Cambridge, Mass.,
1977 .

Halstead, MH. Elements of Software Science. Elsevier North-Holland,
Inc., New York, 1977.

9,

10.

11.

12.

13.

14.

15. Lientz, B.P., and Swanson, E.B. Software Maintenance Management.
Addison-Wesley Publ. Co.. Inc., Reading, Mass., 1980.

16. Lientz, B,P., Swanson. E.B., and Tompkins, G.E. Characteristics of
application software maintenance. Commun. ACM, 21, 6 (July 1978),
466-471.

17. Littlewood, B. How to measure software reliability and how not to.
Proc. Third International Conf. Softw. Eng., Apr. 1978, 37-55.

18. McCabe, T.J. A complexity measure. IEEE Trans. Soft. Eng. SE-2, 4
(Dec. 1976), 308-320.

19. Moore, T.E. The Traveling Man. Doubleday & Co., Inc.. Garden City,
N.Y., 1972.

20. Musa, J,D. The use of software reliability measures in project man-
agement. Proceedings: COMPSAC '78, 493-498.

21. Ottenstein, L.M, Schneider, V.B., and Halstead, M.H. Predicting the
number of bugs expected in a program module. CSD-TR-205, Purdue
University, Lafayette, Ind., Oct. 1976.

22. Sheil, B.A. The psychological study of programming. ACM Comput.
Surv. 13, 1 (Mar. 1981), 101-120.

23. Stevens, S.S. On the theory of scales of measurement. Science 103
(1946), 677-680.

24. Swanson, E.B. On the user-requisite variety of computer application
software. IEEE Trans. Reliab. R-28, 3 (Aug. 1979), 221-226.

25. Swanson, E.B. The dimension of maintenance. Proc. Second Interna-
tional Con. Soflw. Eng., Oct. 1976, 492-497.

26. Thayer, T.A.. et el., Software reliability study. RADC-TR-76-2238,
Rome Air Development Center, Grifiss Air Force Base, N.Y., Aug.
1976,

27. Vessey, I., and Weber, R. Some factors affecting program repair
maintenance. Commun. ACM 26, 2 (Feb. 1983), 128-134.

CR Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Distributions and Maintenance--corrections; D.2.8 [Software Engi-
neering]: Metrics--software science; K.6.m [Management of Computing
and Information Sciences]: Miscellaneous

General Terms: Management
Additional Key Words and Phrases: program maintenance, repair

maintenance, program complexity, software science

Received 6/83; revised 12/83; accepted 1/84

Author's Present Address: Lee L. Gremillion, School of Management,
704 Commonwealth Avenue, Boston University, Boston, MA 02215.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

In response to membership requests...

CURRICULA RECOMMENDATIONS FOR COMPUTING

V o l u m e I: C u r r i c u l a R e c o m m e n d a t i o n s fo r C o m p u t e r S c i e n c e

V o l u m e II: C u r r i c u l a R e c o m m e n d a t i o n s fo r I n f o r m a t i o n S y s t e m s

V o l u m e III: C u r r i c u l a R e c o m m e n d a t i o n s fo r R e l a t e d C o m p u t e r S c i e n c e P r o g r a m s i n V o c a t i o n a l -

T e c h n i c a l S c h o o l s , C o m m u n i t y a n d J u n i o r C o l l e g e s a n d H e a l t h C o m p u t i n g

Information available from Glen He ld- -S ing le Copy Sales (212) 869-7440 ext. 251

832 Communications of the ACM August 1984 Volume 27 Number 8

