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Megatrends such as Highly Automated Driving (HAD) (SAE > Level 3), electrification, and connectivity are
reshaping the automotive industry. Together with the new technologies, the business models will also evolve,
opening up new possibilities and new fields of competition. To cope with the ongoing advances, new Elec-
tric/Electronic (E/E) architecture patterns are emerging in the sector, distributing the vehicle functions across
several processing devices and enhancing the connectivity between them via Ethernet-based networks. Up-
coming systems will demand Safety-Related Availability (SaRA) requirements in mixed-critical E/E architec-
tures that challenge the concept of freedom from interference defined in ISO 26262. This work explores the
concepts of SaRA system development according to ISO 26262, building a framework based on model-based
systems engineering to evaluate feasible next-generation automotive E/E architecture designs with a multi-
objective analysis. Additionally, we propose a pattern template for SaRA systems to automate the architecture
synthesis. To illustrate the framework created, we evaluate a set of automotive E/E architectures synthesized
to support mixed-critical vehicle features, including SaRA SAE Level-3 functions, considering the communi-
cation networks’ performance as well as hardware and safety-related development costs. This work presents
a methodology for original equipment manufacturers and Tier-1 suppliers that enables them to make the
trade-offs arising in the design of E/E architectures based on quantified information.
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1 INTRODUCTION
1.1 Context of the Work

The mobility of tomorrow will be different. Megatrends such as autonomous driving, connectiv-
ity, electrification, and personalization [40, 53] are reshaping the automotive industry, leading to
shifts in the business models of the mobility sector, and opening up new possibilities and com-
petitions. Today’s automotive Electric/Electronic (E/E) architectures do not offer the flexibility
to support the shorter development and technology lifecycles demanded by the megatrends [30].
Today’s vehicles can include up to 120 Electrical Control Units (ECUs) and 100 million lines
of code, with the anticipation that Software (SW) will further increase in size to implement new
functionalities [36].

New E/E architecture patterns are emerging in the automotive sector to address the flexibility
and scalability requirements while maintaining the complexity under control cost-effectively. As
it has been done in the aerospace domain with Integrated Modular Avionics (IMA) (see [57]),
these new solutions are integrated architectures instead of federated architectures, relying on state-
of-the-art technologies such as high-performance multi-core processors, system-on-chips, and
high-speed Ethernet networks [52]. More precisely, such integrated automotive architectures are
characterized by possessing several microprocessor (uP)-based Vehicle Computers (VCs) run-
ning cross-domain functions communicating through a high-speed Ethernet backbone. The VCs
have more memory and computation power than the classical decentralized microcontroller (xC)-
based ECUs. The communication backbone will support Time-Sensitive Networking (TSN) stan-
dards (see the work of Nasrallah et al. [41] for a survey) to guarantee the Quality-of-Service (QoS)
requirements demanded by the vehicle function.

Nevertheless, developing such integrated architectures is a non-trivial task, as the VCs will host
functionalities ranging from critical real-time functions pertaining to the vehicle’s dynamics to
non-critical interactive apps. Indeed, ISO 26262 [17] requires freedom from interference, which guar-
antees that mixed-criticality applications can coexist with no cascading failures jeopardizing the
safety requirements. This work contributes to the development of systems with Safety-Related
Availability (SaRA) requirements according to ISO 26262:2018 part 10, focusing on synthesiz-
ing automotive E/E integrated architectures hosting safety mixed-criticality applications including
SAE Level-3 [48] functions.

1.2 Definition of the Problem

As explained in the previous section, new automotive E/E architectures are emerging, moving from
federated to integrated designs. In previous work [23], we presented a set of functional E/E ar-
chitecture patterns, distributing vehicle domain functions (e.g., chassis, powertrain, infotainment,
driving assistance) to VCs. In particular, we highlight that Original Equipment Manufacturers
(OEMs) tend to select one type of architecture pattern according to their vehicle portfolio. The
three major types of architecture patterns are domain concentration, domain fusion, and vehicle
centralized, with the latter one being an instance of the integrated architectures. The design of in-
tegrated architectures increasingly follows the Service-Oriented Architecture (SOA) paradigm,
where the SW is decoupled from the Hardware (HW), providing more freedom in the SW func-
tions allocation. Further, having Ethernet as the network backbone gives flexibility with respect to
the network topology, like ring, star, tree, or a mix of them. Figure 1 depicts a potential automotive
integrated architecture, separating the architecture into layers according to the processing devices
and summarizing possible communication network topologies and technologies. As can be seen,
there are several design options for network topologies and the deployment of SW functions. The
objective is to identify the solutions that meet all system QoS requirements, such as performance
and dependability, while being compatible with the automotive cost pressure.
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Fig. 1. Example of an automotive integrated E/E architecture pattern, showing the structure layers and pos-
sible communication network topologies and technologies.

Concerning the QoS requirements, passenger vehicles are safety-critical systems with a set of
guarantees to meet. Some automotive E/E functions can achieve a safe state after a system failure
by turning off the functionality. However, some applications have a fail-operational safe state,
meaning that simply turning off the functionality could lead to a hazardous event. Examples are
steer-by-wire systems or SAE > Level-3 functions. For those systems with SaRA requirements,
meaning that only turning them off is not sufficient, the 2018 version of ISO 26262 in part 10
provides development guidance, specifying safety goals with SaRA requirements.

Designing automotive integrated E/E architectures capable of performing mixed-safety func-
tions with SaRA requirements involves making design choices on the E/E architecture topology,
network protocols, and function allocation. In this work, we approach the problem as a multi-
objective optimization analysis to identify solutions that provide meaningful performance versus
cost trade-offs.

Precisely, this work explores the following research questions:

RQ1I: How can we automate the Design Space Exploration (DSE) of integrated E/E auto-
motive architectures supporting mixed-safety criticality functions with SaRA requirements
(e.g., SAE > Level 3) according to ISO 26262:2018 part 10, chapter 12?

RQ2: Can we enhance the design patterns in the literature to meet fail-operational require-
ments according to ISO SaRA guidelines, as required for next-generation automotive
platforms?
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RQ3: How should meta-models be augmented to SaRA design patterns and integrated E/E ar-
chitectures? And how should it be structured so as to facilitate multi-objective DSE?

1.3 Limitation of Existing Solutions

Model-Based Systems Engineering (MBSE) techniques enhanced by design patterns are the
state of the art to conceive and synthesize feasible automotive E/E architectures (see else-
where [32, 59] and Section 8 for a review of related works). Commercial off-the-shelf tools (e.g.,
PREEvision, Siemens Capital, Enterprise Architects) using languages like SysML can support the
design at different stages of the vehicle development, possibly with quantified metrics for evalua-
tion. However, the user needs to manually specify the architecture details, with no support from
design exploration. Some exploration capabilities are offered by the research tool AutoFOCUS3
[50], with the aid of plugins, to analyze the design and implementation alternatives (e.g., design
patterns, task allocation). Nevertheless, to the best of our knowledge, no MBSE solution is capable
of synthesizing SaRA automotive integrated E/E architectures, including an analysis to verify the
timing QoS requirements.

Some works [11, 56] explore how to meet the QoS guarantees in automotive E/E architectures
relying on service-oriented communications over Ethernet TSN protocols. Except for one exper-
iment in the work of Creighton et al. [11], both studies evaluate the network performance on
manually constructed architecture designs. However, as done in this article, these works could be
enhanced with the use of MBSE techniques and design patterns to extend the search space and
further automate the design of Ethernet-based E/E architectures.

It should be noted that the two categories of works cited previously can complement each other,
meaning that DSE can be tailored to explore integrated automotive E/E architectures with SaRA
and timing QoS requirements.

1.4 Contributions of the Article

This article presents a framework that enables the creation and multi-objective evaluation of in-
tegrated automotive E/E architectures with SaRA requirements in the early phases of the vehicle
development process. The goal is to assist OEMs in quantifying the impact of architectural choices
on the cost versus performance trade-off. This work provides the following main contributions:

(1) An MBSE framework based on viewpoints and model transformation that can be integrated
into early automotive system development processes to generate fail-operational automotive
E/E architectures.

(2) The definition of meta-models to describe integrated automotive HW topologies and fail-
operational functional cause-effect chains. The former enables the exploration of zone-based
layered architectures, including computation, zone, and sensor/actuator layers. The latter
includes a domain-specific modeling language defining constraints and objectives, enabling
the synthesis (i.e., the mapping of SW tasks to processors) with SaRA requirements.

(3) The elaboration of a design pattern template for SaRA topologies integrated into the MBSE
framework to generate fail-operational architectures.

(4) The formal definition of the Multi-Objective Analysis (MOA) and exploration problem,
as well as a set of techniques to solve it. Precisely, the multi-objective problem encompasses
the following attributes: fail-operational E/E architecture validity, network performance, and
costs (i.e., wiring harness, processors, and safety development costs).

(5) An evaluation of the approach on five different fail-operational integrated automotive E/E
architectures varying in terms of HW topology and vehicle domains distribution, supporting
a set of mixed-safety criticality automotive features including SAE Level-3 functions.
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1.5 Organization of the Article

The rest of this article is structured as follows. Section 2 introduces the concepts of SaRA re-
quirements according to ISO 26262 and shows the state of the art for automotive fail-operational
E/E architectures. Section 3 presents the concepts and assumptions for integrated automotive E/E
architectures and the approach to depict fail-operational design patterns. Section 4 presents the
methodology for the system modeling using viewpoints, and Section 5 defines the design-space
exploration with the MOA evaluation. Section 6 depicts the experimental setup to demonstrate
the framework capabilities using as a use case a set of integrated E/E architectures supporting
mixed-critical tasks, including SAE Level-3 functions with SaRA requirements. Section 7 details
the results of the experiments through MOA. Section 8 recaps related works about the evolution of
automotive E/E architectures, automotive safety standards and their relation to autonomous driv-
ing, modeling and design patterns for cyber-physical systems, and architecture exploration in a
multi-objective optimization framework. Finally, Section 9 concludes and identifies future research
directions.

2 AUTOMOTIVE SAFETY-RELATED AVAILABLE ARCHITECTURES

ISO 26262 defines a safe state as an operating mode without “unreasonable risk levels” in case of
a system failure. For many E/E systems, the safe state can be achieved by turning off the applica-
tion. For example, an SAE Level-2 Lane-Keeping Assistance (LKA) function will be shut off in
case of malfunction, and the driver will take over the full control the vehicle. However, in some
cases, the Hazard Analysis and Risk Assessment (HARA) shows that just turning off a certain
functionality could lead to a hazard incident (e.g., steer-by-wire or SAE > Level-3 functions), re-
quiring additional SaRA requirements. This section provides details about the ISO 26262 approach
for SaRA systems and architectural strategies for the implementation.

2.1 SaRA Requirements According to ISO 26262

The latest version of ISO 26262, published in 2018, gives guidance for developing automotive E/E
systems with SaRA requirements in part 10, chapter 12. This chapter is supplementary content com-
pared to the previous ISO 26262 version from 2011, focusing mainly on fail-safe systems, meaning
that in case of failure, the system deactivates itself. This work will consider the latest version of
the standard.

The standard notes that there are various measures to guarantee sufficient availability, including
fault tolerance, fault avoidance, and fault forecasting. The term fault tolerance is related to fail-
operational systems, meaning that after one or more specified faults, the system can still deliver
the intended functionality for a given time. Fault avoidance is related to measures to reduce the
likelihood of a fault, and fault forecasting is the ability to predict a fault before it can trigger a
failure. Chapter 10 of the standard concentrates on fault tolerance, giving recommendations for
the specification in the concept phase (i.e., early functional safety analysis), considerations for the
availability during the HW design phase, and briefly covering SW fault avoidance and tolerance
during the SW development phase.

According to the norm, evaluating whether the loss of the availability of an item’s functionality
can trigger a dangerous event or not depends on the vehicle operating state. Part 1 of the ISO
defines an item as a system or combination of systems that execute a function at the vehicle level,
and the vehicle operating state indicates the currently provided performance for a specified func-
tionality. That means, for example, that the loss of a SAE Level-3 function during a high-speed
driving phase will have a different HARA compared to a low-speed driving maneuver. Alterna-
tively, it will have no safety issue if the sudden loss of functionality occurs when the system is not
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Fig. 2. General topics to be considered during the concept phase for fault-tolerant systems.

in operation. As a summary, Figure 2 illustrates the general topics to be considered during the con-
cept phase to specify fault tolerance items and some realization examples. The picture separates
the safety strategy for fault-tolerant systems into two groups: “do not lose functionality in vehicle
operation state” and “do not enter vehicle operation state when the functionality is faulty” The
former has two implementation strategies (fault tolerance and fault prevention), whereas the lat-
ter has two implementation strategies (fault forecasting and fault detection). This work focuses on
fault tolerance and fault prevention implementation strategies—that is, designing automotive E/E
architectures capable of not losing given functionalities during specific vehicle operation states.

Implementation strategies related to fault tolerance are associated with the architectural
design—for example, having a redundant channel’ to perform a function after a failure. Fault pre-
vention is related to the integrity requirements of the ISO, where the HARA of a given item will
have a set of safety goals with a specific Automotive Safety Integrity Level (ASIL) related. The
norm specifies safety goals as top-level safety requirements (e.g., avoid insufficient brake torque),
and the ASIL as the requirements and safety measures to apply for avoiding an unreasonable risk,
with D representing the most stringent and A the least stringent level.

The creation and evaluation of the SaRA requirements come from the interaction with other
items—that is, the system architecture, the fault tolerance measures, and the fault reaction oper-
ation and prevention of hazardous events. After a fault occurs, the system shall react inside an
allowable time span to enter an emergency operation state or to a safe state, with a clear defini-
tion of the new functions to be executed and their associated performance constraints. The new
vehicle operation state requires a re-evaluation of the HARA, possibly leading to new safety goals
and ASIL requirements.

As an example of a fault-tolerant item with SaRA requirements, here we consider a steer-by-
wire system with the safety goal of preventing a total loss of the steering capabilities with an ASIL
D requirement. After a failure, the system shall move to a safe state that consists of a restricted
maximal vehicle speed reached within a given time span. The new vehicle operational state has
ASIL A because of the speed restriction. The system architecture consists of two independent
channels A and B, where A provides the nominal function and B is the backup system. According
to the ISO, the architecture described has the following safety requirements regarding systematic
faults, random HW faults, and restriction of vehicle operational state after failure:

IFor the safety domain, the concept of channel represents a system or set of systems that will perform a functionality. For
example, if a functionality must have fail-operational capabilities, it can be constructed with two redundant channels.
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Systematic faults:
e Channels A and B have to fulfill ASIL D level.
Random HW faults:
e The combination of the channels has to fulfill ASIL D level.?
e Channel A has to fulfill ASIL D level for the nominal functioning mode.
e Channel B can fulfill ASIL A level to match the restricted vehicle operational state safety
goal.
Restriction of vehicle operational state:
e The item responsible for restricting the vehicle speed has to fulfill ASIL D level.

We note that the usage of ASIL decomposition on fault-tolerant items could lead to wrong de-
signs if not correctly applied, and this has been a common misunderstanding of the norm since
the first issue, as observed in the work of D’Ambrosio and Debouk [12]. The norm states that the
ASIL decomposition applies to redundant elements of a fault-tolerant item, where the decomposed
components have at least an ASIL greater than or equal to the HARA after the loss of redundancy.
The decomposition is specific for the redundant channels considering the new vehicle operating
state HARA after the fault.

Moreover, ISO 26262 [17] (part 10, chapter 5, note 2) observes that the usage of homogeneous
redundancy (i.e., duplication of identical HW or SW components for the redundant channels) does
not address systematic failures (i.e., failures that occur in a deterministic manner). Therefore, it is
necessary to implement heterogeneous redundancy to protect against common sources of failures.

2.2 Fail-Operational Safety-Related Automotive Architectures

With increasingly automated driving functions, the automotive industry needs to implement fail-
operational architectures that match the SaRA requirements. Even high-end cars do not have such
architectures because the SAE Level-2 systems in use today can be fail passive, relying on the
driver to take over the control in case of faults. However, that will change when SAE > Level-
3 systems are introduced, as they give the responsibility for fault tolerance to the system itself.
An essential factor for the development of fault-tolerant systems is the number of faults that the
system must tolerate while being able to reach a safe state. This redundancy degree influences the
number of redundant elements the architecture should have. For example, an SAE Level 3 with
degree 1 needs one redundant channel. In case of fault, the remaining channel must perform a safe
maneuver within a given time span after the first fault to reach a safe state. Another example could
be a degree 2 SAE Level-4 system with two redundant channels triggering a limp-home mode after
the first fault and moving to a safe state after the second fault.

The automotive industry can get design inspiration from other sectors to develop fail-
operational architectures. However, adapting solutions from one sector to another is not simple,
as different industries have different cost pressure, production volumes, hazard consequences, and
other specificities. The work of Schnellbach [49] provides an analysis of the state of the art for
fail-operational architectures in the avionics, railway, agricultural, and industrial sectors. Of all
sectors, the avionics industry has the most experience. The fail-safe behavior is usually not an
option, and, for instance, airborne avionic functions need to be fail-operational. Examples of re-
dundancy concepts from avionics are duo-duplex used by Airbus [26], quadruplex used for the
NASA Space Shuttle [7], and triple-triple redundancy architecture used for the Boeing 777 [58].

The automotive industry has higher financial pressure and production volumes than the
aerospace domain, making it impossible to re-use the solutions proven in use over decades in
the aerospace domain. OEMs will have to find a trade-off between costs and safety performance

2The combination of the channels have, for example, 99% or greater HW fault coverage.
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Fig. 3. Example of a fail-operational LKA system, showing the architectural components, the power lines,
and data lines connections.

for next-generation vehicles, offering the desired vehicle features at a price that the end consumers
can afford. Research and books already propose fail-operational architectures for specific automo-
tive systems, such as a design concept for fail-operational LKA in the work of Becker et al. [6] or
a similar concept for fail-operation steer-by-wire in another work by Becker et al. [5]. Figure 3
depicts an architecture from their work [6] that implements a combination of Triple Modular
Redundancy (TMR) for the LKA control modules and a duplex for the steering actuator system.
The power supply and the actuator systems have a fail-safe behavior with a safe containment
mechanism, turning off after a fault and not disturbing the other functional channels. The TMR
has the objective to mask faults on the LKA control channels, assuming that at least two channels
have similar outputs according to the voter logic at any given time. This architecture has degree
1, requiring the system to move to a safe state after a single system fault.

It is relevant to mention that a way to avoid additional costs for fail-operational systems is to
use another vehicle item possessing the capability to perform the redundancy. For example, in
the case of a fault in the steering system, it is possible to use the brakes or an all-wheel electric
drive to apply a specific yaw rate to the vehicle within the limit of the physic dynamics. For a
specific vehicle operating state, a system can be a redundant channel for another system. Since
this approach is strongly related to the vehicle dynamics and vehicle operating state, this work
will not consider such fallback strategies. Instead, it will explore the deployment of redundant
channels using duplication and the impacts on the vehicle’s E/E architecture. The following section
will detail the template used in this work for integrated automotive E/E architectures and the
definition of design patterns for fail-operational systems.

3 INTEGRATED AUTOMOTIVE E/E ARCHITECTURES AND SARA TOPOLOGIES

In this section, we propose the integrated vehicle’s E/E architecture template to design fail-tolerant
automotive systems. Section 3.1 focuses on the HW template presenting the resources’ description
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and the communication topology. Section 3.2 proposes design patterns for fail-operational topolo-
gies and the method to integrate them into the system model.

3.1 Integrated Vehicle’s E/E Architecture Template and Assumptions

For the generation of integrated E/E architectures, we consider the template presented in Figure 1
adapted from a Bosch internal analysis. The figure depicts a layered automotive architecture, sep-
arating the design space into two dimensions: HW resources and network topology.

3.1.1  HW Resources. The HW resources are the processing and data forwarding units. Accord-
ing to the components’ role in the E/E architecture, the template separates the HW resources into
four layers:

o Sensor/Actuators layer: This layer represents the low-level embedded elements from the E/E
architecture. It contains the ECUs, sensors, and actuators. In this work, they are either con-
nected to an automotive switched Ethernet network or to a Controller Area Network
Flexible Data-Rate (CAN-FD) bus.

e Zonal layer: This layer represents the automotive gateways in a specific physical position in
the vehicle (e.g., front, cabin, or rear compartment). The zone gateways operate as a multi-
protocol hub capable of transferring data across different network technologies. In this work,
each zone gateway contains an Ethernet switch and a CAN-FD end-node embedded in the
gateway.

e Computation layer: This layer represents the VCs, which are multi-functional domain inte-
gration platforms for most of them. Each VC can host multi-criticality safety tasks following
ISO 26262 guidelines to ensure freedom from interference. Further, each VC possesses an
automotive Ethernet switch built in and a middleware to support the SW services.

e Backend layer: This layer represents the services that run on the cloud. This work only con-
siders the connectivity control unit providing the communication interface to the cloud. The
cloud architecture and its performance are outside the scope of this study.

3.1.2  Network Topology. The network topology describes how the HW resources are connected:
layout of the networks and technologies used (protocols, data rates, etc.). This work considers
automotive Ethernet links and CAN-FD buses for the connectivity.

3.2 Design Patterns for SaRA Architectures

Design patterns in the SW domain describe commonly used algorithms and architectural struc-
tures to solve general design problems in particular contexts.® In an effort to catalog and improve
the patterns’ re-usability for safety-critical embedded systems, many works have been devoted to
enhance the description of the design patterns, such as in a formal manner, as well as their sup-
port in industrial tools through plugins (see elsewhere [23, 41] and Section 6 for a review of related
works). As an example of design patterns. Figure 4 shows a duplex redundancy pattern from the
work of Armoush [1] with the flow of information (both data and control flow) between the com-
ponents and the safety mechanisms (i.e., comparator and switch). The data processing and sensor
blocks have two channels to tolerate faults in this pattern. Still, the comparator, the switch, and
the actuator are single points of failure, making it non-fault-tolerant if any of those elements fails.
A simple solution could be to have additional channels for those elements. However, in case the
system designer needs a chain of patterns, like the LKA architecture from Figure 3 with a TMR for

3In this work, we use a broad definition of design patterns that encompasses architectural patterns.
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Table 1. Design Patterns Template for Safety-Critical Embedded Systems [32]

Attribute Meaning

Name Name of the design pattern

Intent Purpose of the design pattern

Motivation Motivation to use the design pattern

Application Situations to apply the design pattern

Structure Representation of the design pattern and their connections

Participants Description for each structure elements

Collaborations Explanation on how the design pattern elements collaborate to
achieve intent

Consequences Design pattern effects on the system’s functional aspects

Implementation Guidelines for the design pattern development

Implications Design pattern effects on the system’s non-functional aspects

Usage classification | Category of the design pattern

Example Use case example

Related patterns Synergy to other design patterns or derivations

the control modules connecting to a duplex for the actuators, additional information beyond the
pattern template, such as channels interconnections, is necessary to couple the patterns correctly.

Table 1, proposed in the work of Khalil [32], represents a possible design pattern structure tem-
plate for safety-critical embedded systems. Some attributes in the table are highly relevant for the
design of fault-tolerant systems. The structure and participants attributes describe how the chan-
nels are designed and connected. The collaboration and consequences attributes explain how the
design pattern elements interact to reach a safe state. The implications attribute defines the impact
of the design pattern on the non-functional requirements (e.g., reliability, availability, execution
time, and costs) considered in the multi-objective DSE. Finally, the related patterns have importance
in identifying possible pattern chains, as explained before.

In automotive systems, tasks with diverse dependability requirements need to exchange data—
for example, a set of heterogeneous fail-safe sensors sending data to a fault-tolerant computation
system that commands a fault-tolerant actuator. To define the intraconnection between elements
of a system, and interconnections between systems, we introduce the concept of outer layer and
inner layer pattern, as illustrated in Figure 5. The outer layer pattern works as a multiplexer defin-
ing how many channels are input and how many channels are output. This pattern guides the
interconnections to the following pattern, requiring that the number of output channels from the
first pattern matches the number of input channels of the following pattern. The outer layer pat-
tern uses a black-box concept and fits in the related patterns attribute from Table 1. The inner layer
depicts the intraconnections of the design pattern, showing the participants of the pattern and the
data exchanged and processed.
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Outer Layer Pattern Inner Layer Pattern
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1
m —(output m)
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(channel m)

voter
(channel n)

data processing
(channel n)

Black-box view White-box view

Fig. 5. Example of the outer layer and inner layer description approach to describe the intra- and intercon-
nections in design pattern chains for fail-operational architectures.

Each element of the inner layer has a channel tag that can support the deployment of the com-
ponents to redundant resources. The inner layer uses a white-box approach showing the design
details, which is related to the structure, and implication attributes from Table 1.

3.3 Diverse Redundancy Requirement

As described in Section 2.1, ISO 26262 stresses the need for heterogeneous redundancy;, also called
diverse redundancy, to avoid common sources of failures on redundant channels. The design pat-
terns for SaRA architectures presented in Section 3.2 give guidelines for the system designers to
decide where to implement heterogeneous redundancy. For example, the same functions with dif-
ferent channel tags will require diverse HW and SW redundancy. This typically implies the need
for different HW suppliers, and different teams developing the same SW components.

However, implementing diverse redundancy increases the architecture costs, as it is necessary
to develop and validate the different solutions independently. In this work, we do not consider the
additional costs of diversity, and the costs are calculated as if channels were homogeneous. This
assumption could be lifted with a more precise cost model.

In the rest of the article, we assume that when the architect applies a design pattern on the
functional architecture, as explained in Sections 3.2 and 4, diversity is taken into consideration.
The following section presents the integrated E/E architecture system modeling used in this work,
formalizing meta-models for the systems and fault-tolerant design patterns.

4 SYSTEM MODELING AND VIEWPOINTS

For the system modeling, we use the concept of model viewpoints according to the SPES2020
methodology [46] to describe the E/E architecture’s structure and specifications. Each viewpoint
represents implementation-specific aspects regarding the SW or HW architecture. The viewpoint
elements are modeled in SysML. As is classically done in SPES2020, we use the functional, logical,
and technical viewpoints to describe the E/E architecture, with the requirements included in the
functional viewpoint. Each viewpoint and the meta-models are introduced in more detail in the
following sections. To support the explanation, we use an SAE Level-3 highway-pilot feature? as
an example.

4.1 Functional Viewpoint

The functional viewpoint represents the system’s functional dependencies and feature interactions
by functional building blocks. We use the functional viewpoint to describe the information flow

“In this work, a feature is defined as a characteristic behavior of a system that the customer experiences. A feature is
typically a composition of functions and logical interactions between those functions described by the viewpoints modeling.
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Fig. 6. Meta-model of the functional architecture with its classes, classes’ attributes, and relations between
classes.

of the vehicle features, using meta-models to assemble the feature cause-effect chains® and perfor-
mance requirements on functional blocks.

4.1.1  Meta-Model. Figure 6 depicts the meta-model for the functional viewpoint, also called
the functional architecture. The functional architecture consists of 0. FunctionalCauseEffectChain,
where each cause-effect chain represents a system feature. A feature cause-effect chain is modeled
by 0.* FunctionalCauseEffectChainVertice and 0.* FunctionalCauseEffectChainEdge. A vertice rep-
resents a data processing element such as a sensing block. The edge represents the connections
between vertices, having one vertice as sender and an array of vertices as receivers. Depending
on the granularity of the model, a vertice can have an array of possible host elements (e.g., front
camera, nomadic) and a related vehicle functional domain (e.g., powertrain, chassis). Some nodes
will have the host element as nomadic. We use the term nomadic for functions that can be hosted
in different integration platforms.® Those properties later constrain the system synthesis—that is,
the deployment of the functions to the appropriate HW hosts. Every vertice, which is a functional
block, has a FeatureRequirements attribute that represents the performance, communication, and
safety requirements. The performance requirement defines the vertices computation need (e.g.,
processing resources, memory). The communication requirement describes the data traffic that
the vertice will send. The CommunicationTraffic class defines the type of traffic (e.g., best effort,

5A cause-effect can be understood as the path from an input (e.g., sensor) across the required SW and HW elements until
the desired output (e.g., actuators) (see [24]).

®In this work, the nomadic functions are assumed to be statically deployed at design time, as done in industry today. Two
works [30, 34] explore the use of nomadic functions in a dynamic runtime environment, fully utilizing the possibilities of
the SOA paradigm.
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Fig. 7. Functional architecture example. Representation of an SAE Level-3 highway-pilot feature, describing
the cause-effect chain using the functional viewpoint meta-model.

real time) with the related traffic pattern, called the arrival curve, and traversal time deadline con-
straint. The arrival curve defines all the traffic flow properties (e.g., packet type, period, payload
size) that will be taken as input to evaluate the network performance. The SafetyRequirement class
includes the vertice’s ASIL and the SaRA requirements if necessary. The SaraRequirement class de-
scribes the design pattern to be applied with the saralntegrityPerChannel attribute, giving an array
with the ASIL requirement for each of the design pattern channels. The class SaraDesignPattern
defines the template presented in Section 3.2, including the description of the pattern and the struc-
ture in vertices and edge elements. To support the system synthesis, the SaraPatternVertice class
provides the deployment channels, performance, communication traffic specifications for the pat-
tern’s vertices, and the ASIL related to each pattern vertices according to the SaRA requirements.
The class DesignPatternCatalog represents the library of patterns with 0.” SaraDesignPattern to be
used by the system designers.

4.1.2  Example. Figure 7 depicts the functional architecture for an SAE Level-3 highway-pilot
feature, as an example of a functional cause-effect described using the meta-model in Figure 6. The
feature controls the car in a highway driving scenario, and a fallback system will perform a safety
maneuver in case of a failure. The safety maneuver will drive the car to the rightmost lane of the
highway in a given time, reaching the safe state when the car stops and deactivating the system un-
til repair. The feature uses a set of vehicle functions with diverse ASIL requirements to perform the
maneuvers. For example, the braking and steering systems have an ASIL D requirement, and the
powertrain system has an ASIL C requirement. Some systems will have SaRA requirements, where,
in this example, they have the same ASIL value for the first and second channel. Figure 7 uses a
SysML Block Definition Diagram (BDD) to illustrate the cause-effect chain vertices as blocks and
the edges as arrows. Each block possesses properties as per the functional architecture meta-model.
When moving to the logical viewpoint, some blocks need to undergo a model transformation, in-
creasing the granularity of the block by adding new elements and connections. In the example of
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Fig. 8. Meta-model of the logical architecture with its classes, classes’ attributes, and relations between
classes.

Figure 7, the blocks with the prefixes SNS and ACT will have a more fine-grained granularity, as
specified by the logical architecture explained in the next section.

The other blocks (SensorFusion, SituationAnalysis, FctBehaviorL3HWP, and TrajectoryControl)
contain all the information needed in the logical architecture. For the host, those blocks have the
nomadic value, meaning that they can be deployed to any vehicle integration platform that matches
the domain and the safety requirements. The communication property contains the network traf-
fic. For the SaRA design pattern, the duplex_2 X 2 pattern is applied, meaning it has a redundant
pattern with two inputs and two outputs. The logical viewpoint will use this information during
the model transformation to separate the channels and connect the elements accordingly. The fol-
lowing section describes the logical viewpoint, relating the presented functional architecture with
the model transformation.

4.2 Logical Viewpoint

The logical viewpoint supports the solution design for the vehicle features, representing the sys-
tem not solely in terms of functionalities like the functional viewpoint but rather in terms of ar-
chitectural design. The logical viewpoint represents the implementation elements regarding per-
formance, dependability, and resource demands. For this work, the logical viewpoint will depict
the runtime SW architecture, which transforms the functional architecture into a set of compu-
tation tasks exchanging information according to the schedules described by the communication
traffics. The design patterns are implemented in the logical viewpoint, expanding the functional
architecture vertices to generate the fail-tolerant SW architecture.

4.2.1 Meta-Model. Figure 8 depicts the meta-model for the logical viewpoint, also called logical
architecture. The logical architecture consists of 0.* LogicalCauseEffectChain, which each represent
the runtime SW architecture for a feature, represented as a cause-effect chain. The cause-effect
chains are derived from the logicalArchitecture.functional ArchitectureModel Transformation method,

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 3, Article 41. Pub. date: March 2023.



Multi-Objective Optimization for SaRA E/E Architectures Scoping HAD Vehicles 41:15

expandable func. vertice logical cause-effect chain
<<block>> <<block>> <<block>> <<block>> <<block>>
ACT VehBraking environment sensing perception actuator management environment acting
properties brakingSensors brakingSensors braking
host: NA properties properties properties properties
domain: chassis host: brakeSensors host: nomad host: nomad host: brakeController
performance: NA domain: chassis domain: chassis domain: chassis domain: chassis
Bl communication: NA performance: low performance: low = performance: low — performance: low
safetyTag: ASILD communication: legacySnapshot communication: C&C communication: C&C =2l communication: none
saraSafetyTagChannel: safetyTag: ASILD safetyTag: ASILD safetyTag: ASILD safetyTag: ASILD
ILD,ASILD] saraSafetyTagChannel: saraSafetyTagChannel: saraSafetyTagChannel: saraSafetyTagChannel:
saraPattern: duplex_2x0 [ASILD,ASILD] [ASILD,ASILD] [ASILD,ASILD] [ASILD,ASILD]

n: duplex_2x0 saraPattern: duplex_2x0 saraPattern: duplex_2x0 saraPattern: dupfex 2x0

(linput

(a) Example of an expandable functional architecture vertice to a logical cause-effect chain.
Duplex_2x2

- data processin
(cf?annel 1) 8 output 1
y 4

comparator -
(channel 1)

_ <<block>>
environment acting
braking
hannel 1:brakeController 1
ASILD

<<block>>
TrajectorvControl

(5  channel Lnomadic
= ASILD B

TrajectoryControl
comparator

| 1: di
ElLIEIel?
(channel 2)
<<block>>
y 4 TajstonyContro

comparator

£ channel 2:nomadic (L
= ASILD &

<<block>>

e ey
(channel 2) output 2 )
i TrlectConoI
Comiutation Resources: CommunicationTraffic: -

hierarchy hierarchy !

I (ow — monitorSignal v

<<blocl
actuator mal

_<<block>>
environment acting
braking

k>>
agement
braking

r5fhannel 2:brakeController 2
= ASILD

(b) Example of a design pattern as a logical cause- (c) Extract from the SAE Level-3 HWP logical archi-
effect chain. tecture illustrating the model transformations.

Fig. 9. Logical architecture example.

which will parse the functional architecture and transform the models according to the expandable
vertices from ExpandableVertices and the patterns applied from DesignPatternCatalog. Similar to the
functional architecture, the logical cause-effect chains consist of 0. LogicalCauseEffectChainVertice
and 0.* LogicalCauseEffectChainEdge. A vertice represents a SW task with a host, a functional
domain, and a set of requirements using the same class FeatureRequirements from the functional
architecture meta-model. The edge represents the data exchange between functions, having one
sender and an array of receivers.

As each logical cause-effect chain represents a vehicle feature’s runtime architecture solely,
different features might rely on the same functions but with different properties (e.g., safety
value, pattern applied) or have the same edges but with different receivers. To check for
consistency and to generate the architecture to be deployed to the hosts, the logicalArchitec-
ture.compilationLogicalCauseEffectChains method compiles all the logical vertices and edges from
LogicalArchitecture.features, creating a LogicalArchCompilation object with functions and edges.
The LogicalArchCompilation object has a unique object for the functions and edges according to
the instance name, applying the highest ASIL and performance constraints required.

4.2.2 Example. As an example for the logical viewpoint, Figure 9 depicts a part of the model
transformations applied to the SAE Level-3 HWP feature showing an excerpt of the logical archi-
tecture. Figure 9(a) shows the block ACT VehBraking as an example of an expandable functional
architecture vertice, illustrating on the right side the logical vertices and edges. Notice that the
block actuator management braking has a new input port to connect to other elements of the
cause-effect chain. Moreover, the properties show the requirements for the performance, commu-
nication traffic, deployment host, and the SaRA pattern to be applied with the related ASIL for the
first and second channels sequentially.
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Figure 9(b) shows the example of a duplex 2 X 2 design pattern, with the inner and outer con-
nections and the deployment channels. The figure also indicates the computation resources and
communication traffic for the model transformation. The value hierarchy for a computation re-
source means that the block inherits the resource from the original expanded block.

Figure 9(c) shows an excerpt from the logical architecture of the SAE Level-3 HWP feature
based on the duplex_2 X 2 pattern applied to the TrajectoryControl functional block. The fig-
ure also contains the connections to the expandable functional vertice ACT VehBraking. The
dashed arrows indicate the edges not contained in this excerpt. One can see that the logical ar-
chitecture separates the information flow into two redundant channels, with an ASIL D require-
ment for each channel. Furthermore, the figure shows the deployment host for the logical ver-
tices, where the nomadic functions will be deployed according to the related channel and the
environment acting braking functions will be deployed to redundant brake controllers. For this
work, we assume that, in terms of fail-operational capability, the system implements hot-standby
[10], with both channels working simultaneously and no additional delay from the recovery
mechanisms.

The following section presents the technical viewpoint containing the meta-model for the com-
putation hosts and communication networks. With the technical viewpoint describing the HW
architecture and the logical architecture describing the features’ runtime SW architecture, it be-
comes possible to perform the system synthesis, as will be demonstrated in Section 5.

4.3 Technical Viewpoint

The technical viewpoint supports the technical implementation, mapping the abstract elements
from the logical viewpoint to the HW resources. In particular, it defines the computational re-
sources executing the SW modules. The automotive industry often refers to the technical view-
point as the actual vehicle’s E/E architecture.

4.3.1 Meta-Model. Figure 10 depicts the meta-model for the technical viewpoint, also called
the technical architecture hereafter. The technical architecture consists of 0.* TechnicalArchitec-
tureTopology, where each topology represents one E/E architecture candidate solution. The E/E ar-
chitecture follows the template presented in Section 3.1, having 0.* TechnicalArchitectureNode, 0.*
TechnicalArchitectureLink, and 0. TechnicalArchitectureBus. A technical architecture node repre-
sents a deployable element, hosting the logical vertices. The TechnicalArchitectureNodeParameters
defines all properties of the node as follows:

Node type: Indicates if it is an integration platform computer, a zone gateway, or a specific
embedded element such as an ECU, a sensor, or an actuator.

Zone location: Indicates the node placement in the vehicle (e.g., front, cabin, or rear
compartment).

Gateway tunneling time: Indicates the delay induced by the forwarding of a frame from one
network technology to another (e.g., a CAN frame tunneled into an Ethernet frame). This
property is only applicable to nodes with a built-in gateway. In this work focusing on Ether-
net and CAN networks, this delay is set on a per-node basis.

Switch time: Ethernet switching time. This property is only applicable to nodes with a built-in
switch.

Internal connection speed: Indicates the link speed from the built-in switch to the node proces-
sor. This property is only applicable to nodes with a built-in switch.

Middleware overhead: Indicates the additional timing delay to process data services. This prop-
erty is only applicable to nodes running nomadic functions.
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Fig. 10. Meta-model of the technical architecture with its classes, classes’ attributes, and relations between
classes.

Fall-back channels: Indicates the relationship between vehicle functional domains and deploy-
ment channels for nomadic functions. For this work, only integration platforms can host
nomadic functions.

The TechnicalArchitectureLink and the TechnicalArchitectureBus describe the HW topology, ex-
pressing the communication network(s) the nodes are connected to. The link class represents an
Ethernet connection with a given data speed, and the bus represents a CAN-FD connection. We
assume that a bus does not span across different vehicle zones and is connected to a single gateway.
This assumption typically holds in zone-based architecture.

4.3.2 Example. An example of the technical viewpoint using this meta-model is given in
Figure 11. The example corresponds to the logical architecture’s extract from Figure 9(c). The E/E
architecture consists of two integration platforms with redundancy for the deployment channels
dedicated to the two functional domains in the extract. The architecture also includes three zone
gateways and two redundant brake controllers. The integration platforms have the intraconnection
link speed defined as they host a switch, and the middleware delay accounts for the communica-
tion overhead between nomadic functions. The other nodes have this attribute defined to null, as
they do not host nomadic functions. The integration platforms and the zone gateways have a built-
in switch, and thus the switchTime is defined. The only elements with built-in gateways (CAN to
Ethernet) are the zone gateways with the property gatewayTunnelingTime defined. The two re-
dundant brake controllers are responsible for controlling the braking actuators. The last concern
captured by the technical architecture is the communication architecture: networking topology
and network protocols are described through the links between the nodes.

The following section presents the DSE approach, giving details on the system synthesis method,
deployment combinations generation, and the MOA of the feasible solutions to compare E/E ar-
chitecture candidates.
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Fig. 11. Technical architecture example using the technical viewpoint meta-model. Representation of the
integration platforms, zone gateways, controllers, and networks to host the logical architecture are extracted
from Figure 9(c).

5 SYSTEM SYNTHESIS EXPLORATION AND MOA

DSE is a crucial concept in our approach as the logical architecture elements can have many de-
ployment options (see Figure 8), and the technical architecture hosts (see Figure 10) can support
multiple vehicle domains. That leads to a space of deployment candidates for the system synthesis,
usually comprising both feasible and non-feasible configurations (i.e., configuration not meeting
all of the system’s requirements). A series of tests are performed to filter out unfeasible solutions.
The last test is performance evaluation, which is the most time-consuming filter. Figure 12 illus-
trates the workflow of the DSE, depicting the generation of the viewpoints meta-models, the gen-
eration of deployment candidates at the system synthesis step, and the evaluation process leading
to the MOA for the set of feasible solutions. The following sections present the complexity of the
exploration and details in each of the workflow steps.

5.1 Complexity of the Problem

The system synthesis consists in populating the TechnicalArchitectureNode.tasksHosted attribute
(from the technical architecture meta-model) with the LogicalArchCompilation.vertices (from the
logical architecture meta-model). Assigning logical architecture vertices (i.e., the functions) to
possible technical architecture hosts is a problem whose search space grows exponentially with
the number of nomadic functions. Each nomadic function can be be allocated to any host that
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Fig. 12. System synthesis and DSE workflow. Representation of the creation of the viewpoints, generation
of feasible deployments, and the MOA.

support the functional domain of the function (e.g., powertrain), knowing that the different chan-
nels of a given function must be on different hosts for redundancy purposes. The complexity of
the allocation problem is given by the following equation:

. h;!
l_[ cil - (hi —c;)!

i=1

where n is the total number of nomadic functions, h; represents the number of possible hosts for
a given function i, and c; is the number of channels of function i.

For instance, considering n = 25, two channels, and three possible hosts per nomadic function,
the search space is 3%°. Assuming 0.5 seconds of computation time per candidate allocation (see
Section 5.3), an exhaustive search on a single CPU would require more than 10* years of compu-
tation. Given that, in practice, the number of nomadic functions can easily range in the hundreds,
which suggests that exhaustive search is not practical and that domain expertise is needed to re-
duce the search space as done in Section 6.2.

5.2 Viewpoints Generation

The viewpoints generation, as depicted in the upper part of the workflow steps in Figure 12, starts
with the user populating a database. This database describes in a human-readable format the fea-
ture cause-effect chains, the expandable vertices, the design patterns, and the HW description for
the E/E architecture. All this information must match the meta-models defined for the viewpoints
explained in Section 4. In the workflow’s next step, a Java program deserializes the database, pars-
ing the information and checking for the meta-model’s parameters consistency to generate the
functional and technical architectures. As the database is created manually, it is prone to errors
(e.g., typos in the name of a function or a parameter value). To avoid consistency errors, together
with the database, a ground truth table is created to summarize all possible parameter values. The
table lists the meta-model enumerations and the name of the functions to generate the cause-
effect chains. The Java program checks this ground truth table with the database values, and, in
case of discrepancy, an error message is provided to the user, indicating the inconsistencies. After
the database parsing, and the check for inconsistencies, the Java program generates the logical
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architecture through the model transformations explained in Section 4.2, applying the expandable
vertices and the design patterns to the functional architecture. The Java source code’ that parses
the database with the checking has around 900 lines of code, and the source code that performs
the model transformation has around 1,500 lines of code. With the logical and the technical archi-
tectures generated, the next step is to explore the deployment combinations through the system
synthesis, as explained in the following section.

5.3 Design Space Exploration

The DSE approach, as depicted on the right side of the Figure 12, starts with the system synthesis
step generating all possible combinations for the deployment of the logical architecture elements to
the technical architecture hosts. To handle the complexity of the problem, we use domain-specific
knowledge to constrain the possible technical architecture hosts for given logical architecture ele-
ments. For example, chassis and powertrain domain nomadic functions are hosted in specific inte-
gration platforms (Section 6.2 gives more details on the approach). Further, to reduce the number
of deployment candidates, we use a set of filters to discard unfeasible designs. The block com-
plete deployment search space represents the entire space of design candidates. However, many of
those solutions will not match the fail-operational architecture constraints (i.e., concerning valid
redundant hosts for redundant logical vertices and secondary communication paths for redundant
logical edges). The deployment filters check for these properties and discard the solutions that do
not match the requirements.

For the valid deployments only, a system performance evaluation is performed to discard candi-
dates that do not match the requirements, such as in terms of worst-case traversal times, through-
put, and max. link bandwidth utilization. The system performance evaluation step is the most com-
putation intensive, where according to our observations and measurements in the work of Navet
et al. [43] it can be in the order of 500 ms for a worst-case schedulability analysis using RTaW-
Pegase [2], the tool used in this study. As shown in Section 5.1, this makes an exhaustive explo-
ration of the design space impossible in a reasonable amount of time.® The solutions that pass the
filters and the system performance evaluation are labeled as feasible deployments, and the MOA is
performed on them.

After the system performance evaluation, the user can examine the set of feasible deployments
and, if necessary, adapt the database content, the input to the process, to generate a new solution
space.

5.4 Performance Criteria for the MOA

For the MOA step, as depicted in the lower part of Figure 12, we consider the following performance
metrics and constraints to evaluate the quality of the design candidates:

Solution validity: A Boolean constraint that indicates true for valid deployments and false for
invalid deployments. It is performed during the DSE filtering phase, where the deployment
filter checks the correctness of the function allocation and the communication paths, includ-
ing redundancy constraints. For the function allocation, a valid deployment matches the
logical vertices hostElement and functionalDomain attributes with the technical node param-
eters. A valid communication path has the correct number of fall-back communication paths

"Not taking into consideration the external libraries used to access the database.

8Two works [37, 38] explore predicting the results of performance evaluation of TSN networks with graph neural networks,
with a speedup greater than 1,000 over the exact approach used in this article, enabling thus much broader search spaces.
Studying the viability of relying on prediction, which comes with the drawback that some predictions will unavoidably be
wrong, is a potential follow-up work.
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according to the redundant logical edges. A valid network performance ensures sufficient
data bandwidth for the Ethernet links and no violation of the traversal time deadlines. The
latter is checked with worst-case schedulability analysis.

Safety costs: An arithmetic expression that indicates the total sum of the technical architecture
costs for various safety levels. The technical architecture nodes have an ASIL cost equal to
the highest ASIL value of the functions they host. The arithmetic expression sums the ASIL
costs of the technical nodes, where the objective is to find feasible solutions that minimize
the costs. In this work, the following ASIL cost metric is used for the nodes:

QM | ASILA | ASILB | ASILC | ASILD
1 5 25 500 2500

Network topology costs: An arithmetic expression that indicates the total sum of the network
topology costs. The technical architecture links have a cost related to the speed, and the arith-
metic expression sums the link speed costs, where the objective is to find feasible solutions
with the lowest cost. For this work, the following link speed cost metric is used’:

100 Mbps | 1,000 Mbps | 2,500 Mbps | 5,000 Mbps | 10,000 Mbps
1 2.5 3 35 8.5

Cabling costs: An arithmetic expression that indicates the total sum of the technical architec-
ture cabling topology. The cost is related to the number of communication cables (Ethernet
links and CAN-FD buses) crossing the vehicle zones, increasing the complexity of the wiring
harness. Every zone crossing adds 1 to the total costs. The objective is to have the lowest
cost.

Network performance: A set of performance metrics to evaluate the network performance us-
ing a real-time network design tool. Solutions that do not have enough bandwidth in the
Ethernet links or meet the worst-case traversal times are discarded.

Bandwidth scalability: An arithmetic expression that indicates the network topology’s scal-
ability for additional traffic. Every technical architecture link has a value from 0 to 100%,
representing the link bandwidth usage, in which high values indicate the existence of bot-
tlenecks in the communication topology, whereas lower numbers mean that the network
will be able to accommodate additional traffic. Assuming that any link with usage greater
than 70% represents a bottleneck (i.e., a common threshold in the automotive industry),

: xf(n) . _ | loadm-10 if load(n) > 70%
we use the equation 25—~ with f(n) = % T

width scalability, where n indicates a given Ethernet link. The lower the metric value, the
better the overall scalability.

as a metric for band-

Slack average: An arithmetic expression that indicates how much margin there is for addi-
tional communication delays. With worst-case analysis, the amount of time left (i.e., the
_ slac(c(n)
slack time) before the deadline is computed. The equation W
erage of the slack times, where n is the index for frames. The objective is to have a low

average value, which corresponds to a network with ample margins for additional traffic.

evaluates the av-

TSN protocols: In this work, the impact on the network performance of 802.1Qbu
frame preemption [29] and 802.1Qav Credit-Based Shaper (CBS) [28] mechanisms are
evaluated.

910-Gbps links require additional HW at the physical layer level, which explains that their cost is nonlinear with the data
rate.
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Computation resources: An arithmetic expression that indicates the total sum of computations
resources costs per technical architecture integration platform node. The integration plat-
forms have a cost value equal to the sum of all performance attributes from the hosted logi-
cal vertices. The objective is to find solutions with the costs distributed evenly between the
integration platforms.

For this work, we use the Dhrystone Million Instructions per Second (DMIPS) to mea-
sure the computation resources required. The following computation resources cost metric
is used:

low (< 1K DMIPS) | medium (> 1K DMIPS to > 10 K DMIPS) | high (> 10 K DMIPS)
1 10 100

5.5 Objective Functions and Optimum Design for the MOA

In a multi-objective problem, the goal is typically to minimize one or several objective functions
(see [16]). However, the performance criteria often conflict with each other (e.g., cost vs. perfor-
mance), meaning that there is no single solution that simultaneously optimizes all the performance
metrics. A classical approach to this problem is to look for Pareto optimal solutions—that is, solu-
tions that exist for no other feasible solution such that they improve at least one of the objective
functions without deteriorating the other objectives [25].

From the mathematical perspective, all Pareto optimal solutions are equally acceptable for the
multi-objective problem. However, for practical use, usually, only one solution should be picked,
and for that it is necessary to define a Decision Maker (DM). The DM possesses domain knowl-
edge and expresses preference relations between different solutions, such as prioritizing the costs
over performance considerations. Miettinen [39] defines three distinct approaches concerning the
point in time when the DM interacts with the exploration algorithm and provides the preferences
for the solutions:

o A priori: The DM determines the preferences before the optimization process, and the explo-
ration algorithm will return a solution that optimizes the preferences. The quality of a solu-
tion is determined for instance using the weighted sum or e-constraint approach (see [25]).

o A posteriori: The DM defines the preferences partially, and the exploration algorithm will
return a set of solutions that optimizes the partial preferences. One example of this approach
is using evolutionary methods (see [16]). After the exploration, the DM will evaluate the
trade-offs and complete the preferences to find a solution.

e Interactive (progressive): The DM closely interacts with the exploration algorithm, redefining
the preferences multiple times during the search execution. This approach is typically pre-
ferred in real-world problems, where the DM can learn progressively non-obvious trade-offs
and tune the preferences to find an optimal solution.

For this work, we use the interactive approach. The user can iterate with the exploration work-
flow at the DSE step and the MOA step, as depicted in the lower part of Figure 12. To obtain the
desired optimal E/E architecture solutions, the user, who sets the DM’s parameters, can adapt the
database models'® or the MOA preferences. By changing the database, the user will influence the
system synthesis and the filters, thus impacting the feasible deployments. By changing the MOA
preferences, the optimal solutions will differ for the set of feasible deployments.

08pecifically, the design patterns and HW description may be updated during the DSE in light of the results obtained so
far.
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The optimization problem in this work can be formalized as follows:

min { f1(x), f2(x), ..., fn(x)}

s.t.x€ey,

where f; : R™ — ‘R are objective functions and y C R™ defines the search space. To cast
the multi-objective optimization problem into a single-objective optimization problem returning
a single design according to the preferences, in the following we use the weighted sum method:

m
min Z wi - fi(x)
i=1
st.xey,

where the weight coeflicients w; are non-negative values.

Ideally, the weights of each of the objective functions are set in the DM, which embeds the do-
main knowledge. Different schemes have been proposed in the literature to assign the weights.
For instance, they can be set according to importance levels, like “high,” “medium,” or “low;” each
of which correspond to a numerical value [25]. Another way to allocate weights is to ask the
user to rank some of the solutions and then derive the weights accordingly [8]. For an overview
of preference modeling in multi-objective optimization, the reader can refer to other works
[16, 27, 35].

Because different objective functions can differ in magnitude, their return values should be nor-
malized to ensure a consistent relation between the weights and the objectives. There are different
techniques for the normalization (see [25]). For this work, we normalize each of the objective func-
tions in the 0 to 1 range, according to the Nadir and Utopia points defined in the DM. The Nadir
point represents the maximum value for an objective function, and the Utopia point represents the
minimum value. The normalization of each of the objective functions is given by

S fie) -2

N__U -
Zi Tz

where zV is the Nadir point and z/ is the Utopia point for an objective function f;.
In the next section, we present the experimental setup including the fail-operational integrated
E/E architectures selected for the MOA.

6 EXPERIMENTAL SETUP

To evaluate the framework presented in this work to create and quantify fail-operational integrated
E/E architectures, we apply domain knowledge to reduce the total size of the DSE candidates, and
we select as examples five technical architectures hosting a set of mixed-critical vehicle features
with diverse SaRA requirements. Those technical architectures created in the course of the DSE
have been manually selected as they represent distinct design choices relevant to the industry
for next-generation automotive architectures. In the following sections, more details are provided
on the features included, the usage of domain knowledge to constraint the deployment freedom
of the nomadic functions, the technical architectures created, and the communication network
configurations.

6.1 Vehicle Features

We model a set of vehicle features according to the meta-models for functional and logical archi-
tectures presented in this work. These models are one of the inputs of the problem (see Figure 12).
Table 2 lists the features used and the function availability requirements. The table shows that the
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Table 2. List of Features Included and the Functions with Availability Requirements

Features Functions with Availability Requirements
Body/comfort -
(lights, seats, doors, HVAC)
Entertainment -
Connectivity -
SAE Level 0 and Level 1 Steering
(lateral and longitudinal manual control) Braking
SAE Level 2 and NCAP Braking
(AEB, AES, LKA, DMS, APA) Steering
SAE Level 3 Steering
(highway pilot and traffic jam pilot) Braking
human machine interface
sensorSet1
Vehicle motion position
Thinking

AEB, Automated Emergency Braking; AES, Automated Emergency Steering; DMS, Driver Monitoring System; APA,
Automated Parking Assistance; HVAC, Heating, Ventilation, and Air Conditioning.

features SAE Level 0, Level 1, Level 2, and Level 3 have functionalities with availability requirements.
All need fail-operational capabilities for the steering and the braking systems, assuming that the
vehicle uses x-by-wire systems. The SAE Level-3 features have in addition the human interface,
a set of sensors, the vehicle position, and the thinking function. This function includes sensor
fusion, situation analysis, functional behavior, and trajectory control functions for autonomous
driving tasks. The human interface informs the user about the SAE Level-3 functionality status
and receives commands (e.g., on/off). The sensorSet1 is a subset of all the sensors needed for the
autonomous driving tasks, as proposed in the work of Caesar et al. [9]. The vehicle motion position
is responsible for computing the vehicle position and inertial forces.

6.2 Reduction of Search Space Applying E/E Architecture Patterns

As explained in Section 5.1, it is not feasible to do an exhaustive evaluation of the entire deployment
search space, and it is necessary to apply domain knowledge to reduce the number of candidate
solutions for evaluation. In this work, using Bosch’s internal expertise, we created a set of E/E
architecture patterns that constrains the search space concerning the number of integration plat-
forms, the functions domains (e.g., powertrain, chassis) per VC, and the communication network
topologies. Figure 13 shows the E/E architecture patterns used in the exploration, following the
integrated E/E architecture template from Figure 1.

Figure 13 separates the exploration dimensions in relation to the template layers and the net-
works that connect the elements between the layers (i.e., inter-layer connection) and inside the
layers (i.e., intra-layer connection). To work around the search space explosion problem in the al-
location of the nomadic functions, we constrain the deployment by creating five candidate designs
for the number of VCs and the function domains they host. Those candidate solutions have been
derived using Bosch’s know-how—for instance, chassis and powertrain domains are here always
on the same computers, because of the expected increase of cross-domain functionalities in next-
generation cars. In Figure 13, we see that each VC hosts one or several main channel domains (i.e.,
the upper part of the box depicting a computer) and one or several secondary channels (i.e., the
lower part). Further, we set rules for the network topology: either a ring or a tree topology for the
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Fig. 13. E/E architecture patterns considered for the DSE. The configurations vary on the network topologies,
the number of vehicle computers (i.e., 2 to 4), and the functions domains per vehicle computer. The inter layer
network topologies represent the connections between the backend, computation, zonal, and embedded
layers. The two intra layer network toplogies describe the connections within the computation layer and
within the zonal layer. The patterns are based on a previous work by the authors [23].

connection between the zone gateways and the VCs, point-to-point links to zone, or VCs for em-
bedded devices with Ethernet interfaces (e.g., cameras), whereas CAN buses are used for devices
without an Ethernet interface.

Without those E/E architecture patterns, for the list of features from Table 2, and considering
only the case of three VCs, the search space for the allocation of the nomadic functions would
be in the order of 10!*. This number would be even higher if we explore all the possible network
topologies. Using the E/E architecture patterns from Figure 13, this number comes down to around
17k combinations, making it possible to analyze the solutions in less than 2.5 hours, assuming 0.5
seconds per performance evaluation. From all the configurations, the ones that do not pass the
deployment filters are discarded, as presented in Section 5.3, and only the feasible candidates will
be considered for the MOA.

For the rest of this work, instead of showing all the feasible candidates, we will pick five E/E
architecture solutions from the E/E architecture patterns from Figure 13 to further explore the
MOA. Those five architectures were selected after a Bosch internal evaluation, as they represent
possible automotive integrated E/E architectures for the next generation of vehicles with different
HW resources and topologies.

6.3 Integrated E/E Architectures Selected

The five technical architectures selected represent good candidates for next-generation automotive
integrated E/E architectures, based on distinct and realistic design choices in terms of network
topology and number of integration platforms. All architectures pass the system deployment filters,
having at least the minimum number of redundant hosts and communication paths to support the
logical architecture corresponding to the previously listed features. For simplicity, in this work,
the architectures’ models only include the elements having Ethernet or CAN-FD connections (e.g.,
wireless, LIN, and FlexRay connections are not modeled here).

Figure 14 depicts the architectures selected. The architectures undergo two kinds of analyses:
network performance for technical architectures #1, #2, and #3, and computational performance
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Fig. 14. Selected E/E architectures for evaluation. The technical architectures #1, #2, and #3 differ in the
network topology, and the technical architectures #1, #4, and #5 differ in the number of integration platforms.
In technical architecture #2, the small blocks with the letters f, ¢, and r represent a connection to the zone
gateway from the cameras and lidars.
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for technical architectures #1, #4, and #5. Section 7 will then present the MOA conducted on the
basis of the analyses’ results.

All architectures possess three zone gateways and the same embedded components (i.e., the ele-
ments of the sensors/actuators layer in Figure 1). Furthermore, they all have the ECUs organized in
vehicle domains and connected to the zone gateways through CAN FD buses (powertrain, chassis,
body cabin, and body rear ECUs block illustrated at the bottom of the architectures in Figure 14).
According to the fail-operational requirements, some embedded elements (e.g., cameras, lidar, and
chassis ECUs) are duplicated.

The architectures for the computational performance analysis group (technical architectures
#1, #4, and #5) have the same network topology concept but different integration platforms. They
rely on an Ethernet ring topology for the zones, and each integration platform has two connec-
tion points to the zone ring. The cameras, lidars, and displays are connected to the integration
platforms. The radars and ultrasonic sensors are connected to the zone gateways. Technical archi-
tecture #1 has three integration platformsand technical architecture #4 has two integration plat-
forms, which is the design with the minimal number of possible redundant integration platforms.
In contrast, technical architecture #5 includes four integration platforms depicting a design with
domain-oriented VCs, with one computer for infotainment, one for body, one for motion (chassis
and powertrain), and one for autonomous driving and driver’s assistance.

The architectures for the network performance analysis group (technical architectures #1, #2,
and #3) have the same integration platforms, but they differ in the network topology. Technical
architecture #2 has the same Ethernet ring topology as technical architecture #1, but the cameras,
lidars, radars, ultrasonic sensors, audio amplifier, and connectivity unit are connected to the zone
gateways. To avoid single points of failure when connecting redundant channels to the same zone
gateway in technical architecture #2, the duplicated components (e.g., cameras and lidars) are con-
nected to different zone gateways, guaranteeing redundant communication paths for these chan-
nels. Finally, technical architecture #3 has the same connections for the embedded components
as technical architecture #1, but it differs by having an Ethernet ring passing through the zones
and the integration platforms as well. The following section details the communication network
design, such as link speeds, forwarding delays, and TSN protocols used.

6.4 Network Configuration

All the selected architectures use the data rate for the Ethernet links chosen to be the minimum
possible speed to handle the communication requirements. We assume for all architectures that the
middleware overhead delay in the integration platforms is equal to 2 ms, and the intraconnection
speed (i.e., from the internal switch to the processor) is equal to 32 Gbps. All switches have a
switching delay equal to 5 s, and the gateways’ tunneling delays (see Section 4.3.1) are set to 50 pus.

The communication traffic for the Ethernet frames is either periodic or periodic burst (i.e., pack-
ets making up a segmented message, like a camera frame, are queued at once). Due to the com-
petitive nature of the network traffic, we use TSN QoS mechanisms to meet the communication
requirements (see Section 4.3.1). The use of priorities (eight priority levels are available in TSN)
with preemption [29] leads to feasible solutions in terms of timing requirements (throughput and
deadlines) for all the selected architectures. The priority allocation and the timing verification (i.e.,
worst-case schedulability analysis) are performed using the network design tool RTaW-Pegase [2].

Notice that none of the architectures would meet the timing requirement with a single priority,
known as the FIFO configuration. We explored the use of the CBS, defined in IEEE802.1Qav [28],
but it did not lead to more efficient scheduling solutions. Indeed, CBS is mostly useful to bursty
flows, such as camera streams, which, in our case study, had to be placed at the lowest priority
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levels due to very time-constrained control messages. Thus, very few streams could benefit from
the shaping performed on the bursty traffic.

The following section presents the MOA for the selected five architectures. In particular, we
will explore two sets of analysis meant to evaluate (1) network performance and (2) computational
performance. Further, we will determine the optimum design according to the DM preferences.

7 EXPERIMENTAL RESULTS

The experimental process starts with the creation of a database storing the features and integrated
E/E architecture parameters described in Section 6 according to the viewpoint meta-models from
Section 4. The database parsing and the creation of the functional, logical, and technical architec-
tures, including the deployment, were performed with a Java program. For the network simulation,
we used the RTaW-Pegase 3.9.8 [2] library running on Java JDK-13.!" The MOA is programmed
with Python 3.7 using the numpy, pandas, seaborn, and plotly libraries for the results’ processing
and the generation of the figures.

The evaluation of the five selected E/E architectures is organized in two experiments according
to the analysis grouping:

Network topologies experiment: First, we explore the impacts of different network topologies
using the network performance analysis group (i.e., technical architectures #1, #2, and #3)
from Figure 14. We compare the Ethernet link loads to analyze potential bottlenecks in the
communication networks, and we evaluate the MOA with objective functions for network
topology cost, cabling cost, slack average, and bandwidth scalability, as described in Section 5.4.
We normalize the objective functions and apply the weighted method to obtain a single op-
timum solution. For simplicity, we assume that each objective function possesses a weight
of 1, and the Nadir and Utopia points are equal to the minimum and maximum values, re-
spectively.

Integration platforms experiment: Second, we explore the impacts of changing the number of
integration platforms and the distribution of vehicle domain deployment channels using
the computational performance analysis group (i.e., technical architectures #1, #4, and #5)
from the exact figure. We compare the computation resources required for each integration
platform according to the deployments. For the MOA, we evaluate the objective functions
network topology cost, cabling cost, slack average, and safety cost, as described in Section 5.4.
We normalize the objective functions and apply the weighted method to obtain a single opti-
mum solution. For simplicity, we assume that each objective function has a weight of 1, and
the Nadir and Utopia points are equal to the minimum and maximum values, respectively.

7.1 Evaluation of Integrated E/E Architectures: Network Topologies

Figure 15 depicts the Ethernet link speeds and percentage of the bandwidth usage for each link for
the network performance analysis group (i.e., technical architectures #1, #2, and #3). Of the three
designs, the network topology from #2 has the highest Ethernet link speeds because the cameras
and lidars, which are very demanding in terms of bandwidth, use the zone ring to route the frames
to the integration platforms. Figure 15(c) shows that solution #3 has two potential communication

11t is important to note that ISO 26262 (part 8, chapter 11) formulates specific requirements for SW tools used in the
development of safety-related automotive E/E systems. The standard gives guidelines to determine the necessary tool
confidence level and provide means to qualify a tool according to the tool confidence level. In this work, as we focus on the
early stages of the automotive development process, it is not needed to guarantee the confidence of tools’ outputs. However,
it is expected that qualified tools, possibly qualified external verifiers, are applied at later stages of the development process,
following ISO 26262 guidelines.
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Fig. 15. Evaluation of the network performance analysis group (technical architectures #1, #2, and #3) in
terms of the Ethernet links’ speeds and utilization between the nodes. Each technical architecture is shown
in a distinct sub-figure. The right side of each architecture indicates the color code for the link utilization,
with darker colors representing higher percentages.

bottlenecks. The links between integration platforms #1 to #2 and #2 to #3 have a bandwidth usage
percentage closer to 100%.

As an aid to decide on an optimum design regarding the communication network between the
architectures, Figure 16 illustrates the MOA, depicting the objective function values in the form of a
radar plot, with the optimum values in the center. Figure 16(a) shows the quality metrics in absolute
values as described in Section 5.4. After the normalization and the application of the weighted sum
method (see Figure 16(b)), technical architecture #3 comes out as the optimum design for having
the lowest sum value. Solution #3 has the best metrics for network topology costs, cabling costs,
and slack average. This is because it has a single ring for the communication network, hence
reducing the number of cables. In addition, the high-demand bandwidth elements, such as the
cameras, lidars, and screens, are connected directly to the integration platforms, allowing for a
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Fig. 16. Evaluation of the network performance analysis group (technical architectures #1, #2, and #3) in
terms of the MOA for the network topologies. The center of each radar plot represents the optimum values.
The total weighted sum results are illustrated in the legend of the normalized graph.

ring network with lower Ethernet link speeds. Looking at the cabling metric, one could expect
that setup #2 would be the optimum having the embedded elements connected to the closest zone
gateway. However, connecting two redundant elements to the same zone gateway will lead to a
single point of failure, making the solution unfeasible. Because of that, it is necessary that the
duplicates of the same component are not connected to the same zone gateway—for example,
Camera Front (C_F) has one instance connected to the front zone gateway and the other instance
connected to the cabin zone gateway. The only metric for which architecture #3 is outperformed
by architectures #1 and #2 is the bandwidth scalability. It is possible to see in Figure 15(c) that the
Ethernet links between integration platforms #1, #2, and #3 have a high total bandwidth utilization,
leading to potential bottleneck points.

7.2 Evaluation of Integrated E/E Architectures: Number of Integration Platforms and
Vehicle Domains Distribution

Figure 17 presents the evaluation’s results of the computational performance analysis group (i.e.,
technical architectures #1, #4, and #5) that differs in terms of the number of integration platforms
and the distribution of the vehicle domains (see Section 6.3). MOA is performed to support decision
making: Figure 17(a) and (b) show the objective functions for the three candidate solutions in the
form of a radar plot, with the optimum values in the center. Figure 17(a) shows the quality metrics
in absolute values as described in Section 5.4. After the normalization and the application of the
weighted sum method (see Figure 17(b)), technical architecture #4 comes out as the optimum design
for having the lowest sum value. Indeed, solution #4 features the best metrics for safety, network
topology, and cabling costs. That is due to the fact that it possesses only two ASIL D computers, the
minimum as per the redundancy requirements, leading all other solutions to be less cost-effective.

Network topology and cabling costs are also minimized as architecture #4 has fewer Ethernet
connections to the zones gateways. However, this design is outperformed in the average slack
metric because the reduced number of Ethernet links increases the load on the links. This means
that the evolutivity of the E/E architecture will be less than with other candidate solutions.
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Fig. 17. Evaluation of the computational performance analysis group (technical architectures #1, #4, and #5)
in terms of the number of integration platforms and vehicle domain distribution. The center of each radar
plot ((a) and (b)) represents the optimum values. The total weighted sum results are given in the legend of
the normalized graph. The right side of (c) illustrates the amount of computation resources used, with darker
colors representing higher resources amount.

The computational resources needed by the integration platforms, as described in Section 5.4,
is presented in Figure 17(c). The figure shows that integration platforms 1 and 2 have the high-
est computational requirements. That is because the automated driving functions, which are very
demanding in terms of computation resources, are hosted in those integration platforms. In the
same figure, we observe that the additional integration platforms 3 and 4 only use a small quan-
tity of CPU resources, making it the best solution to have only two integration platforms as in
architecture #4. This explains why the MOA, with the specific quality metrics chosen in this study,
returns architecture #4 as the best design concerning the number of integration platforms and the
distribution of the vehicle domains onto the integration platforms.

However, it should be noted that decisions by the OEMs about the HW architecture consider
mass production constraints. This means that the choices made for a given architecture design
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cannot be completely independent of the OEM’s product portfolio. Our approach could be extended
in that direction in a follow-up study.

8 RELATED WORKS

Profound changes are ongoing in the automotive industry, driven by megatrends such as au-
tomated driving and connectivity. New design approaches are emerging to handle the arising
technologies, and with that, there is a variety of publications exploring the issues and solutions.
Natale and Vincentelly [13], back in 2010, forsaw that the need to cope with the increased func-
tional complexity, along with cost, flexibility, and extensibility constraints, would challenge the
traditional vehicles E/E architecture designs. They proposed that a necessary change in the de-
sign paradigm would be moving from Federated Architecture to Integrated Architectures, similar to
the widely adopted IMA in the avionics sector [57]. Navale et al. [42] presented an overview of
the evolutions and, as they call it, revolutions required for automotive E/E architectures, sharing
their vision of the future technologies. The publication explores how the megatrends will affect
the car’s architecture and highlight several bottlenecks, such as computation power and commu-
nication channels. To overcome the potential bottlenecks, they list technologies that could fulfill
the next-generation requirements, like Automotive Ethernet, Advanced Gateways, and Integration
Platforms.

Focusing on integration platforms in the context of the advent of SOA and the separation of
concerns between HW and SW, Traub et al. [53] showed how solutions from the IT world could
enhance the automotive E/E architecture, increasing flexibility and scalability. Closely related is
the work of Kugele et al. [33], which explored the research challenges arising from bringing such
solutions from the IT world to the vehicle architecture. They created a list of questions to be solved
by the automotive community organized in four impact focus areas: Safety, Communication, SOA,
and Intelligence.

Integrating IT solutions into the next generation of automotive E/E architectures is a non-trivial
task. One of the challenges is to design such systems while fulfilling the many automotive QoS
requirements and specifically dependability [3]. Dependability is a property comprising several
distinct attributes: Reliability, Availability, Maintainability, Safety, and Security (RAMSS for short),
which often are correlated issues. Indeed, a design that does not meet one requirement may impact
the others. As stated by Avizienis et al. [3], safety is a critical attribute guaranteeing the“absence
of catastrophic consequences on the user(s) and the environment.”Today, there are several safety
standards and methodologies to support the development of systems with various levels of depend-
ability requirements. Some of the essential standards for automotive safety are ISO 26262 [17], fo-
cusing on the functional safety of automotive E/E systems, and ISO/PAS 21448 [18], focusing on the
safety of the intended functionality. Recently, new standards were published to address the safety
of autonomous vehicles, namely ISO TR 4808 [19] and UL 4600 [54], both providing guidelines for
the design, validation, and verification of SAE > Level-3 cars.

As remarked in ISO TR 4808[19], safety is an intrinsic attribute of a system, which must be ad-
dressed during the design phases. The use of proven-in-use architecture patterns is certainly an
efficient way to enhance safety, building on the seminal work of Gamma et al. [21] in the 1990s,
which presented a catalog of reusable object-oriented SW design patterns. Later, Douglass [14]
explored the patterns’ concept for real-time systems using an MBSE approach with Unified Mod-
eling Language. Another noteworthy contribution in this landscape is the doctoral dissertation
of Armoush [1], which provided a catalog of SW and HW design patterns to support the design
of safety-critical embedded systems, considering the pattern topology and non-functional metrics
(e.g., random failure rate) for the evaluation of the solutions. Matos et al. [55] investigated the
design of safety IMA systems in the avionics sector with design patterns formalized in System
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Modeling Language (SysML), and quantify the solutions’ availability and integrity failure rate.
Later, Khalil [32] proposed a pattern library for the reuse of safety mechanisms in the automotive
domain and its use as a plugin to a generic research CASE (Computer-Aided Software Engineering)
tool.

When applying architectural patterns to design safe automotive E/E systems, the engineers typi-
cally face the challenge of finding optimal solutions in a multi-objective problem (e.g., costs against
performance). There is a large diversity of work on the multi-objective problem and architecture
exploration. For example, the works of Pinto et al. [45] and Zverlov and Voss [60] explored the
design of system-on-chips, evaluating the timing, safety, cost, and energy consumption properties
according to the communication protocols, system typology, and mapping of tasks to the cores.
Looking for more generic cyber-physical system architectures, the works of Glaflet al. [22] and
Bajaj et al. [4] explored the system synthesis and communication routing to minimize the system’s
costs while guaranteeing the desired reliability and performance.

Focusing on automotive architectures, Kanajan et al. [31] started to evaluate the trade-offs for
network performance and HW topology between centralized and federated architectures. Look-
ing for safety with ISO 26262 in focus, Rupanov et al. [47] presented an MBSE approach that
allows combining safety mechanisms to design the systems architecture with the lowest failure
rate. Schitz et al. [51] contributed to this line of work with a method to automate the allocation of
SW functions to HW components finding deployments that meet the safety requirements. Closely
related, still with a focus on ISO 26262, the work of Frigerio et al. [20] used the concepts of ASIL
decomposition to benchmark domain versus zone-based automotive architectures capable of per-
forming safety-critical autonomous applications running in non-redundant HW architectures. The
work evaluates total cost, computation and communications loads, and total communication cable
length. Similarly, Eder et al. [15] presented a method to automatically generate safe automotive E/E
architectures based on a formal language to describe the HW and SW elements. The exploration
uses satisfiability modulo theories to find Pareto optimal solutions for costs, power consumption,
and networks usage.

The two latter works [15, 20] used fixed topologies for the evaluation, not exploring different
network designs (e.g., ring and star) and different E/E architecture patterns (e.g., domains per inte-
gration platforms). Furthermore, both works used static analysis of the communication loads, not
evaluating the impact of the network topology on the performance (e.g., latency and jitter). Finally,
both works relied on ISO 26262 to guide the synthesis of safe automotive architectures. However,
the topic of safety-available requirements as stated by ISO 2626:2018-Part 10 [17] has not been
addressed yet.

9 CONCLUSION AND FUTURE WORK

In this work, we presented a framework to support the synthesis and the evaluation of integrated
automotive E/E architectures with SaRA requirements in the early phases of the vehicle develop-
ment process. First, we explained the concepts for SaRA requirements based on ISO 26262, and
we created a template to describe design patterns for systems with fail-operational capabilities.
Second, we created meta-models for the functional, logical, and technical architectures to describe
automotive integrated E/E architectures, including the design patterns template and the system
synthesis enabling the DSE with MOA. Because of the exponential growth of the DSE search
space, we suggested a set of E/E architecture patterns based on domain knowledge to constrain the
synthesis combinations. To illustrate the methodology, we selected five automotive architectures
based on the proposed E/E architecture patterns varying in the number of VCs and network topol-
ogy hosting a set of vehicle features with mixed SaRA requirements, including highly automated
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driving functions. According to the metrics defined for evaluation, we performed MOA and iden-
tified solutions that are optimal with respect to different objectives.

The framework proposed to model integrated automotive architectures with SaRA and QoS
requirements enables DSE with MOA using MBSE techniques and performance evaluation. This
work may benefit OEMs, Tier-1 suppliers, and researchers interested in the design of E/E architec-
ture using model-based approaches.

The article’s results match an overall E/E architectural trend foreseen by our colleagues at Robert
Bosch GmbH, expecting a reduction of the number of VCs down to 2 with a ring topology con-
necting them to the zone controllers.

As future work, we plan to enhance the methodology to include SOA, analyzing the impacts
of signals and services translation as presented in the work of Oliveira et al. [23]. In addition, we
would like to include scalability metrics in the MOA, evaluating which E/E architectures can better
scale in supporting additional vehicle features. Finally, to prune the search space early in the DSE,
we will study the possibility to couple the approach in this article with constraint programming
or integer linear programming as in the work of Nuzzo et al. [44].
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