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A PPA Study of Reinforced Placement Parameter

Autotuning: Pseudo-3D vs. True-3D Placers

GAUTHAMAN MURALI, ANTHONY AGNESINA, and SUNG KYU LIM, Georgia Institute of

Technology, USA

3D Place and Route (P&R) flows either involve true-3D placement algorithms or use commercial 2D tools

to transform a 2D design into a 3D design. Irrespective of the nature of the placers, several placement

parameters in these tools affect the quality of the final 3D designs. Different parameter settings work

well with different circuits, and it is impossible to manually tune them for a particular circuit. Automated

approaches involving reinforcement learning have been shown to adapt and learn the parameter settings

and create trained models. However, their effectiveness depends on the input dataset quality. Using a set

of 10 netlists and 10–21 handpicked placement parameters in P&R flows involving pseudo-3D or true-3D

placement, the dataset quality is analyzed. The datasets are the design metrics obtained through different

P&R stages, such as placement optimization, clock tree synthesis, or 3D partitioning and global routing. The

training runtime and the quality of the final design metrics are compared. On a pseudo-3D flow, the training

takes around 126–290 hours, whereas, on a true-3D placer-based flow, it takes around 305–410 hours. It

is observed that the datasets obtained from different stages lead to drastically different final design results.

With the RL-based training processes, the quality of results in 3D designs improves by up to 23.7% compared

to their corresponding untrained P&R flows.

CCS Concepts: • Computing methodologies→Machine learning approaches; • Hardware→ Physical
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1 INTRODUCTION

Monolithic 3D (M3D) integrated circuits (ICs) that leverage Monolithic Inter-tier Vias

(MIVs) for inter-die connections are emerging as a promising way to build commercial-quality,
industrial-scale designs in 3D fashion. The 3D IC physical design methodology has undergone
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Table 1. Variation in Design Metrics of 28 nm Rocketcore on Using Different Placement

Parameter Settings on Compact-2D [9] + Pin-3D [16] Flow

several critical innovations in the past few decades with respect to floorplanning, placement, rout-
ing, and optimization. State-of-the-art 3D design flows rely heavily on 2D physical design tools
and partitioning algorithms to build commercial-quality 3D ICs. Specifically, given a netlist, these
“Pseudo-3D flows” [15] first utilize commercial 2D physical design tools to generate an initial 2D
placement. For example, the pseudo-3D flows, such as Shrunk-2D [14], Compact-2D [9] + Pin-
3D [16], Snap-3D [20], and Cascade-2D [4], do not perform true 3D placement. They leverage
bin-based min-cut partitioning algorithm [6] followed by tier-by-tier routing to transform a 2D
design into 3D.

However, academia has been actively involved in developing true-3D placement algorithms,
such as ePlace-3D [10], Force-3D [8], Non-linear 3D (NL-3D) [11], and TSV aware-3D [7]. The
true-3D placers, unlike the pseudo-3D placers, perform three-dimensional placement and do not
involve any transformations. The objective functions of these placers consider both 2D and 3D
nets while optimizing the half perimeter wirelength (HPWL).

Regardless of the nature of the placer involved in 3D place and route (P&R) flows, hundreds
of placement-related parameters influence the design quality. As the technology scales down, the
slightest increase in wire and pin capacitance leads to significant degradation in power and per-
formance. This change is observed even as we scale from 28 nm to 16 nm technology node as
demonstrated in Reference [13]. This trend continues as the technology node scales further down.
The placement parameters are crucial in affecting these capacitance values and, thereby, the num-
ber and power of timing buffers required to optimize the design. An unoptimized parameter setting
can lead to significant degradation in wirelength, timing, and power.

Therefore, it is necessary to build automated approaches into the physical design electronic

design automation (EDA) tools to identify the best parameter settings for a given circuit.
EDA tools have started integrating reinforcement learning models into them to improve the
quality of 2D designs. We need similar approaches to build better 3D physical design tools as
well.

2 BACKGROUND AND MOTIVATION

3D P&R flows involving pseudo-3D [15] or true-3D [8, 10, 11] contain several hundred parameters
in them. Each parameter affects the P&R results to a different extent. To understand the impor-
tance of parameter tuning, we chose a set of 13 placement-related parameters in Compact-2D [9] +
Pin-3D [16] flow and studied their impact on 28 nm rocketcore, a RISC-V processor benchmark.
We manually set the chosen parameters to different values and performed seven 3D P&R runs
on rocketcore. Table 1 shows the design metrics obtained using different parameter settings. We
observed that their Power-Delay Product (PDP) varies by 35%, approximately.

The placement parameters that work for one circuit do not always work for other circuits.
Among the million parameter combinations, it is hard to pick the right set of parameters that
work best with the circuit being designed. Manually tuning each parameter and identifying the
best parameters is an impossible task; rather, an automated approach to finding suitable parameters
can make the search easier. RL-based approaches [1, 2, 21, 24] have often been used to automate
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Fig. 1. Reinforcement learning framework used for placement parameter autotuning (adopted from

Reference [1]).

parameter tuning processes and create a trained database. This trained database can then be used
to pick the best parameters for any given scenario.

However, the trained database is as good as the training dataset.
In the case of 3D circuit designs, the training dataset includes a set of netlists and corresponding

quality of results (QoR) metrics. The QoR metrics involve the power, performance, and area

(PPA) of the 3D designs. The quality of this dataset depends on how accurate these metrics are
compared to the final design metrics.

For example, the QoR metrics obtained at the end of the placement stage may differ entirely
from those obtained after the routing stage, which may vary from the final design signoff QoR.
Further, in pseudo-3D approaches, the QoR before and after partitioning the design may be entirely
different. Therefore, it is essential to understand the quality of the datasets obtained at different
stages of the P&R process and how they affect the quality of the trained RL model.

In this work, we pick two 3D P&R flows, one involving a state-of-the-art pseudo-3D placer and
the other with a state-of-the-art true-3D placer, and perform the following analyses:

• We study the effect of different P&R stages on the quality of the parameter autotuning
process.
• We analyze the tradeoff between the training runtime and the quality of the final result

obtained.
• We compare the behavior of RL-based parameter tuning on pseudo-3D and true-3D

placer-based 3D P&R flows.

3 RL TUNING ENVIRONMENT

3.1 Overview of the Framework

Several researches [22, 23] have been carried out on parameter autotuning in EDA tools using
machine learning approaches. Agnesina et al. propose a state-of-the-art deep RL-based VLSI place-
ment parameter optimization methodology involving actor-critic framework [21, 24] in their re-
cent work [1]. The proposed method focuses on improving the wirelength of a 2D commercial
placement engine. It offers up to 11% wirelength improvement in unseen 2D netlists over man-
ual parameter tuning and around 2.5% wirelength improvement over state-of-the-art autotuners
involving MAB. We modify the tool environment and the reward system in the RL framework
described in Reference [1] for our study as follows:

The key idea of our RL framework based on Reference [1] is shown in Figure 1. The RL agent in
our framework solves the problem of identifying optimal placement parameter settings using the
following four key RL elements:
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Table 2. Our 20 Handcrafted Netlist Features

State (s): For any given netlist, a set of placement parameters forms a state. The entire state
space consists of 10 different netlists and all possible parameter combinations (ρ).

Tool environment (T ): The environment is the complete P&R tool flow methodology perform-
ing the entire 3D design. Depending on the depth of parameter tuning, the P&R process is stopped
at a certain stage, and a reward is obtained. It receives the current state (parameter settings and
netlist) as the input and performs pseudo/true 3D P&R.

Action (a): Based on a reward, the RL agent repeatedly acts on a given state st by tuning all the
placement parameters and creates a new state st+1 to start the next optimization iteration until a
specific reward threshold is reached.

Reward (R): The reward of a high-quality IC design is the confluence of low power, better tim-
ing, and small wirelength. Each action performed by the RL agent is evaluated based on the reward.

These four key elements help define the goal of our RL framework: For a given netlist,
find a parameter setting p ∈ ρ s.t. reward R is maximized, where ρ is the set of all parameter
combinations.

We define our state as the joint values of different placement parameters from the commercial
P&R tool and information metrics on the netlist being placed. The netlist information consists of
a mixture of metadata knowledge (e.g., number of cells, floorplan area) with topological graph
features (Table 2) and unsupervised features extracted using a graph neural network. These are
adapted from Reference [1]. Netlist characteristics are essential to transfer knowledge across very
different netlists so our agent generalizes its tuning process to unseen netlists. We represent our
states using one-hot encoded categorical (Booleans or enumerates), integer, and floating point
parameters along with integer and floating point netlist features.

We carefully selected the placement parameters among the 60 available ones in the software.
We pruned the ones not relevant to our study; we do not, for example, consider structured data
paths, fillers, scan chains, shifters, and IR drops.

3.2 Our Actions

We choose deterministic actions to change the setting of a subset of parameters as suggested
in Reference [1]. They render the state Markovian, i.e., given state-action pair (st ,at ), the resulting
state st+1 is unique. An advantage of fully observed determinism is that it allows planning. Starting
from state s0 and following a satisfactory policy π , the trajectory

s0
π (s0 )
−−−−→ s1

π (s1 )
−−−−→ · · ·

π (sn−1 )
−−−−−−→ sn (1)

leads to a parameter set sn of good quality. If π has been learned, then sn can be computed directly
in O (1) time without performing any placement.
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Table 3. Our 15 Actions

1. FLIP Boolean parameters
2. UP Integer parameters
3. DOWN Integer parameters
4. UP Efforts
5. DOWN Efforts
6. UP Detailed placement parameters
7. DOWN Detailed placement parameters
8. UP Global placement parameters (does not touch the bool)
9. DOWN Global placement parameters (does not touch the bool)
10. INVERT-MIX timing vs. congestion vs. WL efforts
11. UP Partitioner parameters
12. DOWN Partitioner parameters
13. UP True-3D placer parameters
14. DOWN True-3D placer parameters
15. DO NOTHING

11 actions are common to pseudo-3D and true-3D placer. Actions 11 and 12 are

specific to pseudo-3D flow. Actions 13 and 14 are specific to true-3D placer.

Based on the suggestions in Reference [1], we create 15 different actions A, as presented in
Table 3. Our action space is designed to be as simple as possible to help neural network training
but also expressive enough so such transformations can reach any parameter settings.

3.3 Our Reward Structure

To learn with a single RL agent across various netlists with different QoR, we adopt a normalized
reward function that renders the magnitude of the value approximations similar among netlists of
the form

Rt :=
α ×WLHuman Baseline −WLt

WLHuman Baseline
+
β × ( |WNS|Human Baseline − |WNS|t )

|WNS|Human Baseline
+
γ × (PHuman Baseline − Pt )

PHuman Baseline
,

(2)
whereWL is the wirelength (μm),WNS is the design’s worst negative slack (ns), and P are the
total design power (mW).

To maximize the reward, an action taken by the RL agent should reduce these three metrics.
To render these differently scaled values comparable, we normalize each result with respect to a
human baseline value. The human baseline value refers to the wirelength, WNS, and power values
obtained using the default/manual (without RL tuning) P&R run. As the wirelength, WNS, and
power have different magnitudes, normalizing them using a human baseline value makes the cor-
responding rewards comparable and makes it easier to add the rewards together to generate an
overall reward value. In other words, the reward function helps obtain the overall percentage im-
provement brought about by the parameter tuning iteration. Therefore, the greater the percentage
improvement, the greater the reward of the corresponding parameters. Even though defining re-
wards in this manner necessitates knowing human baseline values, it only requires one P&R flow
to be completed by the designer.

The choice of the parameters: α , β , and γ dictates which QoR metric is the most optimized. In
this work, we set α to 1, and β & γ to 2. Through experimentation, we observed that the best
wirelength does not always offer the best frequency and power. Therefore, our reward system
offers lower significance to the wirelength improvement and slightly higher but equal importance
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Table 4. Netlists Used in This Work

Default runtime is calculated based on default Compact-2D [9] + Pin-3D [16] run.

to WNS and power improvements. The effects of other combinations of these parameters are still
open for experimentation and are beyond the scope of this work.

WNS values closer to 0 indicate more scope for frequency improvement. Therefore, for the tun-
ing process to perform better and offer significant frequency improvements, we choose design
frequencies such that the human baseline designs have a significant WNS, irrespective of the de-
sign size. This helps the tuning process to optimize the placement parameters for achieving better
design frequencies.

If the designs have power-limitation, then the frequency cannot be increased beyond a certain
stage, and in this case the WNS values would be small or even 0 in some cases. In such instances,
the scope of improvement is limited to the wirelength and power values, and hence the parameter
β can be set to 0 in the reward function shown in Equation (2). However, in this work, we do not
consider designs that are power-limited.

3.4 Technology Details

The 3D designs in this work are performed at a 28 nm technology node and involve 2-tiers. The
2D technology files, such as library exchange format (LEF), liberty (LIB), and parasitics files,
are extended to create 3D technology files. The 3D design uses a 12-metal layer routing stack, with
6 metal layers (M1–M6) on each tier. The two tiers are integrated in a face-to-back (F2B) fashion
using 100 nm MIVs. The MIVs connect the M6 layer of the bottom tier with the M1 layer of the
top tier through the front end of the line (FEOL) of the top tier. The 3D technology LEF file
reflects this 3D routing stack. Therefore, our 3D designs consider the area and parasitics overhead
introduced by the inter-tier vias while performing area, timing, and power optimization.

3.5 Training Setup

We train the P&R flows and create trained models using 10 different netlists, shown in Table 4.
These include a mix of gate-dominant, net-dominant, and processor benchmarks to expose the RL
framework to different kinds of netlists.

The main issues with integrating RL in EDA are the latency of tool runs (it takes minutes to hours
to perform one P&R) and the sparsity of data (there is no database of millions of netlists placed
designs or layouts). We implement a parallel version of the actor-critic framework to solve both
issues. In this implementation, an agent learns from the experiences of multiple Actors interacting
in parallel with their copy of the environment. This configuration increases the throughput of
acting and learning and helps de-correlate samples during training for data efficiency [5].

The learning updates may be applied synchronously or asynchronously in parallel training
setups. We use a synchronous version, i.e., a deterministic implementation that waits for each
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Actor to finish its segment of experience (according to the current policy provided by the step
model) before performing a single batch update to the network weights. One advantage is that
it allows for larger batch sizes, which are more effectively used by computing resources. The
parallel training setup does not modify the equations presented before. Instead, the gradients are
just accumulated among all the environments’ batches.

Each training iteration involves 10 parallel runs. This helps the RL agent collect sufficient data
from different netlists and parameter configurations to make a better parameter selection in future
iterations. Each run does not involve the entire P&R flow. Different stages of the P&R flow are
used during the training process, depending on the 3D flow being trained. The number of training
iterations also varies based on the 3D flow, depending on their runtime. These flow-specific details
are explained in the subsequent sections.

4 TUNING PSEUDO-3D PLACEMENT PARAMETERS

The well-known pseudo-3D flows [15] use commercial 2D P&R tools to perform 3D IC designs.
These flows transform 2D designs built using 2D P&R tools into 3D designs. The quality of the
2D placement obtained from these tools plays a significant role in determining the quality of

the result (QoR) of the final 3D designs. Commercial tools have numerous parameters that
affect the placement quality. The placement parameters that work well during the 2D stage of
the pseudo-3D flows may not produce the best results after 3D transformation. Therefore, tuning
the placement parameters of 2D tools for 3D designs is essential to achieving high-quality 3D IC
designs.

Among the several pseudo-3D flows [15], we choose the state-of-the-art, compact-2D [9] + pin-
3D [16] to understand the benefits of RL-based parameter autotuning on pseudo-3D flows. In ART-
3D [13], we compared the state-of-the-art pseudo-3D flows, such as shrunk-2D [14], snap-3D [20],
and compact-2D [9] + pin-3D [16], and observed that compact-2D + pin-3D performs better on
most circuits and offers the most performance benefits among all pseudo-3D flows. Hence, we use
the best-performing pseudo-3D flow to improve it further using RL tuning methodology proposed
in this work. As all the other pseudo-3D flows also use a similar commercial tool environment, the
results shown in this work are applicable to other pseudo-3D flows as well. The following section
describes the Compact-2D + Pin-3D pseudo-3D flow.

4.1 Compact-2D + Pin-3D 3D P&R Flow

In compact2D, a 2D design is first implemented using a commercial 2D P&R tool. The 2D design
is performed using a Verilog netlist, 2D standard cells & technology files, and timing constraints,
as used in a typical 2D IC design flow. But the RC parasitics of the design interconnects are scaled

by a factor of
√

2, as it would be in the 3D design. The 2D design has twice the area of the final 3D
design intended. Using the modified interconnect parasitics, placement, post-placement optimiza-
tion (preCTS), clock tree synthesis (CTS), clock optimization, and signal routing are performed.
Then the routed design is partitioned into multiple tiers using Fiduccia–Mattheyses (FM) [6]
min-cut algorithm. In this stage, the 2D design is transformed into a 3D design and hence the
name pseudo-3D. During transformation, the 2D design is contracted to the desired footprint for
the 3D IC.

After partitioning, the 3D design is optimized using the Pin-3D router & optimizer flow. The
whole 3D design is loaded into the commercial tool. Except for the tier being optimized, other
tiers are made transparent to avoid placement density issues from loading a whole 3D design onto
a 2D tool. Initially, a refine placement is performed to remove any overlaps after partitioning and
the placement is legalized. Then the design is routed and post-routing optimization is performed
tier-by-tier. Even though the design is optimized tier-by-tier, the tool is aware of both 2D
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Fig. 2. Illustration of Compact-2D [9] + Pin-3D [16] flow.

Table 5. Commercial Tool Placement Parameters Tuned in Compact-2D/Pin-3D P&R Flow

The solution space (ρ ) is 3.6 × 106.

and 3D interconnects in the design as the whole 3D design is loaded. The Compact-2D + Pin-3D
is illustrated in Figure 2.

4.2 Placement Parameters Tuned

The commercial 2D P&R tool and the FM min-cut algorithm have numerous parameters that affect
the QoR of the 3D design. Among those, we handpicked a set of 10 parameters in the P&R tool
environment and 3 parameters in the partitioner that affect the placement quality and thereby the
QoR of the 3D design. The placement parameters tuned in the commercial tool and the permissible
values for them are shown in Table 5. Among the 10 parameters, 3 are integers, 2 are Boolean, and 5
are enumeration parameters, leading to possible combinations of 3.6 × 106. The parameters tuned
in the partitioner and their permissible value ranges are shown in Table 6. The overall solution
space combining all the 13 parameters is 4.96 × 1010. The parameters and the value ranges are
picked based on the suggestions from the authors of Compact-2D [9] & Pin-3D [16] flow. We
tune these parameters using the RL agent described in Section 3 through different approaches, as
discussed below.
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Table 6. FM Min-cut Partitioner Parameters Tuned in Compact-2D/Pin-3D P&R Flow

The solution space (ρ ) is 13,776.

4.3 RL-based Parameter Autotuning

While performing RL-based parameter autotuning on this flow, the quality of the reward R (shown
in Equation (2)) is heavily influenced by how deep the tuning process extends into the flow. We
modify the P&R engine environment in the RL framework (see Figure 1) to include different stages
of compact-2D + pin-3D flow.

We train three different RL models with the tool environment in the RL framework extend-
ing through various stages of the P&R flow. The three models presented in this work are as
follows:

• Model1: The P&R engine environment includes the place and placement optimization
(preCTS) stages of Compact-2D flow. The rest of the Compact-2D and Pin-3D flows are
not included. The model is trained based on the reward obtained at the end of placement
optimization. The tool environment in this model uses a synthesized netlist as the input.
• Model2: Model 1 + CTS stages of Compact-2D flow. The model is trained based on the reward

obtained at the end of CTS. The tool environment in this model uses a synthesized netlist as
the input.
• Model3: The P&R engine environment includes the FM min-cut partitioner, placement legal-

ization, and global routing stages of Pin-3D flow. The model is trained based on the reward
obtained at the end of Pin-3D’s global routing. The tool environment in this model uses the
output of default Compact-2D flow as the input. By default Compact-2D, we refer to the
Compact-2D flow using default manual parameter settings, as suggested by the creators of
the flow.

We also performed two other experiments, one where the training process was stopped right
after compact-2D placement and the other where the parameter autotuning involved the FM par-
titioner and the pin-3D legalizer. However, the observed results were worse than the default P&R
flow; therefore, we exclude those results from this article. The modified RL-based training flows
are shown in Figure 3. We train these models using the 10 netlists described in Section 3.5 and per-
form 100 training iterations. Each iteration performs 10 runs on different netlists and parameter
settings in parallel.

4.4 Training Results

After training the three different RL models on 10 netlists for 100 iterations, we picked the param-
eters that provided the best rewards for each netlist. We run the rest of the P&R flow using these
parameters on each circuit. The results of these runs are shown in Table 7.

Among the three models, model 2 and model 3 show better results on most circuits over the
default flow. RL model 1, in which the training is performed based on placement optimization
results, offers a slight PDP improvement of <2% on aes, b19, ecg, and tate over the default flow.
In the case of rocketcore, enc_dec, and vga, the results are worse than the default flow. RL model
1 offers a significant improvement of 5%–10% on des & fpu and 17.5% on ldpc. On training for
247 hours, RL model 1 offers a significant improvement on only two circuits.
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Fig. 3. Different tool environments used in RL-based parameter tuning of Compact-2D + Pin-3D flow.

RL model 2, trained for 290 hours using the results obtained from the CTS stage, offers a
slight PDP improvement of <5% on aes, b19, des, and fpu. It offers a PDP improvement of
5%–10% on ecg, tate, rocketcore, and enc_dec. It offers a significant improvement of >10% on ldpc
and vga.

However, RL model 3, trained for just 126 hours, offers a significant PDP improvement of 11%–
23% on ecg, ldpc, rocketcore, and vga. It also offers a PDP improvement of 5%–10% on aes, des, fpu,
and enc_dec, and <5% improvement on b19 and tate.

On comparing the training results of the three RL models, RL model 3 offers a whopping
improvement of up to 23% in a training time of almost 50% of that of the other two models.
Table 8 compares the default parameters and the parameters chosen by the three RL models on
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Table 7. QoR Comparison of Default vs. the Three RL-trained Models of

Compact-2D [9] + Pin-3D [16] Flow

The netlists in this table were used for training the models. The models were trained for 100 iterations, with each

iteration consisting of 10 custom P&R runs, depending on the RL model. This table refers to the baseline, manually

tuned flow as DEFAULT. ΔPDP =
PDPx−PDPDEFAULT

PDPDEFAULT
× 100. Test results of model 3 are shown in Table 12.

rocketcore. The parameter settings chosen by different RL models are significantly different. It is
also observed from Table 8 that RL models 1 and 2 share 7 out of 13 parameters with the default
run. The parameters: bin size, target bin density, and overlap remain the same, as they are related
to the partitioner, and we do not tune them in RL models 1 and 2. The parameters legalization
instance gap, power effort, uniform density, and clock-aware placement do not have much impact
on the pre-partitioning stages of the rocketcore circuit. Therefore, the pre-partitioning models
(RL models 1 and 2) have the same parameter values as the default flow.

We also performed another experiment by extending the RL tuning process to the post-
CTS stage. However, the PDP improvement observed was less than 2% for a 25.9% runtime
increase.

Based on the training results, it is evident that for pseudo-3D flows, RL tuning after the pseudo-
3D stage, i.e., during and after partitioning, is highly effective than RL tuning before partitioning.
If training runtimes can be relaxed further, then combining pre- and post-partition stages during
the training can offer even more significant improvements.

Using the parameter settings obtained from RL Model 2 during the compact-2D stage and the
settings from Model 3 during the partitioning and pin-3D stages, we observed a 20.4% improvement
in the PDP of rocketcore circuit instead of 6.1% and 17.8% improvement obtained using Model 2
and 3, individually.
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Table 8. Parameters Used in the Default Flow vs. Parameters Chosen

by the Three RL-based Flows of Compact-2D [9] + Pin-3D [16]

Flow on Rocketcore

Except for the bin size, every parameter setting is the same in the default flow

on all netlists. The bin size is calculated as
max_chip_dimension

10 in the default flow.

5 TUNING TRUE-3D PLACEMENT PARAMETERS

There are several state-of-the-art academic 3D placers, such as Force-3D [8], ePlace-3D [10], and
Non-Linear 3D (NL-3D) [11]. These placers, unlike pseudo-3D flows, do not pose 3D placement
as a 2D placement problem. They rather perform 3D placement in a true 3D space, and hence
we call them true-3D placers. Similar to the pseudo-3D flows, the P&R flows involving true-3D
placers also contain several placement parameters that affect the QoR of the final design. We
chose NL-3D [11] placer to analyze the performance of RL tuning on true-3D placer. Among the
true-3D flows, we were able to attain access to the source codes of NL-3D [11] and ePlace-3D [10]
flows. While both codes offered similar performance improvements, we picked NL-3D for its
easier hard macro integration.

The following section describes the NL-3D placer-based 3D flow.

5.1 NL-3D Placer-based 3D P&R Flow

5.1.1 Non-Linear 3D Placer. NL-3D placer [11] is an analytical 3D placement framework. It
uses Huber-based local smoothing and Helmholtz-based global smoothing techniques to handle
the inter-tier and intra-tier non-overlapping constraints, respectively.

The objective of 3D placement is given as:

min OBJ(x ,y,z) =
∑

e ∈E

(1 + γe ) (WL(e ) + αMIV ·MIV(e )), (3)

where the placement variables x ,y,z are the vectors of 2D (x ,y) and tier z locations of the movable
cells, E is the set of nets, γe and αMIV are, respectively, the tunable wire and via weights, and
WL(e ) and MIV(e ) are, respectively, the half-perimeter wirelength (HPWL) and the number
of vias on net e ∈ E depending on the placement variables. The objective function is subjected
to non-overlapping constraints, made differentiable using the log-sum-exp function and density
smoothing techniques and is solved using non-linear programming (NLP) solver, as described
in Reference [11]. Hence, we call this placement engine as the NL-3D placer. By analytically solving
this problem using NLP, we obtain a high-quality 3D placement solution.
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Fig. 4. 3D P&R flow involving true-3D placement.

5.1.2 Overview of 3D Flow. The overall 3D flow involving true-3D placement is shown in
Figure 4. The generated placement results are processed and imported into commercial rout-
ing tools like Cadence Innovus to perform clock routing, signal routing, timing, and power
optimizations.

5.1.3 RTL Adoption and File Format Conversion. The academic placement engines are designed
to work on netlists based on bookshelf [3] format. However, standard netlists are synthesized
using the Verilog format. So, we use a script to convert Verilog netlists to bookshelf format. First,
the Verilog netlist is converted to design exchange format (DEF). The size of standard cells in
the netlist are contained in the library exchange format (LEF) files of the corresponding PDK
used. Both DEF and LEF files are used to translate a synthesized netlist from Verilog to bookshelf
format. Once the bookshelf files are generated, we use one of the placer algorithms to generate 3D
placement.

5.1.4 Modification Needed for True-3D Placers. The NL-3D algorithm is several years old and
is predominantly based on Through Silicon Vias (TSVs). As the state-of-the-art M3D ICs use
MIVs, which are significantly smaller than TSVs, we modify the algorithm to reduce the penalty
of using inter-tier vias to achieve better wirelength results with an optimum number of MIVs.

5.1.5 Back-end Design with Commercial Tools. Academic 3D placers, such as Force-3D [8],
ePlace-3D [10], and Non-Linear 3D (NL-3D) [11], compare their wirelength estimation and PPA
values after placement using benchmarks that cannot be designed using a commercial process

design kit (PDK). In IC designs, the complete picture of PPA metrics is not known until the en-
tire design is routed and optimized for timing and power. Transformation-based pseudo-3D flows,
such as Shrunk2D [14], Compact2D [9], and others [15], are capable of performing the entire P&R
flow, thereby providing a standard means to analyze the quality of 3D ICs designed using them.
Therefore, after performing NL-3D placement, we perform the rest of the physical design using a
commercial P&R tool to create a full-fledged 3D flow. We import the 3D placement obtained from
the NL-3D placer into the commercial tool and perform the following stages.

5.1.6 3D Placement Optimization. To retain the 3D nature of our proposed P&R flow, we per-
form commercial placement and placement optimization on a 3D design involving two tiers of
standard cells and a 3D metal layer stack in a commercial 2D P&R tool environment. The LEF
(physical information file) and LIB (timing file) files are modified appropriately for the 2D tool to
perform a 3D design. However, placing all the 3D cells in a 2D placement tool leads to placement
density violation, as the overall density exceeds 100%. To avoid this issue, we halve the width of

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 75. Pub. date: September 2023.



75:14 G. Murali et al.

Fig. 5. Half width standard cells used in our 3D flow. Only the width of the gate layer is halved, but the pins

are retained at the original location.

the standard cells but retain the pin locations of all the cells at their original position (for example,
retaining pins of top-tier standard cells at top-tier metal layers), as shown in Figure 5.

In the case of hardmacro blocks, we retain the original pin locations of the top tier block (if
any) and reduce the hard macro dimensions to the site size (minimum possible size) of the PDK
used. However, hard macros in the bottom tier are retained at their original dimensions. Thus, we
tweak a 2D placement tool to function as a 3D placer. However, the 2D P&R tool is incapable of
differentiating the cells of two different tiers and swaps cells of one tier with that of the other during
optimization, leading to area imbalance between the two tiers. This issue is overcome by creating
two classes of cell footprints (top/bottom) and forcing the tool to perform cell resizing within the
same class, similar to snap3D flow [20]. The look-up table restricts the tool from swapping a logic
cell of one tier with that of the other tier. Combining all these techniques, we use the commercial
placement algorithm to further improve the placement quality of the NL-3D placer in our work.

5.1.7 3D Clock Routing and Optimization. After placement optimization, we perform 3D clock
tree synthesis and optimization with half-width cells. Similar to placement optimization, we re-
strict the tool from swapping the cells of one tier with the other with the help of a user-defined 3D
cell resizing look-up table. This way, we perform 3D clock routing using a commercial 2D P&R tool.
The tool is aware of both 2D and 3D timing paths in the design and optimizes them simultaneously,
leading to optimized clock buffering and optimizing placement density and clock power.

One of the significant merits of our 3D flow is performing clock and signal routing/optimization
after partitioning the circuit. A major advantage of a 3D clock and signal routing is that the tim-
ing information of all the nets (both 2D and 3D) is available to the router. This makes it easier
to estimate each path’s timing slack and borrow slack from a path with substantial positive slack
and use it to improve the timing of a failing path. The slack borrowing concept is integrated into
commercial routing tools and can be effectively used with our 3D flow to achieve better timing
performance. Pseudo-3D flows do not benefit from slack borrowing, as clock routing and optimiza-
tion is performed in them before partitioning and can lead to worsening of the placement quality
after partitioning.

5.1.8 3D Routing and Timing Closure. After clock routing and optimization, we restore the orig-
inal width of the standard cells and original dimensions of the shrunk top-tier hard macros. We
then use the Pin-3D router and optimizer [16], which is based on a commercial P&R tool to per-
form global and detailed routing and timing closure on the entire 3D design. During the RL training
process, we stop each iteration at the global routing stage. We perform detailed routing using the
Pin-3D router on the best result obtained. We then perform post-routing optimization, using Pin-
3D optimizer, in a 3D fashion by placing the cells of both tiers simultaneously. To overcome the
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Fig. 6. Pictorial representation of 3D P&R flow with true-3D placement.

Table 9. Parameters Tuned in Non-linear 3D Placer [11]

The solution space (ρ ) is infinite.

placement density issue, Pin-3D fixes one tier of cells and makes them transparent to the P&R tool.
As this restricts the movement of cells in one tier while optimizing the other, we do not use this
tool flow methodology for pre-routing optimization to achieve better optimization.

During this stage, we allow buffer-resizing to use cells that improve timing and reduce the
overall power dissipation. We also perform slack borrowing to further reduce the worst negative
slack in the design. Performing enhanced die-by-die optimization using Pin-3D flow is remarkably
better than optimizing each tier individually. In enhanced die-by-die optimization, even though
individual tiers are optimized, the tool is aware of the entire 3D structure, all parasitic, and the
timing and power information of cells in both top and bottom tiers. This way, we improve timing,
power, and therefore overall EDP of 3D ICs.

The overall 3D P&R flow is pictorially shown in Figure 6.

5.2 Placement Parameters Tuned

NL-3D placer has around 11 critical parameters, which affect the wirelength of the 3D design.
These parameters are tabulated in Table 9. Among the 11 parameters, 2 are integers, 2 are Boolean,
and 6 are floating point parameters. The presence of the floating point parameters makes the solu-
tion space infinite. In addition to the NL-3D placement parameters, we also tune the 10 commercial
tool placement parameters (shown in Table 5) similar to the Compact-2D + Pin-3D flow. These pa-
rameters are used during the placement optimization stage in the back-end design flow.

The NL-3D parameters and the value ranges in Table 9 are picked based on the suggestions from
the authors of NL-3D [11] flow. We tune these parameters using the RL agent described in Section 3
through different approaches, as discussed below. For the default NL-3D flow, we manually tune
and set these parameters.
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Fig. 7. Different tool environments used in RL-based parameter tuning of NL-3D based 3D P&R flow.

5.3 RL-based Parameter Autotuning

Similar to the training performed in the pseudo-3D flow, we modify the P&R engine environment
in the RL framework to include different stages of NL-3D flow. We train two different RL models,
as listed below:

• Model1: The P&R engine environment includes the NL-3D placement and back-end place-
ment optimization (preCTS) stage. The rest of the NL-3D flow is not included. The model is
trained based on the reward obtained at the end of placement optimization. The tool envi-
ronment in this model uses a synthesized netlist as the input.
• Model2: Model 1 + CTS stages. The model is trained based on the reward obtained at the

end of the CTS stage. The tool environment in this model uses a synthesized netlist as the
input.

The modified RL-based training flows are shown in Figure 7.

5.4 Training Results

After training the two different RL models on 10 netlists for 100 iterations, we picked the param-
eters that provided the best rewards for each netlist. We run the rest of the P&R flow using these
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Table 10. QoR Comparison of Default vs. the Two RL-trained Models of NL-3D [11]-based 3D P&R Flow

The netlists in this table were used for training the models. The models were trained for 100 iterations, with each

iteration consisting of 10 custom P&R runs, depending on the RL model. This table refers to the baseline, manually

tuned flow as DEFAULT. ΔPDP =
PDPx−PDPDEFAULT

PDPDEFAULT
× 100. Test results of model 2 are shown in Table 12.

parameters on each circuit. The results of some of these runs are shown in Table 10. It is seen that
the NL-3D-based flow performs worse than the pseudo-3D flow.

RL model 1 offers a slight 2%–5% PDP improvement on des, ecg, fpu, tate, and vga compared to
the default flow. It offers a significant PDP improvement of >10% on aes and rocketcore over the
default flow. However, the PDP on b19, enc_dec, and ldpc are much worse than the default flow.

In the case of RL model 2, we observe a <5% PDP improvement on fpu, tate, and enc_dec, a
5%–10% PDP improvement on aes, b19, ecg, and vga, and >10% PDP improvement on des and
rocketcore over the default flow. However, ldpc offers a worse PDP than the default flow.

Table 11 compares the default parameters and the parameters chosen by the two RL models
on rocketcore. The parameters chosen by RL-Model 1 are on the lower end of the permissible
value range. In contrast, those selected by RL-Model 2 are on the higher end, leading to more
performance improvement over the other two flows.

In the case of NL-3D placer-based 3D flow, RL training based on CTS data offers better results
than the training performed with placement optimization results. However, despite the large train-
ing times of 305–410 hours in these models, the results observed are still worse than those seen
in the default and RL-trained flows of the pseudo-3D flow. The reason behind this is explained in
Section 6.

6 RL FOR PSEUDO-3D VS. TRUE-3D

A striking difference between training Compact-2D + Pin-3D flow and NL-3D based 3D P&R flow
is the time required to train the RL models. NL-3D [11], similar to other academic 3D placers, such
as ePlace-3D [10] and Force-3D [8], optimizes only the wirelength of the 3D designs. It does not
perform any timing or power-driven 3D placement. In many cases, an optimized wirelength does
not necessarily mean an optimized design QoR. This is observed in the results presented in this
article. The lack of timing and power optimization stage in the 3D placer overloads the commercial
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Table 11. Parameters Used in the Default Flow vs.

Parameters Chosen by the Two RL-based Flows of

NL-3D [11]-based Flow on Rocketcore

tool-based back-end flow to perform these optimizations, increasing the design runtime. For
example, 293 out of 410 hours are spent in the placement optimization and CTS stages of RL
Model 2. Therefore, the training runtime is also longer compared to the pseudo-3D flow.

Further, the NL-3D placer involves several floating point parameters, unlike the pseudo-3D
placer. The RL framework proposed in Reference [1] follows a deterministic approach involving
methodical tuning of each parameter. For a given initial state s0 of netlist features and NL-3D and
commercial tool parameters, the actor-critic framework follows an acceptable policy π , leading to
a state with a high-quality parameter set sn . The trajectory of this policy is given in Equation (1),
as suggested in [1].

Many samples are required to learn a good policy π and obtain the state with high-quality
parameters sn . According to Sidford et al. [17], to obtain an ϵ-optimal policy with a probability of

1−δ , we need a sample size ofO ( |SA |
(1−γ )3 (ϵ )2 loд

1
δ

). The flow methodology optimized by Agnesina et al.

in Reference [1] has both finite solution space and a shorter runtime for each optimization iteration,
leading to obtaining the sample size required to find an optimal policy. The actor-critic framework
is a more promising technique for parameter autotuning, provided enough data is obtained for
training [12]. However, NL-3D-based 3D P&R flow involves infinite solution space and several
hours of training iterations.

To handle the infinite solution space, our RL algorithm performs range-based updates to the
floating-point parameters. For example, the UP operation on a parameter with a current value in
the range of 0.25–0.50 modifies the parameter to be in the range of 0.5–0.75. We perform range-
based updates, since small variations in floating-point parameters do not cause major variations
in the design metrics. This also helps cover the entire range of floating point parameters.

Further, unlike the pseudo-3D flow, the RL agent has to tune a set of 10 (commercial tool) +
11 (NL-3D placer) = 21 parameters on NL-3D-based P&R flow. This renders the actor-critic frame-
work impractical for autotuning NL-3D, as obtaining an optimum sample takes several days. How-
ever, the finite solution space, lesser parameters (10–13), and shorter runtime of different stages in
the pseudo-3D flow make it easier for the RL framework to identify an optimized solution.

We also tested the best RL models (RL model 3 of pseudo-3D flow and RL model 2 of NL-3D-based
flow) on two unseen netlists: Cortex A7 and A53, which are commercial processor benchmarks
(See Table 12). We observe a whopping PDP improvement of 16% and 11% on Cortex A7 and A53,
respectively, on using RL model 3 over the default Compact-2D + Pin-3D flow. Whereas, RL model
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Fig. 8. Cortex A53 final placement layouts.

Table 12. Testing RL Model 3 of Compact-2D + Pin-3D flow (Pseudo-3D)

and RL Model 2 of NL-3D-based Flow (True-3D) on Cortex A7 and A53

The results are compared with the baseline default Compact-2D + Pin-3D flow and

are normalized w.r.t. the default flow.

2 of NL-3D-based flow performs worse than the default Compact-2D + Pin-3D flow on Cortex
A7 and offers around 4% improvement on Cortex A53. The final placement snapshots of Cortex
A53 designed using these three flows are shown in Figure 8. Therefore, with the state-of-the-art
features, pseudo-3D flow shows better optimization with the actor-critic RL framework.

7 EXPERIMENT ANALYSIS

We expose the RL models to different kinds of netlists, such as cell-dominant, net-dominant, and
with macros. The netlist sizes are not as big as commercial designs. But our training set involves
different netlist characteristics observed in commercial designs. This helps us to accelerate the
training while considering different possible scenarios. When we test our models using commer-
cial processors such as ARM Cortex A7 and A53, we observe a significant 11%–16% performance
improvement using the trained RL-model 3 pseudo-3D flow. This shows that we can significantly
improve large designs by using a wide variety of small/medium-sized netlists.
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7.1 Runtime vs. QoR Tradeoff

The training runtimes vary significantly depending on the depth of the tuning process. In the
NL-3D-based flow, we see an average PDP improvement of 9.7% between training models 1 and 2.
But as the tuning process extends deep into the flow (RL model 1 vs. 2), the training runtime also
increases by a significant 34%. Similarly, in the case of the pseudo-3D flow, we observe an average
PDP improvement of 7% between RL-Models 1 and 2 for a training runtime increase of 17%. Thus,
depending on the designer’s needs, a tradeoff is required between the percentage of performance
improvement and the training runtime.

8 FUTURE SCOPE

The actor-critic RL framework [2] used in this work performs incremental parameter tuning. We
chose this framework, as it performs extensive searches and covers all possible combinations of pa-
rameter settings. While it works for pseudo-3D flows, true-3D flows can benefit further using ran-
domized parameter autotuning approaches, such as multi-armed bandit (MAB) [18], as shown
in ART-3D [13]. However, MAB techniques are often specific to a given netlist and do not facili-
tate creating a generic trained database of all netlists. Therefore, using contextual MAB techniques,
such as MABWiser [19], to perform parameter autotuning of true-3D placer-based flows can be
an excellent future scope of our work.

Further, the reward structure (refer to Equation (2)) in our work is based on the insights obtained
from our experiments that a better wirelength does not always offer a better PPA. The α , β, and γ
values used in this work have led to a minimum variation in the wirelength while offering signif-
icant improvements in frequency and power. Experimenting with these parameters further could
offer more research insights into parameter autotuning.

9 CONCLUSION

The 3D P&R flows, whether based on true-3D or pseudo-3D placers, are often more complex than
the 2D P&R flows, involving a broader range of parameters that affect the QoR. Often, parameter
settings that work well during certain stages of the 3D flow may not result in a highly optimized
final 3D design. Hence, it is harder to identify efficient parameter settings, either manually or
through RL-based training. In this work, we analyzed how the datasets of design metrics obtained
from different stages of a 3D P&R flow affect the parameter tuning process. We trained RL models to
optimize 3D IC design based on design metrics obtained from different stages of the P&R flow. We
analyzed how the depth of the RL tuning process into the P&R flow affects the QoR by extending
the training process to different stages of the pseudo-3D and true-3D placer-based flows. We also
analyzed the required tradeoff between desired QoR and training runtime for pseudo-3D and true-
3D placer-based flows.

On average, the RL-based parameter tuning worked well for most of the circuits designed using
Compact-2D + Pin-3D flow. Noticeably, the training performed using the FM min-cut partitioner,
the Pin-3D placement legalizer, and global router offered up to 23.7% PDP improvement over the
corresponding default flow, with a runtime of almost 50% less than the other two training flows. It
also offered a PDP improvement of 16% on the unseen netlist of Cortex A7, an industrial processor
benchmark. In NL-3D placer-based 3D P&R flow, the tuning process worked well on a few circuits.
But for most circuits, the improvements obtained are significantly less, given the runtime involved
in achieving them. The commercial tool-based flow delivers tremendous PPA optimizations with
the correct RL tuning strategy. If academic placers involve collective wirelength, timing, and power
optimization strategies similar to the commercial tools, then RL tuning can provide significant
improvements similar to pseudo-3D flows.
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