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This article describes the algorithm, implementation, and deployment experience of CacheSack, the admission

algorithm for Google datacenter flash caches. CacheSack minimizes the dominant costs of Google’s datacenter

flash caches: disk IO and flash footprint. CacheSack partitions cache traffic into disjoint categories, analyzes

the observed cache benefit of each subset, and formulates a knapsack problem to assign the optimal admission

policy to each subset. Prior to this work, Google datacenter flash cache admission policies were optimized

manually, with most caches using the Lazy Adaptive Replacement Cache algorithm. Production experiments

showed that CacheSack significantly outperforms the prior static admission policies for a 7.7% improvement

of the total cost of ownership, as well as significant improvements in disk reads (9.5% reduction) and flash

wearout (17.8% reduction).
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1 INTRODUCTION

Colossus Flash Cache (Figure 1) is the general-purpose flash cache service for Colossus [20], the
successor to the Google File System [19]. Disk reads are expensive and are a major cost in dat-
acenters: while disks are growing in storage capacity, the IO capacity (the ability to offer disk
accesses per second, mainly disk reads) is not growing proportionally. As a result, to provision the
IO requirements, Google needs to deploy a significant number of hard disks to serve the target IO
capacity, which is costly.

The primary design goal of Colossus Flash Cache is to improve IO capacity while costing a
fraction of an equivalent RAM cache or deploying more hard disks.1 Colossus Flash Cache serves
the read traffic of many widely used Google services including Colossus and database systems

1While reducing read latency is also a desirable goal, it is not a design goal for Colossus Flash Cache, and beyond the scope

of this article.
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Fig. 1. Colossus Flash Cache system.

such as BigQuery [37], BigTable [11], F1 [34], and Spanner [13]. Because Colossus abstracts away
physical hardware complexity [20], as a Colossus service, Colossus Flash Cache only needs to focus
on the aggregated cost metrics for reducing total cost of ownership, and does not need to know
the actual underlying hardware.

CacheSack is the cache admission algorithm used by Colossus Flash Cache, intended to minimize
the total cost of ownership (TCO). Compared to a RAM cache, a flash cache usually provides a
much larger cache-to-storage capacity, and so a simple algorithm such as Least Recently Used

(LRU) may achieve a good cache hit-ratio. An idealized LRU is difficult to implement in a flash
cache; we address this issue in Section 4. Flash memory has limited write endurance, so may cause
premature flash wearout and increase TCO. Write amplification (Section 3.1) and flash wearout
(Section 3.2), along with caching in Colossus disk servers, form a special challenge for designing
a cache algorithm for Colossus Flash Cache.

2 OUR CONTRIBUTIONS

CacheSack is the cache admission algorithm for Colossus Flash Cache, the successor to Lazy Adap-

tive Replacement Cache (LARC) [21]. CacheSack dynamically analyzes the cacheability of a
workload and the given cache size, making the admission decision for the workload. CacheSack
was deployed in Colossus Flash Cache in May 2021 and is now Colossus Flash Cache’s default
cache admission algorithm. Our contributions are summarized as follows:

• CacheSack partitions traffic into multiple categories, estimates the disk reads and cost of
write of each category, and formulates a knapsack problem that finds the optimal admission
policy per category to minimize the overall cost, including disk reads and bytes written to
flash.2

• CacheSack effectively reduces the TCO of Colossus Flash Cache. Compared to LARC, it re-
sults in 9.5% lower disk reads, reduces bytes written to flash by 17.8%, and improves TCO by
7.7% (one week average).
• CacheSack does not require manual adjustments. That was a large engineering cost and

needed when LARC was used as the admission policy.

2The costs of CPU, RAM, network and power are very small relative to the cost of disk reads and bytes written to flash so

they are ignored. The cost of flash storage is a fixed constant, so we omit it in the optimization.
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• CacheSack runs in real time, using a fraction of the resources of a cache index server.
• CacheSack is fully decentralized (as is Colossus Flash Cache). It requires only the information

received by a single cache index server, and the failure of a single cache index server does
not impact others.
• CacheSack supports major Google database systems and requires zero configuration. For

other applications, users only need to provide category annotations (Section 5.1).

3 BACKGROUND

3.1 Write Amplification

Non-sequential writes to a flash drive can cause serious write amplification [29, 42], a phenome-
non where one logical write causes multiple physical writes. A flash byte has to be erased before
it can be rewritten. A flash block is a continuous region of bytes in a flash drive and is the smallest
unit that can be erased. To erase a block, a flash drive needs to move the live bytes in the flash
block somewhere else before this flash block can be erased, which causes extra writes. Write am-
plification reduces the IO performance and the lifetime of a flash drive; both greatly increase the
total cost of ownership of a flash cache.

Sequential cache evictions (such as those caused by FIFO eviction) result in large sequential areas
that can be easily erased and reused later when admitting new data. By contrast, non-sequential
evictions (such as those caused by LRU eviction) result in a fragmented cache space and the flash
drive has to move the interspersed live bytes somewhere else before erasing a block.

As a result, most existing eviction algorithms for RAM caches cannot be directly applied to flash
caches, and write amplification is one of the most important factors to consider when designing a
flash cache algorithm. Both Google [1] and Facebook [18] use FIFO-based evictions or other special
purpose algorithms [36, 44] for production flash caches because of write amplification. Colossus
Flash Cache reduces write amplification brought by non-sequential evictions by using approximate

LRU (Section 4).

3.2 Write Endurance

Flash has limited write endurance, and thus admitting all data into Colossus Flash Cache upon
write or even upon the first read would wear out the flash too soon, significantly increasing TCO.
To mitigate this issue, Colossus Flash Cache previously used LARC [21] to exclude data that are
accessed only once by inserting data at the second access. Figure 2 shows that more than 60% of
the traffic of Colossus Flash Cache is accessed only once, and so LARC can greatly reduce bytes
written to flash and avoid cache pollution.

However, excessive flash writes are still possible with LARC, and as a workaround, Colossus
Flash Cache used a write rate limiter to avoid an excessively high write rate. This is, however,
a blunt approach, since it does not accurately factor in the impact on overall cost, and treats all
workloads similarly. It may be preferable to allow some highly cacheable workloads to burst writes
at the expense of other less cacheable workloads rather than throttling all writes. CacheSack uses
a more flexible and accurate approach by optimizing the total costs, including the write costs and
the cost of disk reads.

3.3 Capturing Second-access Hits

LARC leverages the fact that a large fraction of data is accessed only once. Inserting data into
cache only upon the second access avoids flash writes for data accessed once, reducing flash wear.
However, the cost is that all second accesses are cache misses. Figure 2 shows that of the data
accessed more than once in our workloads, 39% is accessed exactly twice, and these second accesses
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Fig. 2. Fraction of bytes accessed a given num-

ber of times over a week (right truncated at 100

accesses).

Fig. 3. Miss ratios for 10 workloads at the disk server

buffer cache if there is no Colossus Flash Cache

(simulated).

are cache misses under LARC. This has a significant performance impact, as was also observed
in Facebook’s cache for social network photos [36]. Our workaround for this when using LARC
was to monitor the performance loss, and to manually turn off LARC (i.e., admit all data on the
first miss) for workloads that suffered a significant performance penalty. However, the manual
maintenance to identify and set up special cases became more and more labor-intensive with the
rapid adoption of Colossus Flash Cache in production. In our redesign, it was a requirement that
the cache admission algorithm should be automatic and not require manual adjustments.

3.4 Colossus Buffer Cache

Colossus [20] is Google’s cluster-level file system, and the next-generation of the Google File Sys-

tem (GFS) [19]. Colossus clusters scale to exabytes of storage and tens of thousands of machines.
The data in Colossus is stored on “D” file servers.

In addition to Colossus Flash Cache, Colossus maintains a RAM buffer cache in the lower level
disk D servers that buffers recent reads and writes as well as data prefetched. A cache miss in Colos-
sus Flash Cache does not cause a disk read if the access hits in the buffer cache. Many Colossus
workloads use the buffer cache extensively to improve IO performance.

In many cases, the cache hit ratio of Colossus Flash Cache is only weakly correlated with the
actual disk read reduction, especially for workloads that are highly optimized for the buffer cache.
Figure 3 shows simulated miss ratios of the disk server buffer caches with no Colossus Flash Cache
for ten selected workloads, and they range from below 20% to over 80%. These miss ratios represent
the upper bound on how far Colossus Flash Cache can improve the disk read rates. For workloads
with low buffer cache miss ratios, hits in Colossus Flash Cache may simply replace buffer cache
hits without improving the disk read rates. As a result, flash cache hit ratios are not a good metric
to measure the efficacy of Colossus Flash Cache. In fact, our production results (Section 7.1) show
that an admission policy can sometimes provide a higher hit ratio in Colossus Flash Cache but
cause worse disk read rates.

3.5 Online and Realtime Requirements

Colossus Flash Cache is a fully decentralized system, so its cache algorithm can only use the re-
sources of individual cache index servers, and heavyweight algorithms, such as machine learn-

ing (ML) models, may not be feasible. The binary of Colossus Flash Cache is updated on a weekly
basis, while workloads change much more rapidly, so it is difficult for an offline-trained static
model updated with the binary to adapt to workload changes. Therefore, we decided to use an
online-trained model.

4 OVERVIEW OF COLOSSUS FLASH CACHE

Colossus Flash Cache consists of independent cache index servers. A cache index server does
not directly hold cached data, but keeps an in-memory lookup table, called the index, that

ACM Transactions on Storage, Vol. 19, No. 2, Article 13. Publication date: March 2023.
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tracks the locations of cached data stored in the flash drives that reside on independent storage
servers.

When a Colossus Flash Cache client requests to access data stored in Colossus, the client first
sends an RPC to a cache index server (see Figure 1) to determine if the requested data are already
cached on a flash server (a flash hit). If so, then the cache index server sends back sufficient in-
formation for the client to access the flash copy of the data directly from the flash server. For a
flash cache miss, the client contacts the disk server to read the data, while the cache index server
independently decides whether to admit the data into the flash cache. If the cache index server
decides to admit the data into flash, then it instructs the flash server to pull the data from the
disk server directly. The extra latency of communicating with the cache index servers is negligible
compared to typical remote disk read latencies, and the latencies between remote flash reads and
remote disk reads are in different orders of magnitude, so Colossus Flash Cache typically reduces
overall latency, although this is not an explicit service goal. The goal is reducing TCO by avoiding
expensive disk reads.

The buffer cache of a disk server also caches recently accessed data and prefetches a small
amount of data into memory for a few seconds, so that reading recently accessed data from a
disk server does not necessarily cost extra disk reads. Colossus users are encouraged to design
their workloads to improve IO performance by utilizing this buffer cache.

Colossus Flash Cache uses an approximate LRU eviction strategy to manage evictions. An ideal-
ized LRU cache would always evict the least recently used block from the cache when the cache is
full. However, idealized LRU evictions cause non-sequential writes to flash, resulting in write ampli-
fication [29, 42]. To mitigate the issue of write amplification, Colossus Flash Cache uses evictions
similar to Second Chance [30] to approximate LRU evictions: each cache index server manages
a FIFO queue of many fixed-sized Colossus files (typically 1 GiB), each of which contains cache
blocks. When evicting the file from the tail of the queue, we reinsert 28% of the most-recently used
blocks into the file at the head of queue. The percentage of blocks reinserted is a tradeoff between
the amount of hot blocks recycled, which improves the cache hit ratio, and the rate of reinsertion
into flash, which increases write amplification. The current value (28%) is selected empirically to
strike a good balance between cache performance and write amplification. This way, the write
amplification factor is effectively 1.28. It is worth noting that the factor 1.28 is the software-level
write amplification, which is different from the device-level write amplification. A comparison of
the performance of Second Chance [30] indicates that the performance is quite close to that of
LRU. Therefore, for ease of modeling, we approximate Colossus Flash Cache as an LRU cache.

Each Colossus Flash Cache server maintains a ghost cache [21], an in-memory lookup table that
maps the key of data to the data’s last access time, regardless of whether they are actually cached
on flash. This is a key component of CacheSack, which relies on inter-arrival times to quickly build
all the estimates described in Section 5.

Each cache index server represents a fraction of the key space, and one server’s failure does
not impact other cache index servers. To maintain the same reliability, CacheSack is also designed
in the same decentralized manner: Each cache index server runs its own CacheSack model, using
only the information received by the cache index server, and its admission decisions do not affect
other cache index servers.

5 CACHESACK

5.1 Traffic Partitioning

CacheSack partitions potential cache blocks into many categories, and assigns an admission policy
to each category.

ACM Transactions on Storage, Vol. 19, No. 2, Article 13. Publication date: March 2023.
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The majority of Colossus Flash Cache traffic comes from Google’s database systems like
BigTable and Spanner where categories can be well-defined. For database traffic, CacheSack defines
a category as the combination of the table name, locality group [11, 13], and type for BigTable and
Spanner, and a similar combination for other databases. Since Colossus Flash Cache is also avail-
able for other Colossus users, those users can define their own categories by annotating their data.
If a user does not provide a category annotation, then CacheSack will use the user name contained
in the Colossus file path.

CacheSack then selects the right policy based on the pattern that category exhibits. Later, we
will explain how we formulate CacheSack as a knapsack-like problem: given the cache capacity,
how CacheSack chooses the items (categories) to minimize the overall cost.

5.2 Admission Policies

We consider four admission policies that can be assigned to each category:

• AdmitOnWrite: Inserts a cache block at a write access or on any read cache miss.
• AdmitOnMiss: Inserts a cache block on any read cache miss, but does not insert a block at a

write access. This is the conventional admission policy used in most of the cache literature.
• AdmitOnSecondMiss (LARC): Equivalent to LARC; inserts a block only after the second read

access (miss), and only if the last access time is not older than the oldest last access time of
the blocks in the cache, to reduce the insertion rate of cold blocks. LARC is scan resistant:
Any scanned data (accessed exactly once) will not be admitted.
• NeverAdmit: Never inserts blocks.

We can sort these policies by aggressiveness: NeverAdmit < AdmitOnSecondMiss < AdmitOnMiss
< AdmitOnWrite.

5.3 Fast Approximation to an LRU Model

To determine the best policy for the cache, the most intuitive way is to simulate all possible policy-
category combinations, which is a combinatorial knapsack problem (NP-Hard). Because CacheSack
currently allows up to 5,000 categories (Section 6.1) and uses four policies, there are up to 45,000

combinations and the knapsack problem cannot be done even with downsampled traces. Instead,
we use a fast approximation for modeling an LRU cache, by introducing the modeled cache reten-

tion time. The cache retention time is the maximum duration that a block stays in the LRU cache
without any intervening accesses to it. In practice, the cache retention time varies slowly over time.
Here, we assume the modeled cache retention time is a constant D and this assumption will make
all our estimates just approximations.

We use AdmitOnMiss as an example. For a given block, when a read access arrives, we can
compute d , the time since last access (which is ∞ if the current access is the first read). We can
classify the inter-arrival times by using D (Figure 4):

• d ≤ D: An access arrives before the block leaves the cache, and therefore the access generates
a cache hit and moves the block to the head of the queue.
• d > D: An access arrives after the block leaves the cache, and therefore it is a cache miss,

which causes a write to the cache.

In other words, we approximate the LRU cache by a cache that has the TTL value D and resets
the TTL counter of a block when receiving an access to the block. The theoretical aspect of the
TTL approximation was also studied in literature. Fagin [17] showed the TTL approximation is
asymptotically exact for independent and identically distributed requests, and [23] proved that
given the assumption that data accesses are stationary and ergodic, the TTL approximation will
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Fig. 4. LRU evictions are approximated by TTL evictions with the modeled retention time D while the TTL

counter of a cache block is reset whenever the cache block is accessed. If the access interarrival time d is less

than or equal to D, then this access is a cache hit, and we move the cache block to the head of the queue

(the TTL counter is reset). If the access interarrival time d is greater than D, then this access is a cache miss,

and we insert the cache block to the head of the queue (the TTL counter is also reset).

converge to an LRU cache as the cache size goes to infinity. The accuracy of the TTL approximation
in production is analyzed in Section 7.1.

A cache miss in Colossus Flash Cache will cause a disk read if it is also a miss in the Colossus
buffer cache. Each cache index server maintains a buffer cache simulator, and when d > D, we run
the simulator and see whether it is a miss.

This way, when a new access arrives, we are able to update the disk reads, cache usage, and bytes
written to flash cache caused by admitting the block using AdmitOnMiss. We can also compute
the same quantities for other policies: AdmitOnSecondMiss, AdmitOnWrite, and NeverAdmit. The
detailed estimation is described in Section 9.2.

A nice property of this approximation is that the estimates for a block are not affected by other
blocks or policies, as long as the modeled cache retention time is given. Therefore, the disk reads,
cache usage, and written bytes caused by admitting a category are just the sums of the correspond-
ing block-level quantities.

5.4 Knapsack Problem

Once we have the estimates for disk reads, cache usage, and bytes written to flash cache for each
policy-category pair, we have a knapsack problem: find the optimal policy per category to minimize
the overall cost (disk reads, flash storage, and written bytes) while fitting within the cache. We do
not specify the relative cost of disk reads, bytes written to flash, and flash storage, because they
are confidential.

We further allow fractional policies: CacheSack can apply a policy to a fraction of a category.
For example, CacheSack may decide it is optimal to apply AdmitOnMiss, AdmitOnSecondMiss,
AdmitOnWrite, and NeverAdmit to 30%, 20%, 10%, and 40% of blocks in a category, respectively.
Then the problem becomes a fractional knapsack problem [14] that finds the optimal policy frac-
tions per category to minimize the overall cost. The advantage of considering a fractional knapsack
is that it can be solved efficiently by a greedy algorithm, as opposed to a combinatorial knapsack
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that is NP-Hard. Our problem is slightly different from the original fractional knapsack in [14],
because we need to decide four fractions (seven fractions with additional spatial prefetch policies
in Section 8) per category instead of two. Section 9.4 explains the details of how we solve our prob-
lem by a greedy algorithm after applying Andrew’s monotone chain convex hull algorithm [2].
We note that if an LRU cache is perfectly modeled by the TTL approximation, the resulting
cache retention time of the LRU cache is exactly D after applying the optimal policy fractions per
category.

5.5 Optimization over Modeled Cache Retention Times

The knapsack problem in Section 5.4 is to find the optimal policy fractions for a given modeled
cache retention time D, which cannot be known in advance. Thus, we need to solve the same
knapsack problem for all possible D. To do this in production, we can have a set of predefined
modeled cache retention times: 0 < D1 < D2 < · · · < Dm = D, where D is a suitable upper
bound, and solve m different knapsack problems. Thanks to the greedy algorithm, we can still
solve many knapsack problems (currently 127, Section 6.2) quickly.

6 CACHESACK IN PRODUCTION

CacheSack is now deployed in production as the default cache admission algorithm for Colossus
Flash Cache. This section explains the engineering efforts needed to do so.

6.1 Category Assignment

The number of categories encountered in production cannot be known in advance, so we balance
the need for accuracy and space by hashing a category to one of 5,000 buckets. Categories assigned
to the same bucket are treated as combined in the optimization. The number of hash buckets is a
trade-off between memory usage and hash collisions. The typical number of categories per server
is less than 100 and our experiments showed that with 5,000 buckets, 95% of the clients see a hash
collision rate lower than 1% and the worst collision rate is less than 5%. Further, cache collisions are
not persistent, since each cache index server uses a different hash key and changes it periodically
to break possible spatial and temporal correlations.

A bucket without sufficient training data might not provide meaningful metrics. If a bucket
contributes to less than 0.1% of total lookups, then it will be aggregated to a single catch-all bucket
before solving the knapsack problem.

6.2 Modeled Cache Retention Times

Currently, CacheSack uses 127 predefined cache retention times: 15 min, 1.06 × 15 min, 1.062 ×
15 min, . . . , 1.06126 × 15 min ≈ 16 days; the 128th value is reserved for positive infinity.

These retention times are decided as follows. We first determine the working range of retention
times. A retention time lower than 15 min means we evict and insert cache blocks in an extremely
aggressive way, which would cause serious flash wearout. By policy, any cache block is forced to
leave the cache if it stays more than 15 days. Hence, we set the modeled working range of retention
times as 15 min to 15 days. We then decide the number of retention times to model. We tried 127 (6%
geometric increase) and 255 (3% geometric increase) retention times, and our experiments showed
that 127 retention times gave similar results while reducing RAM usage by half.

6.3 Ghost Cache

Since LARC was Colossus Flash Cache’s previous admission control, a ghost cache was imple-
mented in cache index servers. It is an in-memory lookup table that maps a data’s key to the data’s
last read access time, and LARC uses the information to determine whether to admit the data on
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miss. CacheSack uses the same ghost cache to obtain inter-arrival times. In addition, to build the
metric estimate for AdmitOnWrite, we expanded the ghost cache so that we know whether the last
access is a write access. To build the metric estimate for AdmitOnSecondMiss, we use the ghost
cache to record the most two recent access times.

Because the ghost cache is the ground truth for CacheSack, the ghost cache must contain suf-
ficient history. The optimal solution of CacheSack will not be affected as long as the ghost cache
TTL, the time since the oldest last access time of the blocks in the ghost cache, is greater than the
optimal modeled cache retention time. As a rule of thumb, we provision the size of the ghost cache
so that its TTL is at least twice the solved optimal modeled retention time (typically about 4 h).

6.4 Buffer Cache Simulators

A cache miss in Colossus Flash Cache causes a disk read only if it is also a miss in the buffer cache.
CacheSack simulates the buffer cache to determine whether the current miss in Colossus Flash
Cache is also likely a miss in the buffer cache. In fact, we need many simulators: one for each pair
of policy-retention time so there are 382 simulators (3× 127+ 1, the retention time does not affect
NeverAdmit). Running the simulators is the most computationally intensive component in the
CacheSack model. Fortunately, the buffer cache simulator is simple enough and only requires the
access history in the past few seconds so it only moderately increases CPU load on the low-QPS
servers (5% CPU usage).

6.5 Model Training

We use a simple scheme to train the CacheSack model: the model is reset every 5 min and is trained
based on the lookups in this 5-min period. We note that a lookup contains the access times of the
most recent two accesses and therefore the lookups in a 5-min period may contain the information
of many hours.

The selection of the training duration is a trade-off. Using a larger training duration means
the model can be improved by more training data and longer time horizon, while the model can
react more quickly to changes in the workload with a shorter duration. We tested several training
durations and found that 5-min one gave the best disk read reduction, although we did not find
significant differences among all candidates.

6.6 Summary of CacheSack in Production

In summary, CacheSack uses a TTL model (Section 5.3) to quickly simulate the flash cache hits
or misses based on block inter-arrival times, and uses the Colossus buffer cache simulator (Sec-
tion 6.4) to simulate whether a flash cache miss incurs a disk read. The block inter-arrival times
are calculated from the lookups sent by the clients to Colossus Flash Cache, and are recorded in
the ghost cache (Section 6.3) of the cache index server. CacheSack solves the knapsack problem
(Section 5.4) to find the optimal policy per category to minimize the TCO. The knapsack problem
is solved every 5 min by using the trace that are lookups received by the cache index server within
this 5-min period (Section 6.5).

6.7 Lessons Learned

Automatic Cache Optimization Incentivized User Adoption. In deciding whether to use Colossus
Flash Cache, users weigh both the likely TCO improvement and the engineering effort required to
configure and maintain it. In the past, users had to manually choose the admission policy (using
AdmitOnMiss or AdmitOnSecondMiss) based on knowledge of their workload or by running A/B
experiments with the assistance of the Colossus Flash Cache team. For heavy users like Spanner,
Colossus Flash Cache had to provide heuristic, hand-tuned admission policies to improve cache
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performance. Such human tuning and maintenance usually requires effort from both the users and
the Colossus Flash Cache team, which can discourage the adoption of Colossus Flash Cache if the
expected hardware resource saving does not justify the extra engineering cost.

We found that CacheSack greatly incentivized users to adopt Colossus Flash Cache. The auto-
matic cache provisioning brought by CacheSack requires almost no configuration and maintenance
so that it can be set and forgotten. We found that new users were more willing to use Colossus Flash
Cache once they knew it would automatically adjust the cache policy based on their workloads.

Some of Colossus Flash Cache’s existing users have independently verified that CacheSack ap-
plied appropriate admission policies to their workloads, based on the knowledge of their workloads
and reporting provided by Colossus Flash Cache. One user experimentally overrode CacheSack
with manually optimized policies and found that CacheSack worked as well as manual policy tun-
ing. After CacheSack became the default admission policy in Colossus Flash Cache, we were able
to retire the hand-tuned optimization for Spanner, and our existing users did not need to manually
adjust the policy anymore.

Experiment Infrastructure Accelerated Feature Development. The development of CacheSack was
significantly helped by the experiment infrastructure of Colossus Flash Cache. The experiment
infrastructure allows developers to test new features by using 10% of the cache index servers,
and because cache index servers are independent and isolated, any experiment can only cause
minor service degradation in the worst case. Before the full deployment, we ran CacheSack as
an experiment for a few months and most of the issues were identified and corrected during the
experimental phase. In fact, CacheSack has caused no binary rollbacks since the full deployment.

In addition, because each server represents a fraction of the key space, which is permuted ran-
domly, each server is statistically indistinguishable. We can have simultaneous comparisons be-
tween CacheSack and the control group to see whether CacheSack works as expected and identify
any issues. The experiment infrastructure is extensively used by the developers of Colossus Flash
Cache for new features, and the impact of a new feature can be accurately measured before the
full deployment.

Model Introspectability and Maintainability Played Important Roles. We found that the model in-
trospectability played an important role for the adoption of the new cache algorithm. Because any
cache algorithm of Colossus Flash Cache will be operated and maintained by developers and site

reliability engineers (SREs) after the initial deployment, one requirement of deploying a new
cache algorithm is that the model behavior can be fully understood and monitored by the develop-
ers and SREs. CacheSack satisfies this requirement as it only assumes that the TTL approximation
(Section 5.3) is sufficiently close to the eviction of Colossus Flash Cache, and all model behaviors
can be derived from this assumption. Another advantage of a highly introspectable model is that
the developers (besides the original designers) of Colossus Flash Cache can easily ensure thor-
ough test coverage, validate software releases, and extend the original functionality of CacheSack
without assistance from the original designers. After the deployment of the original CacheSack, it
became the foundation of further optimizations for Colossus Flash Cache.

It is also worth mentioning that CacheSack is simple enough to be implemented by limited
extensions to the original codebase of Colossus Flash Cache. In particular, the optimization was
implemented as a simple greedy algorithm instead of using a generic linear program solver li-
brary. This did cost extra time for development, but we decided to do so, because it allowed us
to minimize the computational overhead and increase system reliability by reducing external de-
pendencies. More importantly, anyone familiar with the ecosystem of Colossus Flash Cache can
easily maintain CacheSack or develop new features based on it. The implementation of Cache-
Sack can evolve continuously with Colossus Flash Cache, reducing maintenance burden. Since the
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Fig. 5. CacheSack disk read rate prediction errors

relative to the actual value in production (CDF).

Fig. 6. Policy distribution suggested by CacheSack

in selected datacenters, demonstrating a variety of

workload responses.

completion of the initial deployment, involvement from the original designers has not been re-
quired for maintenance and new feature developments.

7 EVALUATION

7.1 Production Evaluation

Model Accuracy. There are two LRU approximations in Colossus Flash Cache: Colossus Flash
Cache uses Second-Chance-like approach to approximate LRU evictions (Section 4), and CacheSack
models an LRU cache as a TTL approximation (Section 5.3). Therefore, it is important to verify
that the CacheSack model is a good enough approximation to the actual Colossus Flash Cache.
We examined the accuracy of CacheSack as follows. For each client, the solution to the knapsack
problem in Section 5.4 gives the predicted disk reads when using the optimal admission policies.
Then Colossus Flash Cache applies the optimal policies in production. We compared the predicted
disk reads with the actual disk reads to see how well they match. Figure 5 shows the prediction
errors of CacheSack relative to the actual values obtained from the disk servers; 51% of the relative
errors are within 10% and 82% of the relative errors are within 20%.

Policy Distribution. Figure 6 shows the policy distributions suggested by CacheSack in the se-
lected datacenters of various workloads. We can see that each datacenter has a different workload
pattern and CacheSack adaptively decides suitable admission policies based on workloads and
cache sizes. Although it would be possible for manual selection of static policies to match each
datacenter workload, CacheSack is able to reduce the human toil, response delay, and operational
complexity required to maintain these assignments.

Production Experiments. By using the experiment infrastructure of Colossus Flash Cache, we
can compare the performance of different cache algorithms in production. Because each cache
index server represents a fraction of the key space, the pattern of workload each cache index
server receives is statistically indistinguishable. We let 10% of the cache index servers run static
AdmitOnMiss and another 10% of the cache index servers run AdmitOnSecondMiss so that we
can compare CacheSack, static AdmitOnMiss and static AdmitOnSecondMiss simultaneously in
production.

From Figures 7 and 8, we see that compared to AdmitOnSecondMiss, CacheSack results in fewer
disk reads (6% of one week average) and reduces 26% (one week average) written bytes to flash,
and Figure 9 shows that CacheSack effectively reduces TCO in production: the cost of disk reads,
flash cache writes and flash storage of CacheSack is 93% of AdmitOnSecondMiss and is 78% of
AdmitOnMiss (one week average).

Figure 10 shows that CacheSack has a higher hit ratio than AdmitOnSecondMiss but lower than
AdmitOnMiss. Nevertheless, AdmitOnMiss is not the best choice. Figure 7 shows that AdmitOnMiss
has the worst disk read reduction even though it has the highest hit ratio. Because of the lower-level
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Fig. 7. Disk reads of different admission policies

in production, divided by the average value for

AdmitOnSecondMiss.

Fig. 8. Written bytes of different admission poli-

cies in production, divided by the average value for

AdmitOnSecondMiss.

Fig. 9. Total cost (a function of disk reads, flash stor-

age and written bytes) of different admission poli-

cies in production, divided by the average value for

AdmitOnSecondMiss.

Fig. 10. Hit ratios in Colossus Flash Cache of differ-

ent admission policies in production.

buffer cache, a higher hit ratio in the flash cache does not necessarily imply fewer disk reads: many
major Colossus users optimize their workloads by accessing the same data many times within the
first few seconds so that only the first access causes an actual disk read. In this case, AdmitOnMiss
generates many flash hits that do not reduce disk reads at all. AdmitOnSecondMiss resolves this
issue by avoiding a cache insertion if the most recent access time is too recent to expect that the
data has left the buffer cache.

7.2 Evaluation by Simulations

In addition to production experiments, we also used the Colossus Flash Cache simulator to test
the performance of CacheSack in a variety of configurations and contexts, such as cache size and
optimization iteration period. The Colossus Flash Cache simulator is used for multiple purposes
including performance-regression testing by Colossus Flash Cache developers and for datacenter
resource planning by Colossus Flash Cache clients. The Colossus Flash Cache simulator uses the
same production code as Colossus Flash Cache, and we use production traces (sampled lookups
received by cache index servers) as the input of the simulator.

We first compare the performance of CacheSack, to the static admission policies AdmitOnMiss,
AdmitOnSecondMiss and AdmitOnWrite for various cache sizes. We use here a two-day trace from
one large (order of million QPS) production cache as a representative. This trace reflects a uniform
sample of the data accesses from a large collection of internal production workloads.

Impact of Cache Size on Performance. When the cache size is small, AdmitOnSecondMiss has
a better performance than AdmitOnMiss or AdmitOnWrite, because single-use keys are excluded.
However, AdmitOnMiss and AdmitOnWrite will outperform AdmitOnSecondMiss for a large cache,
because second accesses will hit in the flash cache.
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Fig. 11. Hit ratios in Colossus Flash Cache of

different admission policies in simulation. Above:

Original hit ratios. Below: Values relative to

AdmitOnSecondMiss.

Fig. 12. Disk reads of different admission policies in

simulation. Above: Constant scaling by dividing the

values by the average value for AdmitOnSecondMiss.

Below: Values relative to AdmitOnSecondMiss.

CacheSack learns to use a more conservative policy for a small cache and a more aggressive
policy for a large cache. Figures 11 and 12 show that CacheSack can provide a good performance
for the entire range of flash cache sizes.

It is also interesting to see the amount of written bytes caused by different admission policies in
Figure 13. For AdmitOnMiss, AdmitOnWrite and AdmitOnSecondMisswith excessively small cache,
blocks are frequently evicted from and reinserted into the cache, resulting in a very large amount
of written bytes, especially for AdmitOnMiss and AdmitOnWrite. CacheSack, however, takes into
account the cost of written bytes, and therefore only admits the most valuable part of the workload
into the cache.

We can also view the total cost (a confidential function of disk reads, flash storage, and written
bytes) as a function of cache size. When the cache size is small, disk reads and writes to flash are
the largest contributions to cost, while flash storage is the largest cost component for larger cache
sizes. Therefore, the total cost is a U-shape curve, and we are able to find the optimal cache size
that minimizes the total cost. Figure 14 shows that CacheSack gives the lowest total cost for all
cache sizes. CacheSack avoids the trade-off and provides robust good behavior over the range of
cache sizes.

Optimization Frequency. We evaluated the system performance on the choice of different opti-
mization frequencies. Here, we test different lengths of training duration from 1 min to 8 h, which
span a majority of the observed time variation of workloads. Figure 15 shows that the training
duration does not significantly impact the performance and all the cost metrics are similar. Be-
cause this method is insensitive to this parameter, customized or automated tuning was deemed
unneeded, and the entire deployment currently uses a single value.

8 SPATIAL PREFETCH

8.1 Prefetch Policies

In addition to caching requested blocks, Colossus Flash Cache implemented spatial prefetch that
can admit blocks that have not yet been requested but will be likely requested shortly, so that
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Fig. 13. Written bytes of different admission poli-

cies in simulation. Above: Constant scaling by

dividing the values by the average value for

AdmitOnSecondMiss. Below: Values relative to

AdmitOnSecondMiss.

Fig. 14. Total cost (a function of disk reads, flash

storage and written bytes) of different admis-

sion policies in simulation. Above: Constant scal-

ing by dividing the values by the average value

for AdmitOnSecondMiss. Below: Values relative to

AdmitOnSecondMiss.

storage users can save the seek time for these blocks. For example, to read a contiguous 1 MiB
region, a hard disk typically spends approximately 10 ms for the seek and another 10 ms for the
read. Therefore, if there will likely be several requests accessing the different parts of this 1 MiB
region, then we can prefetch and cache the entire 1 MiB region on the first access so that storage
users do not need extra seek time (which is as expensive as the read time) for the other accesses.
While Colossus already uses Colossus buffer cache (Section 3.4) to prefetch and cache data in the
RAM cache for a time scale of seconds, Colossus Flash Cache now can prefetch and cache data in
the flash cache for minutes or hours.

Colossus Flash Cache utilizes the fact that requested blocks are of fixed-size and aligned: block
offsets are multiples of the block size, and therefore blocks are non-overlapping. Colossus Flash
Cache also defines a prefetch region as an aligned region (the offset is a multiple of the prefetch
size), consisting of a fixed number of blocks. This makes it easy to determine the set of blocks to
prefetch and whether the blocks have been cached. The alignment of prefetch regions makes sure
that the admission of one prefetch region will not affect other prefetch regions, because prefetch
regions are not overlapping. CacheSack provides prefetch policies analogous to AdmitOnMiss,
AdmitOnSecondMiss, and AdmitOnWrite:

• PrefetchOnMiss: Similar to AdmitOnMiss, inserts the entire prefetch region on the first read
access to this prefetch region.
• PrefetchOnSecondMiss: Similar to AdmitOnSecondMiss, inserts the entire prefetch region

only after the second read access to the same prefetch region, and only if the last access time
is not older than the oldest last access time of the blocks in the cache. Since a prefetch region
is the set of aligned blocks, its access history is the combination of the access histories of the
individual blocks, which can be obtained from the ghost cache.
• PrefetchOnWrite: Unlike PrefetchOnMiss and PrefetchOnSecondMiss, we admit only

the requested block to the cache on the write access, and admit the entire prefetch region
on any read access to this prefetch region. In other words, PrefetchOnWrite is effectively
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Fig. 15. Hit ratios, disk reads, written bytes, and total cost (a function of disk reads, flash storage and written

bytes) of Colossus Flash Cache with different training durations. Disk reads, written bytes, and total cost are

divided by the average value for the 5-min training duration.

AdmitOnWrite and PrefetchOnMiss applied to the same category. PrefetchOnWrite does
not insert the entire prefetch region on the write access, because the other blocks in the
same prefetch region might not have been written to the hard disk and cannot be cached.

Since prefetch regions are non-overlapping, from CacheSack’s point of view, prefetch regions
are independent blocks with larger sizes, which makes the metric estimation for the prefetch
policies essentially the same as their non-prefetch counterparts; the CacheSack metric estimation
would be much more difficult if we were to allow overlapped prefetch regions. CacheSack relies
on the last two access times to build the metric estimation (Section 9.2), and the last two access
times to a prefetch region can be calculated from the combined last two access times of the blocks
contained in this prefetch region, which are recorded in the ghost cache. With the prefetch feature,
CacheSack evaluates the cache benefit of all policies (AOM, AOW, AOSM, POM, POW, POSM, NA) applied
to each category and solves the knapsack problem to decide the optimal policy per category.

8.2 Production Evaluation

As in Section 7.1, we can compare CacheSack with the prefetch feature to the original, non-prefetch
CacheSack in production, by running the experiment in a fraction of index servers.

Although not by a large margin, Figure 16 shows that CacheSack with prefetch consistently uses
fewer disk reads than CacheSack without prefetch does. Figure 17 shows that CacheSack with the
prefetch feature reduces disk reads by 3.74% (one week average), compared to the non-prefetch
version of CacheSack. However, Figure 18 shows that CacheSack with prefetch also inserts data
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Fig. 16. Disk reads of CacheSack with prefetch

and CacheSack without prefetch in production, di-

vided by the average value for CacheSack without

prefetch.

Fig. 17. Disk reads reduction by CacheSack with

prefetch, relative to CacheSack without prefetch.

Fig. 18. Written bytes of CacheSack with prefetch

and CacheSack without prefetch in production, di-

vided by the average value for CacheSack without

prefetch.

Fig. 19. Extra written bytes caused by Cache-

Sack with prefetch, relative to CacheSack without

prefetch.

Fig. 20. Total cost (a function of disk reads, flash

storage and written bytes) of CacheSack with

prefetch and CacheSack without prefetch in produc-

tion, divided by the average value for CacheSack

without prefetch.

Fig. 21. Total cost reduction by CacheSack with

prefetch, relative to CacheSack without prefetch.

to flash more aggressively, resulting in 11.04% more written bytes (one week average, Figure 19).
Compared to LARC, CacheSack with prefetch reduces disk reads by 9.5% (one week average) and
reduces bytes written to flash by 17.8% (one week average).

Although the spatial prefetch casues more written bytes, the net saving brought by it is still
positive: Figures 20 and 21 show that CacheSack with prefetch reduces the total cost (which fac-
tors in disk read, bytes written to flash, and flash storage) by 1.33% (one week average). Taking
into account the 6.5% TCO reduction brought by CacheSack without prefetch compared to LARC,
CacheSack with prefetch reduces TCO by 7.7% compared to LARC.
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9 MATHEMATICAL MODEL OF CACHESACK

9.1 Model Assumption

CacheSack models the cache as using LRU evictions. Colossus Flash Cache considers data for
caching to be immutable after being written, i.e., the first access is a write, and subsequent ones
are reads; mutability is handled by higher layers in the system. The CacheSack model does not
need the immutability assumption, but we keep it to align with the actual system; the model can
be easily modified for the mutable case.

9.2 Metric Estimation of an LRU Cache

We begin with AdmitOnMiss. For a given block b, let t1, t2, t3, . . . , tn be the read access times, and
t0 = −∞ for convenience. Therefore, the inter-arrival times are di = ti − ti−1 and d1 = t1 − t0 = ∞.
Assume that D is the modeled cache retention time; that is, D is the maximum duration that a
block stays in the LRU cache without any intervening accesses. We can classify the inter-arrival
times as follows:

• di ≤ D: A cache hit because the access arrives before the block leaves the cache. The block
is moved to the head of the queue because of the LRU eviction.
• di > D: A cache miss because the access arrives after the block leaves the cache.
AdmitOnMiss inserts the block into the cache on miss, causing a write to the cache.
• For a flash cache miss, we update the buffer cache simulator to see whether it is also a cache

miss in the buffer cache. If so, then the access is a disk read.

We can then write disk reads SAOM
b

(D), cache byte-time usage3 U AOM
b

(D), and bytes written to

cacheW AOM
b

(D) as functions of D:

BAOM
b (D, i ) =

⎧⎪⎨⎪⎩
1, Buffer Cache Hit at ti , using AOM

0, Buffer Cache Miss at ti , using AOM
,

SAOMb (D) = |{i : di > D, BAOM
b (D, i ) = 0}|,

U AOM
b (D) = Size(b) ×

∑

i

min(di ,D),

W AOM
b (D) = Size(b) × |{i : di > D}|.

Similarly, the metrics for a category C is the sum of the metrics for all blocks in C:

SAOMC (D) =
∑

b ∈C
SAOMb (D), U AOM

C (D) =
∑

b ∈C
U AOM

b (D), W AOM
C (D) =

∑

b ∈C
W AOM

b (D).

The only difference between AdmitOnWrite and AdmitOnMiss is that AdmitOnWrite also takes
into account write accesses. Therefore, for AdmitOnWrite, we let t1 be the write access time, t2
be the first read access time, t3 be the second read access time and so on. Then, we can similarly
define SAOWC (D), U AOW

C (D), andW AOW
C (D).

For AdmitOnSecondMiss, a block is admitted at the second miss (read access). In addition, to
prevent the cache from inserting a cold block, we require that, when inserting a block, its last read
access time not be older than the oldest last access time of the blocks in the cache. Mathematically,
a block is inserted at ti−1 (if not already in the cache) only if di−1 = ti−1 − ti−2 ≤ D. Therefore,
the condition that a block is in the cache at ti−1, either because it is already in the cache or it is

3Bytes of occupied cache multiplied by seconds of residence time in cache. The same concept is also used in LHD [4].
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inserted, is di−1 ≤ D, and so an access at ti is a cache hit if and only if di−1 ≤ D and di ≤ D:

BAOSM
b (D, i ) =

⎧⎪⎨⎪⎩
1, Buffer Cache Hit at ti , using AOSM

0, Buffer Cache Miss at ti , using AOSM
,

SAOSMb (D) = |{i : max(di−1,di ) > D, BAOSM
b (D, i ) = 0}|.

For U AOSM
b

(D), the access at ti contributes cache usage if either it is a cache hit, max(di ,di−1) ≤ D,
with residence time di , or a block insertion, di ≤ D < di−1, with residence time D:

U AOSM
b (D) = Size(b) ×

∑

i

[
di × 1{max(di ,di−1 )≤D } + D × 1{di ≤D<di−1 }

]
.

W AOSM
b

(D) is the block size times the number of insertions:

W AOSM
b (D) = Size(b) × |{i : di ≤ D < di−1}|.

Of course, SAOSMC (D), U AOSM
C (D), andW AOSM

C (D) can be defined similarly.

Because NeverAdmit does not insert any blocks at all, U NA
C (D) = 0,W NA

C (D) = 0, and SNAC (D) is
the number of buffer cache misses because of the accesses to the blocks in C:

BNA
b (D, i ) =

⎧⎪⎨⎪⎩
1, Buffer Cache Hit at ti , using NA

0, Buffer Cache Miss at ti , using NA
,

SNAb (D) = |{i : BNA
b (D, i ) = 0}|,

SNAC (D) =
∑

b ∈C
SNAb (D).

For the prefetch admissions PrefetchOnMiss, PrefetchOnSecondMiss, and PrefetchOnWrite,
the difference is that the prefetch admissions view a prefetch region as a single, aligned block
(except the write accesses for PrefetchOnWrite), and the metrics estimations are based on the
inter-arrival times for prefetch regions, which can be calculated from the access times for the
individual blocks in the prefetch region.

9.3 Linear Program

We minimize the total cost by formulating a linear program. The cost function is the sum of the
cost of disk reads and the cost of written bytes4:

V
p

C (D) = Cost of S
p

C (D) + Cost ofW
p

C (D),

for p ∈ {AOM, AOW, AOSM, POM, POW, POSM, NA} and a given category C.
A category can receive fractional admission policies. For example, CacheSack may decide that it

is optimal to apply AOM, AOW, AOSM, POM, POW, POSM, NA to 30%, 20%, 10%, 15%, 5%, 7%, 13% of blocks

in C, respectively. Then, we can formulate a linear program that finds optimal policy fractions α
p

C ,
p ∈ {AOM, AOW, AOSM, POM, POW, POSM, NA} to minimize the overall cost:

min
α

p

C

∑

C

∑

p∈P
α

p

CV
p

C (D), 0 ≤ α
p

C ≤ 1,
∑

p∈P
α

p

C = 1, P = {AOM, AOW, AOSM, POM, POW, POSM, NA},

(1)

4The cost of flash storage is fixed and hence is omitted in the objective function; other costs such as CPU, RAM, power,

and network are a very small fraction of the TCO and are ignored.
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Fig. 22. Example of Andrew’s monotone chain convex hull algorithm applied to the admission policies. In

this example, the solid lines (NA-AOSM, AOSM-POM, and POM-AOW) will be chosen. The dashed line (AOW-POW) is

also a part of the lower convex hull, but we do not choose it, because its slope is positive.

subject to the capacity constraint that the cache usage should not exceed the given cache capacity
Utotal: ∑

C

∑

p∈P
α

p

CU
p

C (D) ≤ Utotal, P = {AOM, AOW, AOSM, POM, POW, POSM, NA}.

We note that if the LRU cache is perfectly modeled by the approach in Section 9.2, the resulting
cache retention time of the LRU cache is exactly D after applying the optimal policy fractions.

9.4 Greedy Algorithm

Although the linear program in Equation (1) can be solved by a standard solver, we are able to solve
it by a greedy algorithm with a simple transformation. It is especially beneficial for the production
deployment because of the low-overhead and stability of the greedy algorithm, compared to a
generic solver. We first note that the difference between the above linear program and a fractional
knapsack problem [14] is that for each category, we need to decide coupled seven fractions (six
degrees of freedom), instead of two fractions (one degree of freedom) in a fractional knapsack
problem. Thus, the greedy algorithm in Reference [14] cannot be directly applied. However, we
can use Andrew’s lower convex hull algorithm [2] to decouple the dependency.

For a given category C, the lower convex hull formed by the points{(
U

p

C,V
p

C

)
,p ∈ {AOM, AOW, AOSM, POM, POW, POSM, NA}

}
is the lowest cost of C that can be generated among all convex combinations of the policies. For
example, Figure 22 is the lower convex hull constructed by the given admission policies by using
Andrew’s algorithm. Let FC (u) denote the lower convex hull formed above, as a mapping from
cache usage u to the corresponding cost, for each category C. By dropping any line segments
with non-negative slopes, all FC are strictly decreasing, piecewise linear functions. Then, we can
transform the linear program to a convex optimization problem:

min
uC ≥0

∑

C
FC (uC ),

∑

C
uC ≤ Utotal.

We can then solve the above convex optimization problem by the steepest descent method (a
greedy algorithm). We initialize uC = 0 for all C and iteratively decide each uC as follows. We first
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choose the line segment with the most negative slope among all line segments of FC and change
the value of the corresponding uC . In the same fashion, we then choose the line segment with
second most negative slope and change the value of the corresponding uC , then the third most
negative slope, and so on, until the sum of uC reaches Utotal.

Because we allow fractional policies, the category corresponding to the last chosen line segment
generally has the optimal policy as a convex combination of two policies, and the optimal policy
of any other category must be exactly one policy.

9.5 Optimization Over Modeled Cache Retention Times

The linear program in Equation (1) is to find the optimal policy fractions for a given modeled cache
retention time D, which cannot be known a priori. Thus, we need to solve the same optimization
problem for all possible D:

min
D>0

min
α

p

C

∑

C

∑

p∈P
α

p

CV
p

C (D), 0 ≤ α
p

C ≤ 1,
∑

p∈P
α

p

C = 1, P = {AOM, AOW, AOSM, POM, POW, POSM, NA},

subject to the same capacity constraint:
∑

C

∑

p∈P
α

p

CU
p

C (D) ≤ Utotal, P = {AOM, AOW, AOSM, POM, POW, POSM, NA}.

To do this, we can use a standard scalar-variable optimization approach like Brent’s method [10]
for 0 < D ≤ D, where D is a suitable upper bound. A brute-force approach may be even more
practical for implementation: We simply solve the optimization problem for a set of reasonable
retention times: 0 < D1 < D2 < · · · < Dm = D.

10 RELATED WORK

Production Flash Cache Algorithms

Both Google [1] and Facebook [18] use FIFO-based evictions in their production flash caches
to trade cache performance for reduced write amplification. RIPQ [36] is a non-FIFO, advanced
flash cache algorithm that brings higher hit ratios while write amplification is well-controlled.
Flashield [16] further improves RIPQ’s write amplification by using DRAM as a buffer, and only
writes flash-worthy objects into flash, predicted by a lightweight support vector machine classifier.
CacheLib [7] resolved Flashield’s issue that the TTLs of objects in the DRAM buffer are too short to
be effective. CacheLib uses Bloom filters to count the number of accesses per object in the past 6 h
(similar to TinyLFU [15]), to predict the number of accesses in the future, and uses FIFO for eviction.
Kangaroo [26] further improves CacheLib’s performance for tiny objects. DSS [28] uses predefined
rules to classify I/O requests into different priorities, and applies heuristic admission and eviction
policies to different priorities. DSS has been implemented in Intel’s Cache Acceleration Software.
Amazon’s AQUA [3] analyzes workload patterns to place data into the appropriate tier.

CacheSack’s high-level idea is similar to Flashield and CacheLib: keep the eviction simple to
control write amplification, and use more sophisticated admission to improve cache performance
and flash write endurance. For evictions, Flashield uses the CLOCK [12] approach and CacheSack
uses Second Chance [30] to achieve LRU-style evictions. On the admission side, instead of using
DRAM as a buffer, CacheSack has no in-memory buffer and expands the metadata table (ghost
cache) for a more complete history; the median of the ghost cache TTL is 20 h, which is several
times longer than the information used by Flashield and CacheLib. With a more complete history,
CacheSack is able to build a more sophisticated model for admission. CacheSack also considers the
two major costs of operating flash caches, disk reads and flash wearout, as a whole, and minimizes
TCO.
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CacheSack also utilizes the advantage that the categories are well-defined in the database sys-
tems served by Colossus Flash Cache. Classifying unstructured data is usually a difficult problem
in machine learning. For Google’s database systems, the classification is naturally available, and
the categories often hint their cacheability.

Admission Algorithms

LARC [21] was previously used by Colossus Flash Cache as the default admission policy. LARC is
designed for flash caches, and reduces write rate by inserting an object into the cache only when it
is read a second time, based on the observation that most objects are read only once. Thus, inserting
only the objects that are read a second time into the cache significantly reduces the write rate and
the cache pollution. This strategy is particularly useful when a significant portion of the traffic is
accessed only once, for example, Tencent’s photo traffic [41] and AliCloud [24]. However, LARC
loses all the second-access hits and becomes undesirable for long-tail accesses like Facebook’s
cache for social network photos. In the past, Colossus Flash Cache manually disabled LARC for
workloads in which LARC underperformed. Selective admissions like TinyLFU [15] (non-window
version) and HEC [42] that sacrifice the first few hits to determine the cacheability of data likely
have the same issue.

TinyLFU [15] works by comparing the expected hit ratio of a newly accessed object against
that of the object that would be evicted next from the cache, inserting the new object if its likely
hit ratio is higher. Any eviction policy can be used to select the eviction victim (LRU is typical).
TinyLFU predicts hit ratios for the objects using approximate counting (Bloom filters) of access
frequency. TinyLFU also needs some extra structures to work properly: Doorkeeper is used to filter
one-accessed blocks (the same use of LARC’s ghost cache), and a DRAM buffer cache in front of
TinyLFU (W-TinyLFU). All these structures require extra parameter tuning, which does not best
fit the needs of Colossus Flash Cache as a general-purpose cache. mARC [32] uses ARC [27] as the
eviction policy and dynamically determines whether to admit data on the first miss (naive ARC) or
second miss (LARC). UBC [31] proposes a low-overhead mechanism to partition shared on-chip
cache.

Eviction Algorithms

There are also extensive studies on advanced eviction algorithms. Beckmann and Sanchez’s
method [5] evicts a block based on the block’s economic value added. Instead of LRU or LFU
that require specific data structures, Hyperbolic Caching [9] evicts a block based on a time-decay
(hyperbolic) value function and uses a sampling technique to resolve the issue of the data struc-
ture requirement. Similarly, LHD [4] evicts the block of the lowest hit density, the number of hits
per cache byte-second, and also applies a sampling technique to overcome the data structure issue.
Hawkeye [22] assumes that the recent history can predict the near future and hence one can train
a predictor learned from Belady’s OPT [6] running on the recent traces. Waldspurger et al. [40]
consider an ensemble of candidates, which can be a set of existing algorithms, or the same algo-
rithm with different parameters, run scaled-down simulations on each candidate, and periodically
adopt the most performant one.

Machine Learning Algorithms

With the recent rapid development of ML, there are also a few papers that adopt ML techniques
to enhance cache performance. LFO [8] and LRB [35] use ML models to learn Belady’s OPT [6],
and apply the ML models to Content Delivery Networks caches. Parrot [25] also use ML to learn
Belady’s OPT from history, but uses modern deep learning architectures like Transformer [38] and
BiDAF [33]. Reference [41] utilizes a concept similar to LARC [21] that the majority of traffic is
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accessed just once, and uses ML models to predict whether data is worth inserting into the flash
cache. The algorithm showed a large flash write reduction in Tencent’s photo cache system as
well as the improvement of hit ratios and latency. LeCaR [39] uses an ML approach to adaptively
decide the better policy between LRU and LFU at eviction time. Zhou and Maas [43] model the
inter-arrival times of a block as a log-normal distribution and learn the parameters from traces;
then the evictions are executed in the manner of Belady’s OPT: the block with lowest probability
to get the next access in the near future will be evicted.

11 CONCLUSIONS

In this article, we introduce CacheSack, an admission policy optimization for Google’s datacen-
ter flash caches. CacheSack provides an efficient estimation for the performance metrics of an
LRU-style cache under various configuration options. We use a knapsack approach to identify the
optimal admission polices to minimize TCO. We share the experience of deploying CacheSack in
Colossus Flash Cache, the general-purpose flash cache serving Colossus, which has since become
the default admission policy. CacheSack requires less manual configuration than the previously
used cache admission algorithm (LARC), significantly reduces disk reads and bytes written to flash,
and improves TCO by 7.7% compared to LARC.
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