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Geo-tagged photo based tourist attraction recommendation can discover users’ travel preferences from their taken photos, 

so as to recommend suitable tourist attractions to them. However, existing visual content based methods cannot fully exploit 

the user and tourist attraction information of photos to extract visual features, and do not differentiate the significance of 

different photos. In this paper, we propose multi-level visual similarity based personalized tourist attraction recommendation 

using geo-tagged photos (MEAL). MEAL utilizes the visual contents of photos and interaction behavior data to obtain the 

final embeddings of users and tourist attractions, which are then used to predict the visit probabilities. Specifically, by 

crossing the user and tourist attraction information of photos, we define four visual similarity levels and introduce a 

corresponding quintuplet loss to embed the visual contents of photos. In addition, to capture the significance of different 

photos, we exploit the self-attention mechanism to obtain the visual representations of users and tourist attractions. We 

conducted experiments on two datasets crawled from Flickr, and the experimental results proved the advantage of this 

method. 
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recommendation 

Additional Keywords and Phrases: Geo-tagged photos, Multi-level visual similarity, Personalized tourist 

attraction recommendation, Quintuplet loss, Self-attention 

1 INTRODUCTION 

With the advent of the smart era, people can easily share their travel experiences on social platforms, e.g., 

uploading some wonderful photos during a trip, forming abundant geo-tagged photos [1-3]. Users can 

manually search through the miscellaneous online information to find a few tourist attractions that meet their 

travel preferences. This usually costs much time and energy. Tourist attraction recommendation systems [4] 
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Figure 1: An illustration of multi-level visual similarity. 

can provide users with great convenience, as it can infer their travel preferences from travel history and 

automatically plan their trips. 

In the past decade, geo-tagged photo based tourist attraction recommendation has become one of the 

research hotspots. In the early years, researchers mainly consider users’ travel preferences to make 

personalized recommendation [5, 6]. In recent years, various types of side information have been introduced 

to get more appropriate recommendation results [7-9]. Owing to the efficiency and effectiveness of deep 

neural networks (DNNs) in image processing, the visual contents of photos have gradually received attention. 

Existing visual content based methods usually first extract features from the visual contents of photos, and 

then use these features as prior knowledge to constrain the training of the recommendation model 

constructed based on users’ travel history [10-12]. These methods have some drawbacks: 1) They treat 

different photos taken by a user or taken at a tourist attraction equally via average or max pooling the visual 

features of photos [11, 12], without differentiating their significance. 2) They cannot extract visual features 

adaptive to tourist attraction recommendation, as the extraction of visual features is mostly guided by 

computer vision tasks that have no relationship with the recommendation scenario. 

A method named VPOI [13] that can extract visual features adaptive to tourist attraction recommendation 

has been proposed. It jointly extracts features from the visual contents of photos, classifies the photos 

according to who they are taken by and where they are taken, and factorizes the user-tourist attraction 

interaction matrix for personalized recommendation. Given a photo, this method independently exploits the 

user and tourist attraction information to partition other photos into visually similar/non-similar groups, 

assuming that the similarities of the photos taken by the same user or taken at the same tourist attraction are 

higher than those of the other photos. However, this method cannot capture multi-level visual similarity as 

shown in Figure 1, i.e., given a photo, its visual similarity with another photo taken by the same user at the 
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same tourist attraction ranks first, as they usually capture same objects from different directions; its visual 

similarity with another photo taken by a different user at the same tourist attraction ranks second, as they 

usually capture same objects from different directions and under different lighting conditions; its visual 

similarity with another photo taken by the same user at a different tourist attraction ranks third, as they usually 

capture similar sceneries that the user prefers; its visual similarity with another photo taken by a different user 

at a different tourist attraction ranks last, as the travel preferences of different users and the sceneries of 

different tourist attractions usually differ greatly. 

To deal with the aforementioned problems, we propose multi-level visual similarity based personalized 

tourist attraction recommendation using geo-tagged photos (MEAL). By crossing the user and tourist 

attraction information of photos, we define multi-level similarity for visual content embedding. 

The crucial contributions of this paper are summarized as below:  

1) Propose MEAL, combining the visual representations obtained by fusing the visual features of photos 

through the self-attention mechanism and the latent factors obtained by factorizing the user-tourist attraction 

interaction matrix to obtain the final embeddings of users and tourist attractions, which can capture the 

significance of different photos for representing users and tourist attractions. 

2) Propose multi-level similarity aware visual content embedding for geo-tagged photos, trying to ensure 

that, considering the visual similarities with a given photo, other photos are ranked as follows: photos taken by 

the same user at the same tourist attraction > photos taken by different users at the same tourist attraction > 

photos taken by the same user at different tourist attractions > photos taken by different users at different 

tourist attractions, which can fully exploit the user and tourist attraction information of photos. 

3) Evaluate the proposed method on two real-world datasets crawled from Flickr and make comparison 

with the state-of-the-art methods. The experimental results show the advantage of this method. 

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 gives the 

preliminaries of this paper and defines the research problem. Section 4 introduces the proposed method 

MRATE in detail. Section 5 presents the experimental settings and results. Finally, Section 6 concludes the 

paper and gives a brief discussion of the future work. 

2 RELATED WORK 

In this part, some recent works closely related to our work are introduced, consisting of geo-tagged photo 

based tourist attraction recommendation and deep metric learning based visual content embedding. 

2.1 Geo-Tagged Photo Based Tourist Attraction Recommendation 

Geo-tagged photos imply the travel history of users, which provide rich data for tourist attraction 

recommendation. In the early years, researchers mainly consider users’ travel preferences to make 

personalized recommendation [5, 6]. Clements et al. [5] firstly computed the similarities between users based 

on the Gaussian kernel convolution values of their geotag distributions in a common visited city, and then 

recommended tourist attractions in a previously unvisited city according to the rankings of users with similar 

travel preferences. Popescu and Grefenstette [6] also followed the idea of collaborative filtering, but they 

applied different similarity measures compared to [5]. 

To get more appropriate recommendation results, various types of side information have been introduced 

[7-9]. Majid et al. [8, 9] proposed to recommend tourist attractions and tourist routes by considering users’ 
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travel preferences under different contexts (e.g., season and weather). Bhargava et al. [7] jointly factorized 

user-tourist attraction-activity-time tensor, tourist attraction-activity matrix, tourist attraction-tourist attraction 

similarity matrix, and activity-activity correlation matrix to provide multi-dimensional recommendation. 

Owing to the efficiency and effectiveness of DNNs in image processing, the visual contents of photos have 

gradually received attention. Existing visual content based methods usually first extract features from the 

visual contents of photos, and then use these features as prior knowledge to constrain the training of the 

recommendation model constructed based on users’ travel history [10-12]. DTMMF [10] firstly extracted the 

gender and age information of people appearing in photos to represent users and tourist attractions, based on 

which user-user and tourist attraction-tourist attraction similarities were calculated to constrain the 

factorization of the user-tourist attraction interaction matrix. WIND-MF [11] followed a similar idea; one of the 

main differences is that it extracted the visual feature of each photo via a variational auto-encoder, and then 

averaged the visual features of corresponding photos to get the visual representations of users and tourist 

attractions. VPMF [12] extracted more visual features compared to WIND-MF [11], including the color 

histogram features, scale-invariant feature transform (SIFT) features, and VGG16 features extracted via a 

pre-trained network, and then obtained the visual representations of users and tourist attractions via max 

pooling. These methods treat different photos taken by a user or taken at a tourist attraction equally via 

average or max pooling the visual features of photos [11, 12], without differentiating their significance. In order 

to capture the significance of different photos for representing users and tourist attractions, we introduce the 

self-attention mechanism to infer the weights of photos. 

In addition, existing visual content based methods cannot extract visual features adaptive to tourist 

attraction recommendation, as the extraction of visual features is mostly guided by computer vision tasks that 

have no relationship with the recommendation scenario. To deal with this problem, VPOI [13] was proposed, 

which jointly extracts features from the visual contents of photos via a VGG16 model, classifies the photos 

according to who they are taken by and where they are taken, and factorizes the user-tourist attraction 

interaction matrix for personalized recommendation. Specifically, the visual feature of a photo and the 

factorized latent vector of a user are fed into a softmax function to identify the probability that the photo is 

taken by the user. Similarly, the visual feature of a photo and the factorized latent vector of a tourist attraction 

are fed into a softmax function to identify the probability that the photo is taken at the tourist attraction. Given 

a photo, this method independently exploits the user and tourist attraction information to partition other photos 

into visually similar/non-similar groups, assuming that the similarities of the photos taken by the same user or 

taken at the same tourist attraction are higher than those of the other photos. However, the photos taken by 

the same user at different tourist attractions may vary significantly on visual features, as the sceneries of 

different tourist attractions are usually different, and the photos taken at the same tourist attraction by different 

users may also vary significantly on visual features, as the preferences of different users are usually different, 

which cannot be captured by this method. In order to better capture the preferences of users and the 

sceneries of tourist attractions, we introduce multi-level similarity to extract visual features adaptive to tourist 

attraction recommendation. 

2.2 Deep Metric Learning Based Visual Content Embedding 

Triplet loss based deep metric learning methods have been widely applied in computer vision and pattern 

recognition area [14-16]. Zeng et al. [14] proposed Hierarchical Clustering with hard-batch Triplet loss (HCT), 
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which makes full use of the similarity among samples in the target dataset through hierarchical clustering, 

reduces the influence of hard examples through hard-batch triplet loss, so as to generate high quality pseudo 

labels and improve model performance. Liao and Shao [15] proposed graph sampling (GS), which builds a 

nearest neighbor relationship graph for all classes at the beginning of each epoch. For each mini batch, GS 

randomly selects a class and its nearest neighboring classes so as to provide informative and challenging 

examples for learning. Zhou and Patel [16] proposed Hardness Manipulation to efficiently perturb the training 

triplet till a specified level of hardness for adversarial training, according to a harder benign triplet or a pseudo-

hardness function. For these methods, triplet sampling is crucial for fast and stable convergence. In this paper, 

we employ semi-hard sampling [17], which converges more quickly while being less aggressive. 

Modelling similarity at different levels can yield better classification results [19-21]. Yang et al. [19] 

proposed sentiment constraints for understanding affective images via deep metric learning, which considers 

emotion labels with the same or different polarities by generalizing the triplet loss. Zhang et al. [20] embedded 

label structures (e.g., hierarchy or shared attributes) by generalizing the triplet loss to obtain fine-grained 

feature representations. Inspired by these studies where multi-level similarity is defined by a tree-like 

hierarchy [20] or cluster distribution [21], we define four similarity levels by crossing the user and tourist 

attraction information of photos. A corresponding quintuplet loss is then introduced to ensure the proper order 

of these similarities when embedding the visual contents of photos. 

3 PRELIMINARIES 

In this part, we firstly formally define some basic concepts used throughout the paper, and then clarify the 

research problem of this paper. 

Notation: Capital letters denote sets, and | | denotes the cardinality of a set. Bold upper-case letters 

denote matrices, and bold lower-case letters denote vectors.   denotes the transpose operation. ‖ ‖ 
  

denotes the Euclidean norm of a vector. || denotes the vector concatenation operator. 

Definition 1: (Geo-tagged photo) A geo-tagged photo is usually taken by a user at an interesting place 

during a trip, and contains time and geographical coordinate (usually referred as geotag) information 

indicating when and where it was taken. The geo-tagged photo set can be denoted by             | | . 

The users taking these geo-tagged photos can be denoted by             | | . 

Definition 2: (Tourist attraction) A tourist attraction is a specific geographic area in a city, e.g., a park, a 

museum, and a lake, which is usually visited and photographed frequently by tourists, and can be denoted by 

       , where   is the city it lies in and   is its geographical coordinate. The tourist attraction set can be 

denoted by             | | . The cities containing these tourist attractions can be denoted by   

          | | . 

Definition 3: (Visit) A visit indicating that at time  , tourist attraction   is visited by user   can be denoted by 

         . 

Definition 4: (User-tourist attraction interaction matrix) A user-tourist attraction interaction matrix indicating 

the visit frequencies of users to tourist attractions can be denoted by    | | | |. 

Definition 5: (Quintuplet) A quintuplet can be denoted by         
     

     
     

   , where      is a 

geo-tagged photo taken by a specific user at a specific tourist attraction,   
     denotes another photo taken 

by the same user and at the same tourist attraction as   ,   
     denotes a photo taken by a different user 

from    but at the same tourist attraction as   ,   
     denotes a photo taken by the same user as    but at 
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Figure 2: The framework of MEAL. 

a different tourist attraction from   ,   
     denotes a photo taken by a different user and at a different 

tourist attraction from   . The quintuplet set can be denoted by             | | . 

The research problem of this paper is: Given the geo-tagged photos   taken by users   in cities  , for a 

user     and a city     where the user has never visited, i.e., the query is       ), we want to 

recommend a list of tourist attractions in city   that user   would be interested in. 

4 METHODOLOGY 

Figure 2 shows the framework of MEAL. Firstly, we extract user-tourist attraction interaction matrix from geo-

tagged photos. Then, we extract the visual features of photos via the VGG16 model, based on which we 

utilize the self-attention mechanism to obtain the visual representations of users and tourist attractions. We 

also factorize the user-tourist attraction interaction matrix to obtain the latent factors of users and tourist 

attractions. Afterwards, we concatenate the visual representations and latent factors to obtain the final 

embeddings of users and tourist attractions, based on which we can predict the visit probabilities. 



7 

In
p
u

t

C
o
n
v
: 

3
x
3
x
3

@
6
4

C
o
n
v
: 

3
x
3
x
3

@
6
4

P
: 

2
x
2
x

1

F
C

: 
4

0
9
6

C
o
n
v
: 

3
x
3
x
3

@
1
2

8

C
o
n
v
: 

3
x
3
x
3

@
1
2

8

P
: 

2
x
2
x

1

C
o
n
v
: 

3
x
3
x
3

@
2
5

6

C
o
n
v
: 

3
x
3
x
3

@
2
5

6

P
: 

2
x
2
x

1

C
o
n
v
: 

3
x
3
x
3

@
2
5

6

C
o
n
v
: 

3
x
3
x
3

@
5
1

2

C
o
n
v
: 

3
x
3
x
3

@
5
1

2

P
: 

2
x
2
x

1

C
o
n
v
: 

3
x
3
x
3

@
5
1

2

C
o
n
v
: 

3
x
3
x
3

@
5
1
2

C
o
n
v
: 

3
x
3
x
3

@
5
1
2

P
: 

2
x
2
x

1

C
o
n
v
: 

3
x
3
x
3

@
5
1
2

F
C

: 
4

0
9
6

 

Figure 3: The architecture of the VGG16 model for visual feature extraction. “Conv”, “P”, and “FC” denote convolutional, 

pooling, and fully connected layers, respectively. The numbers before and after “@” denote the sizes and the numbers of 

convolutional kernels, respectively. The numbers of pooling layers denote the sizes of pooling ranges. The numbers of fully 

connected layers denote the numbers of neurons. 

4.1 Extracting Interaction Matrix 

Classical clustering algorithms, e.g., mean-shift and DBSCAN, have been exploited to extract tourist 

attractions from geo-tagged photos [22, 23]. P-DBSCAN [24] is a density-based clustering algorithm 

specialized for place analysis using large collections of geo-tagged photos, which defines neighborhood 

density as the number of users who have taken photos in the area, and proposes adaptive density to optimize 

search for dense areas. Specifically, by inputting the geographical coordinate and user information of geo-

tagged photos to the P-DBSCAN algorithm, we can obtain the tourist attraction set  . 

The preference score of a user to a tourist attraction is proportional to the corresponding visit frequency. 

Like Xu et al. [25], the geo-tagged photos taken by user    at tourist attraction    are firstly ordered according 

to their taken time. Secondly, visits are identified by considering the taken time difference between successive 

photos. Specifically, several successive photos are assumed to be taken within a same visit if the taken time 

difference between the beginning photo and the ending photo is smaller than visit duration threshold     , as a 

user may have taken multiple geo-tagged photos within one visit. Then the time of this visit is calculated by 

averaging the taken time of these photos. Thirdly, we count the number of visits to obtain the visit frequency 

of user    to tourist attraction   , i.e.,    . After processing the geo-tagged photos of all the possible user-

tourist attraction pairs, we can obtain the user-tourist attraction interaction matrix  . 

4.2 Extracting Visual Features 

VGG16 [26] is a deep learning model designed for image classification task and has shown its efficiency in 

various tasks, e.g., video captioning [27, 28], multimedia retrieval [29, 30], and recommendation [12, 13], 

which can obtain representative visual features of input images. Specifically, given a geo-tagged photo   , its 

pixel values are firstly resized into a tensor of shape 224×224×3, which is then input to a VGG16 model to 

extract its visual feature, denoted by      . 

The architecture of the VGG16 model for visual feature extraction is illustrated in Figure 3, which is 

composed of five convolution blocks and five corresponding pooling layers, as well as two fully connected 

layers. The first two convolution blocks contain two convolutional layers, while the last three ones contain 

three convolutional layers. Specifically, the output dimension of the VGG16 model is decided by the number 

of neurons of the last fully connected layer, i.e.,       . 



8 

×

×

×

transpose

tanh

softmax

U L
v v

U L
w w

i j
UP LP

i j
ua la i j

vu vl

ω

d

Upho/

LPho

 

Figure 4: The self-attention mechanism based visual representation learning. 

4.3 Obtaining Visual Representations 

The attention mechanism has shown its efficiency in various tasks, e.g., image classification [31, 32], image 

captioning [33, 34], and recommendation [35, 36], and it can urge a model to concentrate on a specific part of 

features at a time. In order to capture the significance of different photos for a user or a tourist attraction, the 

attention mechanism is introduce here to infer the weights of photos. Specifically, by the self-attention 

mechanism [37], the weights of the photos taken by a same user or taken at a same tourist attraction is firstly 

calculated based on their visual features, and then the respective visual representation is obtained by 

computing the weighted sum of corresponding visual features, which is shown in Figure 4. 

The weights assigned by the self-attention mechanism can be calculated by (1) and (2). 

                        
    (1) 

                        
    (2) 

where             and             are formed by vertically stacking the visual features of photos taken 

by user    and taken at tourist attraction    in an ascending order of their taken time, and      and      are 

the max numbers of photos taken by a user and taken at a tourist attraction, respectively. Note that, if user    

or tourist attraction    has fewer than      or      photos, we vertically stack the visual features of these 

photos and multiple mean vectors of these visual features to form     or    .    and    are learnable weight 

vectors with length  .         and         are learnable weight matrices.     is the attentive weight 

vector of     with length     .     is the attentive weight vector of     with length     . The softmax function 

ensures the entire computed weights sum up to 1. 

Then, we sum up the vectors in     and     according to the weights provided by     and     to get the 

visual representation of user   , i.e.,    , and the visual representation of tourist attraction   , i.e.,    , by (3) 

and (4), respectively. 

           (3) 
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           (4) 

4.4 Obtaining Latent Factors 

Matrix factorization has been widely applied in recommender systems to model user-item interactions [38-41], 

which can project users and items into a same low dimensional latent space. Weighted matrix factorization 

[42] is exploited here to model visit frequency, which is a kind of implicit feedback, and the objective function 

is given by (5). 

     
 

 
∑    (          
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    | |     | |

 
  

 
 ∑ ‖   ‖ 

 

    | |

 ∑ ‖   ‖ 

 

    | |

  (5) 

where     and     are the latent factors of user    and tourist attraction   , respectively.    is a hyper-

parameter used to control the weights of regularization terms.     denotes the confidence weight of    , and is 

formalized by (6).      , if      ; otherwise      . 

           (6) 

where   is a hyper-parameter used to control the confidence weight of    . 

4.5 Obtaining Final Embeddings 

In order to combine both the visual contents of photos and interaction behavior data to represent users and 

tourist attractions, we obtain the final embedding of user   , i.e.,   , and the final embedding of tourist 

attraction   , i.e.,   , by concatenating the respective visual representation and latent factor, which can be 

formulated by (7) and (8), respectively. 

      ||    (7) 

      ||    (8) 

Note that, there are multiple alternative approaches can be utilized to fuse visual representation and latent 

factor into a single vector, we choose concatenation here, as it can reduce information loss and the number of 

model parameters. 

4.6 Learning 

4.6.1 Predicting Visit Probabilities. 

Finally, the probability that user    will visit tourist attraction    can be calculated by (9). 

 ̃                ||        (9) 

where the sigmoid function ensures the prediction score to be in the range of [0, 1].    is a learnable weight 

matrix, and    is a learnable bias vector. 

The prediction loss is defined as the binary cross-entropy loss between the predicted visit probabilities and 

the ground truth, which can be formulated by (10). 

             ∑       ( ̃  )  (     )    (   ̃  )

    | |     | |

 
(10) 

4.6.2 Preserving Multi-Level Visual Similarity. 

Given a quintuplet         
     

     
     

   , (11)-(19) need to be satisfied for preserving multi-level visual 

similarity. 

‖     
  ‖ 

     ‖     
  ‖ 

  (11) 
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        (18) 

     (19) 

where   ,   
  ,   

  ,   
  , and   

   are the visual features of   ,   
  ,   

  ,   
  , and   

  .   ,   ,   ,   ,   , 

and    are hyper-parameters used to control the margins between photo pairs       
    and       

   , 

      
    and       

   ,       
    and       

   ,       
    and       

   ,       
    and       

   , as well as 

      
    and       

   , respectively. 

The triplet loss of (11) is given by (20). 

  
  [‖     

  ‖ 
   ‖     

  ‖ 
    ]  (20) 

where the value of [ ]  is the same as the value in [ ] if it is positive, otherwise it is 0. We can obtain the 

corresponding triplet losses   
 ,   

 ,   
 ,   

 , and   
  of (12-16) similarly. 

The final quintuplet loss can be calculated by (21). 

      ∑   
    

    
    

    
    

 

   

 
(21) 

where   includes the training quintuplets that are selected by using the hard mining technique proposed by 

Schroff et al. [17]. Specifically, for any photo     , all the other photos taken by the same user and at the 

same tourist attraction as    should be selected as   
  . After selecting   

  , all the photos taken by a different 

user from    but at the same tourist attraction as   , photos taken by the same user as    but at a different 

tourist attraction from   , as well as photos taken by a different user and at a different tourist attraction from    

that satisfy (22)-(27) should be selected as   
  ,   

  , and   
  , respectively. 
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  ‖ 

  ‖     
  ‖ 
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  ‖     
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  ‖     
  ‖ 

     (27) 

4.6.3 Joint Learning. 

The final objective function of MEAL is given by (28). 

                      ‖ ‖ 
  (28) 

where   denotes the learnable parameters of the model.    is a hyper-parameter used to control the weight of 

parameter regularization term. ‖ ‖ 
  denotes the Frobenius norm of a matrix. 
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Table 1: The statistics of the datasets 

Dataset City # Photos # Users # Tourist attractions 

Dataset1 

Beijing 220,626 294 414 

Chengdu 18,513 68 49 

Guangzhou 16,999 40 55 

Hangzhou 28,192 133 94 

Hong Kong 185,003 210 419 

Shanghai 230,563 314 483 

Dataset2 

Barcelona 5,203 174 50 

Berlin 5,614 170 55 

Chicago 8,475 204 86 

London 16,306 442 141 

Los Angeles 4,809 113 40 

New York 14,647 387 113 

Paris 9,986 398 84 

Rome 8,034 487 51 

San Francisco 11,326 252 79 

4.7 Recommending Tourist Attractions 

After training the model, given a query       ), we first obtain the embedding of user   and the embeddings 

of all the tourist attractions in city  , based on which (9) is exploited to obtain the visit probabilities, and finally 

recommend top   tourist attractions in city   to user  . 

5 EXPERIMENTS 

In this part, the experimental datasets, settings, and results are presented to evaluate the recommendation 

performance of MEAL. Specifically, MEAL is compared to its simplified variants and the state-of-the-art 

methods to prove its superiority. In addition, an example of tourist attraction recommendation is provided to 

illustrate the effectiveness of MEAL. 

5.1 Datasets 

The two datasets used in this paper were crawled from Flickr by using the public API
1
. Dataset1 consists of 

699,896 geo-tagged photos that were taken in Beijing, Chengdu, Guangzhou, Hangzhou, Hong Kong, and 

Shanghai in China. Dataset2 [44] covers more than 7 million photos taken by 7,387 users at nine tour cities 

(i.e., Barcelona, Berlin, Chicago, London, Los Angeles, New York, Paris, Rome, and San Francisco) all over 

the world. Since the geotags of photos are very important for finding travel locations, we remove the photos 

without geotags. After that, there remain 84,400 photos and 1,432 users. Table 1 shows the statistics of the 

two datasets after tourist attraction extraction introduced in Section 4.1. 

 

 

                                                           
1 https://www.flickr.com/services/api/ 
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Table 2: The search space and the final choice of the hyper-parameters 

Hyper-parameters Search space Final choice on Dataset1 Final choice on Dataset2 

   [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 0.1 0.1 

   [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 0.2 0.2 

   [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 0.3 0.4 

   [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 0.1 0.2 

   [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 0.2 0.4 

   [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 0.1 0.2 

  [5, 10, 15, 20, 25] 10 15 

  [5, 10, 15, 20, 25] 15 20 

   
[0.00001, 0.00003, 0.0001, 0.0003, 0.001, 

0.003, 0.01, 0.03, 0.1] 
0.001 0.01 

   
[0.00001, 0.00003, 0.0001, 0.0003, 0.001, 

0.003, 0.01, 0.03, 0.1] 
0.0003 0.001 

5.2 Experimental Settings 

Following the settings of Majid et al. [8], we set the parameters for P-DBSCAN, and set visit duration 

threshold        hours. We use the VGG16 pretrained on ImageNet to extract visual features. 

Models are trained and evaluated on a server with one GPU (Nvidia GTX 1080 Ti). The code is released 

on GitHub
2
. Adam with learning rate 0.001 is used as the optimizer to train the model and the total training 

epoch is set as 200. We use NNI
3
 to automatically select proper hyper-parameter settings. The search space 

and the final choice of the hyper-parameters are given in Table 2. 

To evaluate the performance of MEAL, for each individual user who has visited at least three cities, we 

select two of his/her visited cities for validation and test, while the rest cities are used for training. Specifically, 

if a user has visited   cities,        segments would be obtained. 

Mean average precision (MAP) is employed to evaluate the recommendation performance, which is a 

widely used evaluation metric for recommender systems [43] and can be calculated by (29) and (30). 

       ∑     
 

   
    (29) 

      ∑  ∑   
 

   
   

 

   
    (30) 

where   denotes the number of users who have visited at least three cities.    equals 1 if the user has really 

visited the  -th tourist attraction in the recommendation list, otherwise    equals 0. 

Paired t-tests are used to determine whether the recommendation performance of MEAL and each 

compared method is significantly different when the significance level is 5%. 

We have fully tuned the parameters of all the comparison methods to ensure fairness. 

5.3 Variant Comparison 

Seven simplified variants of MEAL: MEAL w/o visual similarity, MEAL-U, MEAL-L, MEAL-U/L, MEAL-U&L, 

MEAL-max, and MEAL-average are designed to explore the effectiveness of model components. MEAL w/o 

visual similarity does not take the visual similarity into account, and uses only             to train the VGG16 

                                                           
2 https://github.com/revaludo/MEAL 
3 https://github.com/Microsoft/nni 
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Table 3: The performance of MEAL and its simplified variants (mean ± standard deviation), * indicates MEAL performs 

significantly better than the compared method 

 

Methods MAP@5 on Dataset1 MAP@5 on Dataset2 MAP@10 on Dataset1 MAP@10 on Dataset2 

MEAL w/o 

visual similarity 
0.217±0.067* 0.228±0.039* 0.195±0.036* 0.207±0.043* 

MEAL-U 0.232±0.040* 0.244±0.053* 0.210±0.052* 0.233±0.062* 

MEAL-L 0.245±0.063* 0.261±0.081* 0.224±0.057* 0.246±0.028* 

MEAL-U/L 0.268±0.074* 0.275±0.061* 0.247±0.083* 0.255±0.066* 

MEAL-U&L 0.283±0.035* 0.298±0.072* 0.261±0.028* 0.273±0.038* 

MEAL-max 0.286±0.054* 0.312±0.057* 0.263±0.029* 0.276±0.052* 

MEAL-average 0.292±0.042* 0.321±0.046* 0.270±0.086* 0.281±0.054* 

MEAL w/o 

pretrain 
0.303±0.038* 0.336±0.060* 0.281±0.049* 0.291±0.036* 

MEAL 0.312±0.047 0.351±0.054 0.297±0.034 0.309±0.046 

model. MEAL-U, MEAL-L, MEAL-U/L, and MEAL-U&L replace       with corresponding triplet losses, which 

ensure that given a photo, its visual similarities with the photos taken by the same user are higher than those 

with the other photos, its visual similarities with the photos taken at the same tourist attraction are higher than 

those with the other photos, its visual similarities with the photos taken by the same user or taken at the same 

tourist attraction are higher than those with the other photos, and its visual similarities with the photos taken 

by the same user at the same tourist attraction are higher than those with the other photos, respectively. 

MEAL-max and MEAL-average eliminate the self-attention mechanism, and obtain the visual representations 

of users and tourist attractions via max pooling and average pooling the visual features of corresponding geo-

tagged photos, respectively. In addition, we compare with variant MEAL w/o pretrain that trains the VGG16 

from scratch to evaluate the effectiveness of the pretrained VGG16. 

Table 3 shows the experimental results, from which the following observations can be concluded:  

1) The recommendation performance of MEAL and its variants related to visual similarity are ranked as 

follows: MEAL w/o visual similarity < MEAL-U < MEAL-L < MEAL-U/L < MEAL-U&L < MEAL. MEAL w/o visual 

similarity performs the worst, as it does not consider any visual similarity level regarding users or tourist 

attractions that can reflect users’ preferences or tourist attractions’ characteristics. MEAL-L outperforms 

MEAL-U, which indicates that the variation of the photos taken at the same tourist attraction is smaller than 

that of the photos taken by the same user, as the scenery of a tourist attraction is rather stable, while the 

preference of a user may be diverse. MEAL-U/L outperforms MEAL-U and MEAL-L, as it considers both the 

visual similarity levels regarding users defined in MEAL-U and the visual similarity levels regarding tourist 

attractions defined in MEAL-L. MEAL-U&L outperforms MEAL-U/L, as it crosses the user and tourist attraction 

information to provide fine-grained visual similarity levels regarding both users and tourist attractions. MEAL 

outperforms MEAL-U&L, as it considers different ways of crossing the user and tourist attraction information 

to provide multi-level visual similarity. 

2) MEAL outperforms MEAL-max and MEAL-average, which verifies the effectiveness of exploiting the 

self-attention mechanism to capture the significance of different photos for representing users and tourist 



14 

Table 4: The performance of MEAL and the compared methods (mean ± standard deviation), * indicates MEAL performs 

significantly better than the compared method 

 

Methods MAP@5 on Dataset1 MAP@5 on Dataset2 MAP@10 on Dataset1 MAP@10 on Dataset2 

DTMMF 0.228±0.059* 0.232±0.046* 0.207±0.074* 0.213±0.061* 

WIND-MF 0.241±0.024* 0.260±0.027* 0.224±0.043* 0.241±0.035* 

VPMF 0.256±0.061* 0.276±0.047* 0.231±0.068* 0.250±0.056* 

VPOI 0.280±0.032* 0.304±0.036* 0.265±0.028* 0.278±0.033* 

MEAL 0.312±0.047 0.351±0.054 0.297±0.034 0.309±0.046 

attractions. In addition, MEAL-average slightly outperforms MEAL-max, which might be that MEAL-max is 

more vulnerable to outliers. 

3) MEAL outperforms w/o pretrain, which verifies the effectiveness of exploiting the pretrained VGG16 to 

extract visual features. 

5.4 The Comparison of Different Methods 

To show the superiority of MEAL, the state-of-the-art visual content based tourist attraction recommendation 

methods exploiting geo-tagged photos, i.e., DTMMF [10], WIND-MF [11], VPMF [12], and VPOI [13] are 

compared. 

Table 4 shows the experimental results, from which the following observations can be concluded: 

1) DTMMF performs the worst among all the methods. The reason might be that DTMMF only extracts the 

gender and age information in photos that contain people faces, ignoring other photos and a lot of other visual 

information. 

2) VPMF performs better than WIND-MF. The reason might be that WIND-MF only extracts visual features 

via DNNs, while VPMF also extracts the traditional color histogram features and SIFT features. 

3) VPOI performs better than VPMF. The reason might be that VPOI jointly extracts visual features and 

factorizes the user-tourist attraction interaction matrix for recommendation, while the extraction of visual 

features in VPMF has no relationship with the recommendation scenario. 

4) MEAL performs better than VPOI. The reason might be that MEAL crosses the user and tourist 

attraction information to partition other photos into different groups for multi-level similarity aware visual 

content embedding. In addition, VPOI treats different photos taken by a user or taken at a tourist attraction 

equally, while MEAL exploits the self-attention mechanism to infer the weights of different photos for 

representing users and tourist attractions. 

5.5 Case Study 

To illustrate the effectiveness of our model, we give an example of recommending tourist attractions in 

Hangzhou to a user based on his/her travel history in Shanghai. 

Table 5 shows the top 10 tourist attractions in Hangzhou recommended to the user and the user’s true 

travel history in Shanghai and Hangzhou, from which the following observations can be concluded: 

1) WIND-MF discovering four relevant tourist attractions, i.e., Zhejiang University, West Lake, Broken 

Bridge, and Lingyin Temple, ranking 2nd, 4th, 5th, and 8th in the recommendation results, respectively, 

performs better than DTMMF, which also discovers four relevant tourist attractions, i.e., West Lake, Leifeng 

Pagoda, Lingyin Temple, and Zhejiang University, ranking 3rd, 5th, 7th, and 8th in the recommendation 
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Table 5: An example of tourist attraction recommendation results 

Visited tourist attractions in 

Shanghai 

The Bund, the Huangpu River, Happy Valley, Town God’s Temple, Yu Garden, People’s 

Square, the Peace Hotel, Nanjing Road Pedestrian Street, Huaihai road, Oriental Pearl 

TV Tower, Garden Bridge of Shanghai, Tianzifang, Sinan Mansion, Xintiandi, Wukang 

Road. 

Methods Top 10 tourist attractions in Hangzhou recommended to the user 

DTMMF 

The Grand Canal, China National Silk Museum, West Lake, Yuefei Temple, Leifeng 

Pagoda, Hefang Street, Lingyin Temple, Zhejiang University, Hupao Spring, Hangzhou 

Zoo. 

WIND-MF 

Hang Zhou Botanical Garden, Zhejiang University, Hangzhou Museum, West Lake, 

Broken Bridge, Children’s Palace, Hefang Street, Lingyin Temple, Hupao Spring, 

Hangzhou Zoo. 

VPMF 

Broken Bridge, Bai Causeway, West Lake, HangZhou Polar Ocean Park, China 

National Silk Museum, Zhejiang University, Hang Zhou Botanical Garden, Lingyin 

Temple, Hangzhou Taiziwan Park, Xixi National Wetland Park. 

VPOI 
Hangzhou Museum, West Lake, Su Causeway, Kushan, Zhejiang University, Xixi 

National Wetland Park, the Qiantang River, Longjing Village, Meijiawu, Faxi Temple. 

MEAL 

Zhejiang University, West Lake, Hangzhou Museum, Three Pools Mirroring the Moon, 

the Qiantang River, Hangzhou Paradise, Baochu pagoda, Leifeng Pagoda, Hangzhou 

Taiziwan Park, Lingyin Temple. 

Visited tourist attractions in 

Hangzhou 

Zhejiang University, West Lake, Broken Bridge, Kushan, Hangzhou Paradise, Xiang Lake, 

Leifeng Pagoda, Lingyin Temple, Southern Song Imperial Street, the Qiantang River, 

Pagoda of Six Harmonies, Meijiawu, Faxi Temple, HangZhou Polar Ocean Park. 

results, respectively. The reason might be that WIND-MF exploits more visual information hidden in the geo-

tagged photos compared to DTMMF, which only uses the gender and age information in photos that contain 

people faces. 

2) VPMF discovers more relevant tourist attractions than WIND-MF. The reason might be that VPMF 

extracts more visual features from the geo-tagged photos to represent users and tourist attractions. 

3) VPOI discovers more relevant tourist attractions than VPMF, which indicates that jointly modeling the 

visual content embedding and recommendation tasks can extract visual features adaptive to tourist attraction 

recommendation. 

4) MEAL discovering six relevant tourist attractions, i.e., Zhejiang University, West Lake, the Qiantang 

River, Hangzhou Paradise, Leifeng Pagoda, and Lingyin Temple, ranking 1st, 2nd, 5th, 6th, 8th and 10th in 

the recommendation results, respectively, performs better than VPOI, which also discovers six relevant tourist 

attractions, i.e., West Lake, Kushan, Zhejiang University, the Qiantang River, Meijiawu, and Faxi Temple, 

ranking 2nd, 4th, 5th, 7th, 9th, and 10th in the recommendation results, respectively. These results 

demonstrate the effectiveness of multi-level similarity aware visual content embedding and self-attention 

mechanism based visual representation learning. 

5.6 Convergence 

In order to evaluate the impact of the hard mining technique on the convergence of training, we give the 

training loss of the proposed method in Figure 5. As shown in the figure, the training loss first decreases 

gradually and tends to be stable, which illustrates the convergence property of the propose method. 
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Figure 5: The training loss of the proposed method. 

6 CONCLUSIONS AND FUTURE WORK 

In this paper, multi-level visual similarity based personalized tourist attraction recommendation using geo-

tagged photos (MEAL) is proposed. MEAL embeds the visual contents of photos by exploiting a quintuplet 

loss to ensure the proper order of the visual similarities defined by crossing the user and tourist attraction 

information, represents users and tourist attractions by exploiting the self-attention mechanism to infer the 

weights of different photos as well as by factorizing the user-tourist attraction interaction matrix, and predicts 

the visit probabilities for recommendation. We conducted experiments on two datasets crawled from Flickr, 

and the experimental results proved the advantage of this method. 

The main limitation of the proposed method is that the sequence information that can be captured from the 

taken time of photos is ignored when we obtain the latent factors and the visual representations of users and 

travel locations. For further expansion of the proposed method, we consider exploiting the photo sequences of 

users and tourist attractions to better represent them. In addition, we will introduce the categories of tourist 

attractions to provide more visual similarity levels. 
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