
310

A Review on Tools, Mechanics, Benefits, and Challenges of

Gamified Software Testing

TOMMASO FULCINI, RICCARDO COPPOLA, LUCA ARDITO, and

MARCO TORCHIANO, Politecnico di Torino, Italy

Gamification is an established practice in Software Engineering to increase effectiveness and engagement in

many practices. This manuscript provides a characterization of the application of gamification to the Software

Testing area. Such practice in fact reportedly suffers from low engagement by both personnel in industrial

contexts and learners in educational contexts. Our goal is to identify the application areas and utilized gam-

ified techniques and mechanics, the provided benefits and drawbacks, as well as the open challenges in the

field. To this purpose, we conducted a Multivocal Literature Review to identify white and grey literature

sources addressing gamified software testing.

We analyzed 73 contributions and summarized the most common gamified mechanics, concepts, tools, and

domains where they are mostly applied. We conclude that gamification in software testing is mostly applied

to the test creation phase with simple white-box unit or mutation testing tools and is mostly used to foster

good behaviors by promoting the testers’ accomplishment. Key research areas and main challenges in the field

are: careful design of tailored gamified mechanics for specific testing techniques; the need for technological

improvements to enable crowdsourcing, cooperation, and concurrency; the necessity for empirical and large-

scale evaluation of the benefits delivered by gamification mechanics.

CCS Concepts: • Software and its engineering→ Software verification and validation;

Additional Key Words and Phrases: Software/program verification, testing and debugging gamification, soft-

ware testing, Software Engineering, Systematic Literature Review, Multivocal Literature Review

ACM Reference format:

Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano. 2023. A Review on Tools, Mechanics,

Benefits, and Challenges of Gamified Software Testing. ACM Comput. Surv. 55, 14s, Article 310 (July 2023),

37 pages.

https://doi.org/10.1145/3582273

1 INTRODUCTION

The objective of software testing is ensuring the quality and reliability of software; it is therefore
a crucial activity, especially in modern software development processes, where high-complexity
software is released at a very fast pace. However, testing activities are often overlooked even by
large companies and in important software projects, since they are frequently considered unap-
pealing, time-consuming, and repetitive when compared to more creative and fulfilling activities

Authors’ address: T. Fulcini, R. Coppola, L. Ardito, and M. Torchiano, Politecnico di Torino, Corso Duca degli Abruzzi 24,

Turin, Piedmont, Italy, 10129; emails: {tommaso.fulcini, riccardo.coppola, luca.ardito, marco.torchiano}@polito.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2023/07-ART310 $15.00

https://doi.org/10.1145/3582273

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

https://orcid.org/0000-0001-8765-6501
https://orcid.org/0000-0003-4601-7425
https://orcid.org/0000-0002-0501-7886
https://orcid.org/0000-0001-5328-368X
https://doi.org/10.1145/3582273
mailto:permissions@acm.org
https://doi.org/10.1145/3582273
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582273&domain=pdf&date_stamp=2023-07-17

310:2 T. Fulcini et al.

such as software design or coding [15]. Testing activities are generally classified into two main cat-
egories, based on the way they are performed: (i) automated, when testers create scripts—either
coding or via the recording of user’s interactions—which can then be executed by automated test
runners; or (ii) manual, when testers execute manually the test sequences against the SUT (Sys-

tem Under Test). Automated testing is characterized by lower execution time and lower costs
due to possible reuse of the scripts; conversely, the main issues concern the test suite maintenance
and the effort still required to create test scripts by the tester. Manual testing is associated with
higher costs, due to the time spent by the tester in the execution of test cases, though it requires
simpler setup activities and guarantees higher flexibility, since testers can adapt the test case to
the scenario presented by the SUT on the fly.

Over the years the market has pushed towards automated testing approaches, but the motiva-
tional gap is common to such techniques and the manual alternatives. Motivation and job satis-
faction in software testing—and more generally in software engineering—is an important aspect
that has been largely addressed in the recent years [45]. A lower engagement is also considered a
cause for reduced effectiveness and efficiency of testing practices [52]. This aspect is particularly
crucial; in fact, surveys with software testing practitioners underline that test engineers are more
interested in options to improve effectiveness and efficiency than in theoretically challenging is-
sues [23]. At the same time, it is possible to trace back the lower interest in testing activities to a
subordinate role of testing in education settings when compared to, e.g., coding [48].

A recently explored solution to increase engagement and motivation of software testers is Gam-
ification, i.e., the addition of game mechanics to practices that are not ludic by themselves. The
main goals of Gamification are to increase the productivity of the involved actors in tasks of any
nature by stimulating positive feelings through the incorporation of elements that are typical of
game contexts in the regular activities, i.e., by creating a gameful or gamified experience. Examples
of game elements that are typically utilized in gamified experiences are scoring and leaderboard
mechanisms, prizes and achievements, storytelling and levels. Creating a gamified experience that
properly suits the context is not trivial: Game elements cannot simply be considered separately,
since what actually affects the user is the result of their interaction [43]. For this reason some
frameworks emerged to define the desired gameful experience and to assess it. Different roles
and principles should be considered to systematically define and model the expected outcome of
Gamification, as defined by Robson et al. [43].

Gamification, as time passes, has become more and more popular in different domains, attracting
the interest of the scientific community and reaching a capillary diffusion in all the scientific dis-
ciplines over the past few years, according to O’Donnell et al. [39]; it has been therefore identified
as a multidisciplinary field with a high research potential [37]. Two of the most common fields of
application are Education and Computer Science, where gamification found a fertile ground given
the benefits that several secondary studies identify [9, 36]. Gamification also has a history of suc-
cess in Social Sciences and Pedagogy, as testified by a growing body of theory development and
empirical research [33].

Gamification was leveraged also in Software Engineering since the beginning of the past decade.
Albeit the research is very preliminary and—still—frequently lacks proper methodological support,
the integration of gamification in SE-related activities is seen as an important challenge for both
researchers and practitioners [41]. Among all SE sub-disciplines, recent academic and industrial
efforts have tried to utilize Gamification to render testing activities more engaging and appealing
and, as a consequence, more effective [50]. Even though several frameworks and tools have been
described in the literature, no recent source has provided a comprehensive and up-to-date review
of all the proposed gamification mechanics and their benefits, drawbacks, and challenges.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:3

To bridge this gap, we performed a Multivocal Literature Review (MLR) study that covers
both peer-reviewed works, also called white literature (WL), and grey literature (GL), accessi-
ble through traditional search engines. Through the latter category, we aimed at capturing valu-
able information provided by practitioners from the industry. We frame the current state-of-the-art
and practice in the field of gamified software testing and provide a characterization based on the
testing levels, methodologies, and domains covered, and on the types of game and mechanics pro-
vided. The present work is meant to share information regarding the current state-of-the-art and
practice, not only highlighting main trends but also outlining directions for future investigators
approaching this particular domain by framing specific gaps to address.

The remainder of this manuscript is structured as follows:

• Section 2 presents background information about Gamification and Multivocal Literature
Reviews; it defines the terminology used for software testing throughout the article and
compares this work to existing secondary studies in the field;
• Section 3 describes the adopted research methododology by specifying its goals, review ques-

tions, search criteria, and analysis methods;
• Section 4 reports in detail all the results collected from the analyzed literature;
• Section 5 frames the results and discusses their implications, along with possible threats to

the validity of this study;
• Finally, Section 6 concludes the study by providing guidelines for different actors involved

in gamified software testing and introduces future prosecutions of this work.

2 BACKGROUND

2.1 Gamification

Gamification has been defined by Deterding et al. as “the use of game design elements in non-game
contexts” [16]. This newly trending technique has been widely used in several areas such as learn-
ing, business, marketing, tourism, and also computer science; in particular, for the latter, a large
increase in the usage was reported in software engineering disciplines according to Barreto and
França [4]: Gamification-based approaches have some important advantages from the psycholog-
ical user-experience perspectives in non-ludic activities, such as increased motivation, focus, and
engagement, but also better performance and higher efficiency.

Several different categorizations of gaming elements in gamified approaches have been proposed
in the literature. Robson et al. [43] provide a taxonomy of game elements, which they categorize
under game mechanics, dynamics, and emotions. According to Robson, game mechanics are related
to the goals, rules, and interactions provided by a gamified systems. Game dynamics are instead re-
lated to the interaction between the players and the system during the gamified activities. Finally,
game emotions refer to the emotional outcome evoked among individual players when participat-
ing in a gamified experience. This classification identifies mechanics as common components of
the gamified system for all the different players, which are independent of the user experience
(e.g., the presence of a chat system), and dynamics as variable and user-dependent characteris-
tics of the gamified activity (e.g., competition or cooperation between different players). From our
preliminary analysis of related secondary studies in the field, however, we noticed that—in most
cases—the proposed separation between mechanics and dynamics is not applied. Instead, the two
terms are instead used mostly as synonyms to describe design characteristics of gamified tools
or environments. Therefore, in the present manuscript, we will only refer to game mechanics to
describe all possible design choices that contribute to build a gamified environment.

An essential factor in building a successful gamified environment is a careful design of the im-
plemented game mechanics. Creating valuable gamified activities that suit the business needs and

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:4 T. Fulcini et al.

Table 1. The Octalysis Core Drives with a Brief Definition from the Official Website

Core Drive Description

Epic Meaning & Calling “A player believes that he is doing something greater than himself or he was ‘chosen’ to do something.”

Development & Accomplishment “Making progress, developing skills, and eventually overcoming challenges.”

Empowerment of Creativity & Feedback “When users are engaged in a creative process where they have to figure things out and try different combina-
tions repeatedly. People [...] need to be able to see the results of their creativity, receive feedback, and respond
in turn.”

Ownership & Possession “Users are motivated because they feel like they own something. Players [...] innately wants to make what she
owns better and own even more.”

Social Influence & Relatedness “This drive incorporates all the social elements that drive people, including mentorship, acceptance, social
responses, companionship, as well as competition and envy.”

Scarcity & Impatience “This is the drive of wanting something because you can’t have it.”

Unpredictability & Curiosity “This is a harmless drive of wanting to find out what will happen next. If you don’t know what’s going to
happen, your brain is engaged, and you think about it often.”

Loss & Avoidance “This core drive is based upon the avoidance of something negative happening.”

the end-users’ expectations is a complex task that needs a structured and well-rooted approach
to be effective. To that purpose, several approaches have been proposed to provide a systematic
ground for the application of gamified constructs to any activities. Among them, one of the most
frequently adopted is the Octalysis framework, originally proposed by Yu-kai Chou [10]. The Oc-
talisys framework can be used to implement human-focused design for a gamified tool: It identifies
eight core drives representing human aspects that can be stimulated by gamification. The core
drivers are then decomposed into multiple atomic finer-grained game mechanics. The framework
can be used as a design tool, but also as an evaluation tool for existing instruments with gamified
elements.

The eight core drives are paired with a two-dimensional, higher-level representation: left-brain
vs. right-brain drivers and white-hat vs. black-hat drivers. The former classification distinguishes
intrinsic-motivator elements related to creativity, emotion, self-expression, and social aspects
(right brain elements, e.g., socializing with other people) and extrinsic motivator elements asso-
ciated with logic, calculation, and ownership (left brain elements, e.g., goals to accomplish). The
latter instead distinguishes elements into positive motivators (white hat, e.g., a narrative built to
make the user feel successful) and negative motivators (black hat, e.g., assets available only for a
limited amount of time). A summary of the eight core drives defined by the Octalysis framework
is presented in Table 1.

Another framework to evaluate gamified experiences and the emotional effects of their utiliza-
tion is GAMEX, defined by Eppmann et al. [19]. GAMEX identifies six dimensions that represent
the different aspects of a gamified experience: enjoyment, absorption, creative thinking, activation,
absence of negative affect, and dominance. A total of 27 Likert questions are used to measure how
the mentioned aspects influence the perceived gamified experience.1

2.2 Software Testing

Software testing is the process of evaluating software to ensure that it meets its originally specified
requirements and revealing faults and defects that may affect the code. Its importance is considered
critical in industrial software development. Evidence in the literature suggests that the cost for
software testing activities can, in several cases, amount to up to 50% of the total costs of software
development, according to some studies [27]. During the latest years, several methodologies have
been defined to perform software testing activities in different software domains.

1Likert questions are a common measurement in user experience evaluation, consisting of declarative statements, with

response sets consisting of equally spaced numbers (typically 5 or 7) representing the agreement of the subject with the

statement [26].

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:5

Software testing can be classified based on different characteristics. It is out of the scope of this
manuscript to provide a characterization of all dimensions to describe software testing. We will,
however, consider three different ways to characterize software testing activities: test levels, phases,
and methodologies.

Test levels refer to the size of the components of the Software Under Test (SUT) that are tested.
Test levels range from the testing of individual atomic code units (Unit Testing) to the integration
test of multiple units (Integration Testing), to System Testing of the whole SUT, with which the
tester interacts as a final user would do. A widely used representation of the testing levels is Cohn’s
testing pyramid [13].

In addition to the testing level, a second categorization can be provided for testing practices,
according to the methodology used to generate test cases. Unit and integration testing are mostly
performed by utilizing scripted techniques, in which the tester defines test scripts that can be run
against the SUT to exercise its functionalities [18]. At the System Testing level, several methodolo-
gies are utilized to generate test scripts. Concerning test methodology, we adopt a classification
provided by Linares-Vazquez et al. [34]:

• Manual testing involves testers that manually execute the defined test cases against the fin-
ished SUT. Manual testing can be performed according to different strategies, as reported
by Itkonen et al. [29]: Exploratory Testing is a manual testing activity where the interactions
with the SUT are performed in an unstructured way by proceeding from feature to feature
to cover the GUI features; Documentation-based session strategies instead rely on executing
manually the instructions reported in test documents (e.g., test cases, release notes, defect
reports). Manual testing activities can also be differentiated according to how the checks
are executed, i.e., by Comparison (visual comparison of the state of the SUT with a known
working version) or by Input/Output verification;
• Automation APIs/frameworks rely on the manual creation of test scripts that exercise the

GUI of the SUT. These scripts typically specify a series of actions that should exercise either
simple units of functions of the SUT (e.g., as with the JUnit test runner) or even the whole
system through its GUI (e.g., the Selenium or Appium GUI automation frameworks [8];
• Capture & Replay techniques involve the manual execution of test sequences that are then

used to generate repeatable test scripts [38];
• Automated Test Generation Techniques generate a model of the SUT and then automatically

exercise it by generating sequences of inputs [17]. The simplest example of automated test
generation is represented by random-based input generation, which selects random compo-
nents or features of the SUT to exercise. Advanced tools generate (automatically or with the
manual aid of the tester) models to be traversed systematically. These models of the SUT can
be in the form of Finite-State-Machines (FSM) [51], Event-Sequence-Graphs (ESG) [5],
and so on.

Finally, several frameworks in the literature organize software testing activities in separate
phases. In this manuscript, we adapt the phases described in the Software Testing Life Cycle [28].
Additional details about the levels of the selected dimensions are reported in the following method-
ological subsections.

Especially at higher levels in the testing pyramid, testing activities are often perceived as time-
consuming, error-prone, brittle, and costly. Evidence in the literature suggests that these activi-
ties are overlooked and neglected even in large software projects, especially for what concerns
automation of system-level testing: Berner et al. report a set of case studies where the missing
design for testability and the difficulty in maintaining testware leads to inappropriate test automa-
tion strategies and to the eventual prevalence of manual testing activities [6]. All these issues

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:6 T. Fulcini et al.

are mainly due to the perception that testers have of the activity they are performing. Being the
benefits of gamification are well-known from studies in other disciplines, many works in the re-
lated literature have thus identified software testing as a possible area for a fruitful application of
gamification mechanics [14], with some identifying it as a promising but still underrepresented
area [41].

A practical example of a gamified environment for software testing is Code Defenders, the tool
proposed by Fraser et al. [WL05] where the gamified activity is mutation testing. Testers play the
roles of defenders and attackers: The former have to enrich an existing test suite with new tests,
predicting any possible mutations generated by attackers and detecting with their test code, and
the latter have to inject code to break defenders’ test suite making their tests fail. Attackers earn
points if they manage to break the defenders’ test suite, while defenders score if the built test suite
manages to pass all the tests.

In the mentioned gamified environment, the adopted game aspects are the competition between
the two teams, the scoring system, and a leaderboard showing testers with the highest score. These
elements have been proved by the authors of the tool as positively engaging the testers in their
mutation testing activities, encouraging them to test the SUT more thoroughly. Thus, gamification
of software testing activities can be seen as an incentive for software testers to perform more thor-
ough and systematic testing of the SUTs. In Section 2.4 (Related Work), we discuss more thoroughly
the existing findings in secondary studies about gamified Software Engineering and Software
Testing.

2.3 Multivocal Literature Reviews

A Multivocal Literature Review (MLR) differs from a Systematic Literature Review (SLR)

in that it includes the Grey Literature (GL) in addition to the White Literature (WL) [40]. Grey
Literature is defined as what is produced on all levels of government, academics, business and indus-
try in print and electronic formats, but which is not controlled by commercial publishers, i.e., where
publishing is not the primary activity of the producing body [46]. Adams et al. classify Grey Litera-
ture into three different categories: 1st tier (or high credibility), which includes books, magazines,
government reports, and white papers; 2nd tier (or moderate credibility), including annual reports,
news articles, presentations, videos, question-and-answers websites; 3rd tier (or low credibility),
including blogs, evidence from e-mails, posts on social networks [3].

A formalization of the MLR methodology for SE has been provided only recently by Garousi
et al. [24]. The authors base their guidelines on well-established methodological guidelines to con-
duct traditional Systematic Literature Review, while stressing the benefits provided by having an
overview on both the state of practice and academic state-of-the-art. The combination of the two
points of view, in fact, allows to analyze and understand emerging trends coming from dual per-
spectives, therefore reducing the risks of neglecting aspects of the topic.

Rigorous MLRs have recently been conducted in the field of SE to investigate, for instance, the
need for automation for software testing [25] and software test maturity assessment and test pro-
cess improvement [22].

2.4 Related Secondary Studies

Many works are available in the literature discussing the application of gamified approaches to
various aspects of the discipline of Software Engineering [21].

Compared to existing secondary studies related to the application of gamification to software
testing [14, 35], we assessed an extended set of testing-related dimensions, considering testing lev-
els, phases, methodologies (compatible with the mentioned studies), domains, and proposed tools

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:7

(which were not analyzed in previous literature). Another additional characterization, previously
unexplored, focuses on the applied game elements and their classification according to the Octaly-
sis core drivers. We also perform an analysis of future challenges, pros, and cons presented by the
sources.

A complete discussion of related secondary studies is reported in online Appendix A.

3 RESEARCH METHOD

To conduct the MLR, we followed the guidelines for including grey literature in reviews for the
software engineering discipline, provided by Garousi et al. [24]. These guidelines extend Kitchen-
ham’s guidelines for conducting Systematic Literature Reviews [32]. The procedure of conducting
an MLR is divided into three distinct phases:

(1) Planning: In this phase, the need for conducting the MLR is established, and the goals and
review questions of the MLR are specified;

(2) Conducting: The MLR is conducted by defining the search process, selecting the sources,
assessing the quality of the sources, extracting and synthesizing the collected data;

(3) Reporting: The review results are reported and tailored to the selected destination audience.

3.1 Planning

This section describes the sub-phases of the Planning phase: motivating the need for an SLR, defin-
ing the goals for the review, and formulating the Review Questions to answer.

3.1.1 Motivation behind Conducting an MLR. To motivate the need for a literature review, we
utilize the decision table proposed by Garousi et al. [24], based on the guidelines by Adams et al. [3].
According to these authors, one or more positive answers to the question in the decision table
suggest the inclusion of grey Literature in addition to White Literature in a review. The inter-
ested reader can find a detailed motivation for the positive answers to each question in the online
Appendix B.

3.1.2 Goals and Review Questions. When defining the review questions, we identified three
main goals for this review work:

• Goal 1: Provide a mapping of the studies regarding the utilization of gamified mechanics in
the software testing discipline.
• Goal 2: Identify contexts in the discipline of software testing to which gamification is applied,

i.e., identify which levels, phases, and testing methodologies are addressed by the collected
literature, what are the application domains considered, and which testing tools are lever-
aged and possibly extended.
• Goal 3: Characterize the gamification mechanics, tools, and elements applied to testing and

the provided advantages, drawbacks, and open challenges in the field.

We formulated a set of Review Questions for each of the defined goals to analyze the three
identified aspects in-depth. The Review Questions are reported in Table 2.

3.2 Conducting

In this section, we report the methodology employed in the Conducting phase and its sub-phases:
selection of literature sources, formulation of the search strings, definition of the paper selection
process, definition of the data extraction procedure. The process is synthesized in the diagram in
Figure 1. The details of each step of the Literature Review are reported in Appendix C.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:8 T. Fulcini et al.

Table 2. The review questions used for the data extraction

Goal 1: mapping of the contributions

RQ1.1 What are the different categories of contributions of the considered sources?

RQ1.2 Which research methodologies have been applied in the considered sources?

Goal 2: Testing-focused characterization

RQ2.1 To which testing level is gamification applied?

RQ2.2 To which testing phase is gamification applied?

RQ2.3 What are the testing methodologies considered by the contribution?

RQ2.4 What are the existing testing frameworks or tools adopted by the papers?

RQ2.5 What is the language/domain of the testing tool that is gamified?

RQ2.6 Is gamification applied with a practical or educational focus?

Goal 3: Gamification-focused characterization

RQ3.1 Which are the gamification mechanics adopted for gamified software testing practice and education?

RQ3.2 Which are the tools available to perform gamified software testing practice and education?

RQ3.3 Which are the advantages of gamification and which are the empirical results, if any available?

RQ3.4 Which are the drawbacks of gamification and which are the empirical results, if any available?

RQ3.5 Which are the discussed challenges, open questions, and focus areas for future research directions?

Fig. 1. Process of conduction of the literature review.

3.2.1 Search Approach. To conduct the review, we applied the following steps:

• Application of the search strings: The specific strings were applied to the selected online
libraries (for white literature) and on the Google search engine (for grey literature);
• Search bounding: To stop the search for grey literature and to limit the number of sources to

a reasonable number, we applied the Effort Bounded strategy, i.e., we limited our effort to the
first 100 Google search hits as suggested by Garousi and Mäntylä [25]. On the 10th page (i.e.,
over the 100th entry) no relevant contributing source was found, confirming the hypothesis
that relevant results usually appear only on the first pages. Therefore, having no reason to
proceed further, the effort limit was set at 100;
• Removal of duplicates: In our pool of sources, we consider a single instance for each source

that is present in multiple repositories;
• Application of inclusion and exclusion criteria: We defined and applied the inclusion and ex-

clusion criteria directly to the sources extracted from the online repositories, based on an
examination of titles, keywords, and abstracts of the papers;

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:9

Table 3. Number of Papers after Quality Assessment of

Sources Defining the Final Pool

Backward Forward Quality
Repository Search IC/EC Snowballing Snowballing Assessment

IEEE Xplore 328 17 23 25 21
ACM Digital Library 151 8 14 17 12
Springer Link 396 3 3 3 2
Elsevier Science Direct 231 1 2 2 2
Google Scholar - WL 95 11 12 16 11
Google Search - WL 45 3 3 3 2
Google Scholar - GL 20 9 9 12 11
Google Search - GL 55 18 20 20 12

Total - WL 1,246 43 57 66 50
Total - GL 75 27 29 32 23

• Backward Snowballing [30]: All the articles in the reference lists of all sources were added to
the preliminary pool and evaluated through the application of the previous steps. We also
added to the pool of grey literature the grey literature sources cited by white literature;
• Forward Snowballing [30]: We looked for articles in the online libraries and in the search

engine that cited sources in the pool and, if not already present, we added them to the pool;
• Quality assessment: Every source from the pool was entirely read and evaluated in terms of

the quality of the contribution;
• Documentation and analysis: Information about the final pool of paper was collected in a

form including all data needed to answer the formulated review questions.

3.2.2 Final Pool of Sources. The papers that resulted from the search merging the different
digital libraries were a total of 1,221: 328 from IEEE Xplore, 151 from ACM Digital library, 396
from Springer Link, 231 from Science Direct, and 115 from Google Scholar (of which, one item
was repeated twice). The search for grey literature was limited to the first 100 results from Google.

The total number of collected items was 1,321, counting both grey and white literature. After
removing the duplicates, the papers remaining were 1,293. After removing duplicates, inclusion
and exclusion criteria were applied; this operation has shrunk the number of resources in the pool
to 70 units, 43 items of white and 27 of grey literature.

The following step was the backward snowballing: From the selected papers, a total of 1,562
sources came up, including duplicate papers both from the initial set and within the resulting pool.
We applied duplicate removal and inclusion/exclusion criteria to this resulting group obtained
through snowballing. This first snowballing process allowed us to add 16 results (14 white papers
and 2 items of grey literature). Each title of the contribution found this way has been searched
in the same starting digital libraries to assign the newly discovered publications in the correct
repository, as shown in Table 3.

The same process was used for the forward snowballing, where the total number of retrieved
studies was 1,281. After the filter was applied, we included the remaining 12 items (9 pieces of
white literature and 3 of grey literature). The resulting set of literature has been subjected to quality
assessment.

After applying the stages described in the previous sections, our final pool included 73 sources.
The full list of sources is reported as online additional material in Appendix D. Table 3 breaks down
the number of sources that were present in the pool after each of the review stages. We report the
information about all contributions in a publicly available spreadsheet.2 Our final pool comprised
50 white literature sources and 23 grey literature sources. The number of grey literature sources
found is about half of the number of white literature sources. This can be considered as a first
confirmation of the need to include such sources in a literature review.

2https://doi.org/10.6084/m9.figshare.19804147.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

https://doi.org/10.6084/m9.figshare.19804147

310:10 T. Fulcini et al.

Fig. 2. Number of white and grey literature sources per year.

Fig. 3. Number of white and grey literature sources per category of source.

The distribution of sources per year is reported in Figure 2. The chart discriminates between
grey and white literature sources. For grey literature sources, we considered the “first published”
parameter as the year of publication without taking into account further modifications of the web
pages. We observe a steady increase in the number of sources starting from 2016 for both types
of literature. The increase in the number of grey literature sources with the year of publication is
an expected result, since the Effort Bounded strategy (i.e., including only the top N search engine
hits [24]) for searching the Google engine tends to favor more recent sources. At the same time,
older grey literature sources that are not permanently archived can become unavailable several
years after publication. We cannot find an immediate rationale for the absence of grey literature
sources from 2020 or for the decrease in the number of both types of sources in 2014–2015.

The distribution of the sources for contribution type is reported in Figure 3. Regarding white
literature sources, we collected 35 works published in conference proceedings, 8 journal papers,
and 7 works published in companion proceedings of conferences (i.e., workshop papers). Regarding
grey literature, master theses were the most frequent type of contribution, with 9 sources. We also
included one PhD dissertation in the pool and 3 preprints. These numbers testify that academia
plays a fundamental role also in the production of grey literature sources about software testing
gamification. Finally, we counted 5 blog posts, 1 documentation web page, 2 webinar presentations,
1 item from a question-and-answer website (namely, StackExchange), and 2 tech talks.

Figure 4 shows the number of sources per type of contributors. The sources were divided
into three different categories: (i) academia, i.e., sources whose all authors were affiliated with

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:11

Fig. 4. Number of sources by type of contributors. Fig. 5. Number of sources by category of contribution.

universities or research institutions; (ii) industry, i.e., sources whose all authors were working
in the industry; and (iii) collaboration, i.e., sources for which at least one author was affiliated
with university or research institutions and at least one author was working for the industry.
All-academic sources outnumbered all industrial sources (44 vs. 1 for WL, 13 vs. 10 for GL).
Collaboration works were present only among WL sources (5 items).

4 RESULTS

4.1 RQ1 - Mapping

4.1.1 Categories of Contributions (RQ1.1). From all the resulting sources, five main categories
of contribution were found:

(1) Experiment report, i.e., works that describe the methodology of the empirical evaluation car-
ried out and/or report the results of the on-field experimentation of gamified mechanics;

(2) Framework, i.e., works that propose and present a set of rules or mechanics to be fully or
partially implemented or to evaluate gamified approaches;

(3) Tool presentation, i.e., works that are aimed at the presentation of a tool to support or realize,
in a gamified environment, the software testing process or any of its sub-activities;

(4) Guidelines, i.e., works that argue on how and when to use a specific tool, exploring effects,
challenges, and solutions possibly with data from previous experiments;

(5) Discussion, i.e., works arguing about problems related to GUI testing and analyzing possible
solutions or tool overview, explaining the main concepts, without going into details (posters,
discussion about supposed effectiveness of game mechanics, etc.).

The difference between experiment reports and guidelines is that while the former argues on
the result of one single case of application of a particular tool, the latter provides an analysis at a
higher level of abstraction.

We assigned one or more categories (i.e., categories are not mutually exclusive) to each literature
item by application of open coding. The bar plot in Figure 5 reports the number of sources that were
assigned to each category. We observe that, for white Literature sources, the most common types
of contribution were Experiment Reports (26 sources) and Tool presentations (25 sources), while
the numbers of theoretical frameworks, guidelines, and discussion papers were limited. However,
for grey Literature sources, we identify a prevalence of contributions that we flagged as Discus-
sion (10 sources) followed by Tool Presentation (7 sources) and reports. This result suggests that
the grey Literature sources about gamification in software testing are less technical than White
Literature ones, and that no actual validation of the benefits of gamification is carried out outside
peer-reviewed academic research efforts.

4.1.2 Methodologies Applied (RQ1.2). We divided the sources into four different methodological
categories by utilizing a subset of the categorization provided by Petersen et al. [42]. We assigned

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:12 T. Fulcini et al.

a single category (the most formal applicable) to each source, i.e., research methodologies were
considered mutually exclusive. The four research typologies that we considered are the following:

(1) Descriptive and opinion studies: The studies in this category provide anecdotal evidence and
theoretical opinions about gamification in software testing. The studies in this category do
not propose any technical solution to improve or analyze the context of gamification in
software testing.

(2) Solution proposals: The studies in this category describe and detail technical solutions (e.g.,
gamification tools, frameworks, and extensions of existing tooling with gamified mechanics).
The studies only describe the solutions without performing any evaluation of them.

(3) Experience reports and case studies: The studies in this category perform and detail evalua-
tions of tools, frameworks, or gamified mechanics. Such evaluation is conducted utilizing
experience reports and/or industrial case studies. The studies in this category feature small-
scale experiments that do not involve formal empirical methods.

(4) Empirical studies: The studies in this category provide evaluations of tools, frameworks,
and/or components for gamification of software testing by setting up formal empirical stud-
ies (e.g., with the planning of controlled experiments, formulation of research questions, and
hypothesis testing).

In Figure 6, we report the distribution of the sources from the final pool according to the type
of research methodology adopted. The largest set was that of solution proposals (23 studies, 17
WL and 6 GL), followed by Descriptive studies (18 studies, 7 WL and 11 GL), Case Studies and
Reports (17 studies, 12 WL and 5 GL), and Empirical Research (13 studies, 12 WL and 1 GL). These
results confirm an expectable predominance of solution proposals and descriptive studies in grey
literature, with a higher prevalence of empirical research (12 sources out of 48) in white Literature.

4.2 RQ2 - Testing-focused Characterization

4.2.1 Testing Levels. We referred to the traditional test automation pyramid to identify the test-
ing levels covered by the gamification mechanics described in the sources. Therefore, we identify
three different testing levels:

• Unit testing: lowest testing level, with individual atomic code units tested separately;
• Integration testing: this second testing level is meant to combine the different existing

units by verifying their collective behavior;
• System testing: highest testing level, which is meant to test the finite system as a whole.

System testing includes practices such as End-2-End testing (i.e., testing the system by ex-
ecuting the end-user’s use cases) and GUI-based Testing (i.e., End-2-End exercised through
the Graphical User Interface of the finalized system, which also includes a verification of the
actual presentation of the SUT). Although, in many cases, the GUI and E2E test level can
match, in some contexts, the system can be a complex environment of multiple elements
interacting without the aid of any graphical presentation (e.g., in the IoT domain).

We identify in each source the testing levels to which the discussed gamification aspects were or
could be applied. The categorization was not considered mutually exclusive, since a single tool or
technique can cover different levels of the testing practice. For papers not mentioning any specific
testing level, we considered the testing level as undefined.

In Figure 7, we report the distribution of the sources according to the mentioned testing level.
We identify Unit testing as the most mentioned testing level in sources applying gamification to
testing (41 mentions, 33 WL and 8 GL), followed by system-level testing (19 mentions, 12 WL and
7 GL), and integration (8 mentions, all from WL). 13 sources (5 WL, 8 GL) did not explicitly specify

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:13

Fig. 6. Number of sources by research methodology. Fig. 7. Number of sources by mentioned testing

level.

any testing level, and no information could be deduced by reading the implementation details
provided. It is worth noting that unit testing is more mentioned in white literature, while grey
literature is equally focused on system and unit testing. This result can be justified by the more
industrially leant orientation of grey literature, which is more likely to discuss or evaluate system
testing frameworks to be directly used by practitioners. 14 sources in the pool (6 from WL, 8 from
GL) did not explicitly mention any testing level to which the tools, frameworks, or guidelines for
gamification could be applied.

4.2.2 Testing Phases. The second aspect of the testing discipline we analyzed is the testing
phase that the gamification tool, mechanic, or framework supports.

We consider the following phases of the testing discipline:

(1) Design: the phase of planning a testing session, by defining the methodology, target, test
conditions, test input, and test oracles;

(2) Creation: the implementation phase of the test suite, which involves the definition of all
the test steps and/or the code writing if the test methodology is scripted;

(3) Execution: the phase in which the test sequences are executed and the results are evaluated.
This activity can be performed automatically by executing existing test scripts or manually
by a tester with a direct interaction with the system;

(4) Reporting: the description of the results obtained in the execution phase. A detailed report
documents the found defects, faults, and possible non-functional properties measured during
the execution of test cases;

(5) Maintenance: the process of evolution of the test suite to resolve issues in the suite itself
or to co-evolve with the SUT.

We collected from all the sources the test phases to which the discussed gamification aspects
were or could be applied. The categorization was not considered mutually exclusive, since it is
possible that a single tool or methodology covers different phases of the testing process. For papers
not mentioning any specific testing phase, we considered the testing phase as undefined.

In Figure 8, we report the distribution of the sources according to the mentioned testing phase.
The majority of the literature items discussed the application of gamified mechanics in the phase of
test creation (32 WL and 11 GL items), closely followed by test execution (22 WL and 19 GL items).
We found a largely smaller number of items mentioning the phases of test design, maintenance, and
reporting. 6 sources (4 WL, and 2 GL) did not explicitly mention any testing phase. Interestingly,
no GL items discussed the phases of test design and test maintenance, suggesting a lesser interest
from non-academic sources in these phases of the verification and validation process.

4.2.3 Testing Methodologies. Throughout the analysis of all the selected sources, we found the
mention of 11 different methodologies for testing. We did not consider the testing methodologies

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:14 T. Fulcini et al.

Fig. 8. Phases of the testing process mentioned

in the selected papers.

Fig. 9. Testing methodologies mentioned in the

selected papers.

as mutually exclusive in the literature sources, as some items explicitly report the adoption of
different testing methodologies during the use of the gamified environment. In Figure 9, we report
the distribution of the sources according to the mentioned test methodology.

The methodologies that were mentioned the most in the selected sources were White-box
testing (13 WL, 3 BL), Black-box testing (12 WL, 3 BL), Mutation testing (12 WL, 3 GL). Some
methodologies to test non-functional properties were present: Performance testing (one source),
Security testing (one source), Penetration testing (one source), Interoperability testing (one source),
Usability testing (three sources). Over the whole set, there were 11 WL sources and 10 GL sources
not mentioning any specific testing methodology. 21 sources (11 WL, 10 GL) did not explicitly
state any testing methodology on which gamification was applied.

From the selected literature, it is evident how the focus of GL is less aimed towards developers
or testers who define test scripts at the code level: The most mentioned testing methodologies in
GL were, in fact, Exploratory testing (5 sources) and Capture & Replay (3 sources).

4.2.4 Testing Frameworks/Tools Adopted. We report all the existing testing tools or frameworks
that were adopted by the retrieved items in Table 4. We retrieved mentions of 18 different testing
tools in our literature pool. For each testing tool, we report the tool name, a short description, a
URI for tool retrieval, and the literature sources where it is mentioned.

What emerges from Table 4 is that the most used tool is by far JUnit, the most widely used
tool to develop, execute, and report the results of unit test cases in Java. The tool was mentioned
in 14 different literature sources. Other tools that were mentioned multiple times were Scout, an
augmented tool for visual GUI testing described in white literature by Nass et al. (4 mentions),
Major Mutation Framework, EvoSuite, and the code coverage tool JaCoCo (all with 2 mentions).
Several tools were mentioned only in GL Sources, Bugzilla, GUnit, Nose, and Unittest. It is worth
mentioning that over the 60% of the items (45 over 73) did not specify the tool used (either bespoke
or already available).

4.2.5 Languages and Domains. A further categorization can be performed about the program-
ming languages and domains addressed by the pool of studies. In Table 5, we report the target
languages mentioned by the papers and the specific literature items mentioning them. Accord-
ing to our investigation, the most targeted language is Java, in accordance with the most used
tool (JUnit), which is specifically used for unit testing in Java. Our findings agree with the study
of Abdullahi et al. [2] that reports Java as the most used testing language. In fact, we observe
that a consolidated infrastructure is often the starting point for the development of new tools;
this explains why many gamified tools adopt Java as the target language. Additionally, StackSocial

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:15

Table 4. Testing Tools and Frameworks Mentioned in Selected Literature Sources

Tool Name Description URL Mentions

Bugzilla Bugzilla is a web-based bug tracking system and
testing tool.

https://www.bugzilla.org/ [GL10]

EclEmma EclEmma is a free Java code coverage tool for
Eclipse

https://www.eclemma.org/ [WL49]

EvoSuite EvoSuite is a tool for automatic test cases gener-
ation with assertions for classes written in Java.

https://www.evosuite.org/ [WL06], [GL19]

GUnit GUnit is a library that extends Google. Test and
adds support for Gherkin to it.

https://github.com/cpp-
testing/GUnit

[GL06]

IBM Rational
Functional
Tester

IBM Rational Functional Tester provides auto-
mated testing capabilities for functional, regres-
sion, GUI, and data-driven testing.

https://www.ibm.com/products/
rational-functional-tester

[WL49]

JaCoCo JaCoCo is a free Java code coverage library dis-
tributed under the Eclipse Public License.

https://www.jacoco.org/ [WL14], [GL06]

JUnit JUnit is an open source unit testing framework
for Java programming language.

https://junit.org/ [WL01], [WL02], [WL03], [WL05], [WL14],
[WL22], [WL27], [WL32], [WL39], [WL40],
[WL49], [GL11], [GL16], [GL19]

Major Major is a mutation analysis framework that en-
ables to generate and embed mutants during the
compilation and run the actual mutation analy-
sis.

https://mutation-testing.org/ [WL06], [GL19]

Mockito Mockito is an open-source testing framework for
Java supporting test cases’ creation, execution,
and report.

https://site.mockito.org/ [WL02]

MuJava MuJava is a system for Java that automatically
generates mutants for both traditional mutation
testing and class-level mutation testing.

https://cs.gmu.edu/offutt/mujava/ [WL10]

Nose Nose is a tool that extends Unittest by collect-
ing tests automatically and organizing the library
and test code.

https://nose.readthedocs.io/ [GL23]

PMD PMD is a static source code analyzer allowing the
identification of code smells.

https://pmd.github.io/ [WL04]

Randoop Randoop is a unit test generator for Java. It au-
tomatically creates unit tests for your classes in
JUnit format.

https://randoop.github.io/
randoop/

[WL14]

Redmine Redmine is an open-source web-based cross-
platform and cross-database project management
and issue tracking tool.

https://www.redmine.org/ [WL03]

Scout It records and learns from manual test sessions.
The system keeps track of coverage and issues
and can estimate the quality of the app so the
tester knows when to stop testing.

https://store.synteda.se/product/
eyescout/

[WL33] [GL02], [GL03], [GL05]

Selenium Selenium is an open-source tool for the auto-
mated management of browsers. It is used as a
web testing framework.

https://www.selenium.dev/ [WL01]

Testlink Testlink is an open-source web-based test and re-
quirement management system allowing the cre-
ation, management, and plan of test cases.

https://testlink.org/ [WL01], [WL03], [WL11]

Unittest Unittest is a framework supporting test automa-
tion for Python and aggregating tests into col-
lections. Tests are independent of the reporting
framework.

https://docs.python.org/3/library/
unittest.html

[GL23]

Table 5. Language Used in the Discussed Gamification Tools or Frameworks

Language
Name

Mentions

C [WL31], [WL48], [WL50]
C++ [WL15], [WL50]
Java [WL02], [WL03], [WL04], [WL05], [WL06], [WL10], [WL13], [WL14], [WL19],

[WL21], [WL22], [WL24], [WL26], [WL27], [WL32], [WL39], [WL40], [WL44],
[WL45], [WL47], [WL49], [WL50], [GL01], [GL06], [GL11], [GL14], [GL15],
[GL16], [GL19]

Javascript [WL42]
Python [WL31], [WL50], [GL23]
SQL [WL50]

reports Python as the most used in universities to teach coding [49], for this reason, it appears
natural to also consider Python for gamified testing in education. Although the interest in Python
is rising, its actual usage spread in universities around the world is more recent mainly because
academic courses are less prone to change a consolidated language than practitioners. It has to be
underlined that the majority of the contributions did not specify any language (39 over 73). We
did not assign any categorical value to all the studies that did not explicitly mention a language.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

https://www.bugzilla.org/
https://www.eclemma.org/
https://www.evosuite.org/
https://github.com/cpp-testing/GUnit
https://www.ibm.com/products/rational-functional-tester
https://www.jacoco.org/
https://junit.org/
https://mutation-testing.org/
https://site.mockito.org/
https://cs.gmu.edu/offutt/mujava/
https://nose.readthedocs.io/
https://pmd.github.io/
https://randoop.github.io/randoop/
https://www.redmine.org/
https://store.synteda.se/product/eyescout/
https://www.selenium.dev/
https://testlink.org/
https://docs.python.org/3/library/unittest.html

310:16 T. Fulcini et al.

Table 6. Target Domain for the Proposed Gamification Tools or Frameworks

Domain Mentions

IoT [WL38]
Mobile [WL33], [WL35], [WL36], [GL03], [GL13]
Web [WL11], [WL29], [WL33], [GL02], [GL04], [GL05]

Fig. 10. Educational or practice focus of the sources. Fig. 11. Number of mentions for each category of me-

chanics in the Octalysis framework.

In Table 6, we report the target domains mentioned by the papers and the specific literature items
mentioning them. We identified two main domains to which pieces of literature could be assigned:
the web domain (6 sources) and the mobile domain (5 sources). One literature source mentioned
both web and mobile domains. One additional paper was specifically tailored for the Internet of
Things domain. The sparsity of the data also characterizes the testing domain: Only 11 items over
a total of 73 (less than 20%) explicitly identified a domain for the gamified technique or tool. It can
be assumed that most of the remaining sources describe approaches that are not domain-specific.

4.2.6 Educational or Practical Focus. We discriminate between three different focuses for the
sources that we consider:

• Educational: The source presents a gamified environment or tool for the only purpose of
educational aspects of the software testing discipline.
• Practice: The source presents a gamified environment or tool whose primary purpose is to

support and improve the execution of the testing activity at any phase or level.
• Mixed: The source presents a gamified tool, environment, or framework that can be used to

improve both educational aspects or to perform at least one of the testing phases.

Figure 10 reports the distribution of sources for each of the three categories, divided by grey
literature and white literature. The majority of the sources deals with the practical aspect of the
application of gamification to software testing, with an even distribution between grey literature
and white literature. Educational-focused sources come principally from items of white literature.
Unsurprisingly, we notice that grey literature provides contributions mostly for testing practice.

4.3 RQ3 - Gamification-Focused Characterization

4.3.1 Gamification Mechanics. In Table 7, we report all the gamification mechanics proposed,
adopted, or mentioned in the final pool of sources. We applied a coding procedure to the mechanics
described in the sources by labelling each one with one of the mechanics codified in the Octalysis
framework. In the table, we report the name of the mechanic, its definition, the synonyms with
which the mechanic is also mentioned, and all the sources in which it is mentioned. We also report
for each mechanic the Octalysis core driver to which it can be assigned. This way, we are able
to provide a higher-level characterization of the gamification mechanics mentioned in software
testing literature.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:17

Table 7. Game Mechanics Mentioned and Utilized in the Pool of Literature Sources

Mechanic
Octalysis Core

Drive
Definition Synonyms Mentions

Achievements Accomplishment A mechanism to show the user his or her
progress and achievements within the system.

- [WL16], [WL17], [WL24], [WL25], [WL28],
[WL47], [GL12], [GL17], [GL23]

Auction Ownership A part of the gaming session where players bid
to obtain particular virtual goods or real
resources.

- [WL30], [GL18]

Badges Accomplishment Graphical rendition of a particular achievement
that can be used to enrich a player’s profile or to
certificate the fulfillment of certain target.

Medals, Titles. [WL01], [WL03], [WL13], [WL16], [WL17],
[WL20], [WL28], [WL34], [WL36], [WL39],
[WL47], [GL01], [GL04], [GL06], [GL10], [GL14],
[GL16], [GL18], [GL21]

Challenges Empowerment Challenges to motivate a player to perform a
certain task under a particular set of assigned
conditions.

- [WL01], [WL14], [WL21], [WL22], [WL25]

Duels Social Influence A clash involving two or more players or
factions where only one of them may prevail.

Battle, Combat
System

[WL02], [WL05], [WL06], [WL07], [WL12],
[WL14], [WL16], [WL17], [WL19], [WL27],
[WL32], [WL40], [GL11], [GL19]

Easter egg Unpredictability A message, image, or other types of hidden
features that can be used to encourage
exploration from the user and can add
unpredictability to the gamified session.

- [WL33], [GL02], [GL03], [GL05]

Experience
points

Accomplishment Marker that a system uses to represent the
progression of a player in completing tasks or in
the step necessaries to complete it.

Reputation
Building,
Progress Bar

[WL03], [WL18], [WL33], [WL42], [WL47],
[GL02], [GL03], [GL04], [GL05], [GL15]

Feedback Empowerment Additional information about the performed
task provided to the user or encouraging
messages to continue in performing the task.

Continuous
Feedbacks,
Visual Artifacts,
Discovery
Marker

[WL01], [WL02], [WL05], [WL06], [WL10],
[WL18], [WL22], [WL25], [WL33], [WL34],
[WL36], [WL39], [WL40], [WL43], [WL44],
[GL01], [GL02], [GL03], [GL05], [GL06], [GL08],
[GL09]

Hints Empowerment Information that can be given to players under
their request to support them in solving puzzles,
answering questions, or completing generic
tasks.

Cascading
Information,
Permission to
Fail

[WL15], [WL26], [WL28], [WL36], [WL44],
[WL46]

Leaderboard Accomplishment A system providing a ranking and comparison
between the scores obtained by all users of the
gamified system.

Ranking,
Competition

[WL01], [WL02], [WL03], [WL04], [WL05],
[WL06], [WL07], [WL08], [WL09], [WL10],
[WL13], [WL14], [WL16], [WL17], [WL21],
[WL22], [WL24], [WL26], [WL28], [WL33],
[WL39], [WL40], [WL41], [WL47], [WL48],
[WL49], [GL01], [GL02], [GL03], [GL05], [GL06],
[GL07], [GL14], [GL16], [GL18]

Levels Unpredictability Player’s progression (typically obtained through
Experience Points) or system’s progressive
complexity.

Worlds [WL01], [WL03], [WL08], [WL09], [WL12],
[WL13], [WL15], [WL16], [WL17], [WL22],
[WL24], [WL26], [WL28], [WL34], [WL44],
[GL04], [GL08], [GL14]

Profile Ownership The system offers a space that contains
information about the specific user and can be
customized by the user.

Avatar [WL03], [WL04], [WL16], [WL17], [WL18],
[WL20], [WL25] [WL34], [WL35], [WL36],
[WL41], [GL05], [GL17], [GL20]

Punishments Avoidance Consequences to bad behavior or performance
performed by a player, concretized into
penalties.

Penalties [WL25], [WL34]

Puzzles Accomplishment Challenges with simple rules that require
specific actions by the users.

- [WL02], [WL05], [WL06], [WL15], [WL19],
[WL23], [WL27], [WL32], [WL40], [WL44],
[WL46], [WL50], [GL11]

Quest Scarcity The system or other users ask the user to
perform a certain activity under predefined
conditions to advance in the story.

- [WL10], [WL16], [WL17], [WL18], [WL24],
[WL03], [WL34], [WL47], [GL15], [GL17],
[GL08]

Quiz Scarcity A series of questions that can have a set of
possible answers or open questions.

- [WL04], [WL08], [WL49]

Randomization Unpredictability Usage of a random generator to generate an
event or to decide its outcome.

Dice Game,
Random
Rewards,
Randomizer,
Spin the Wheel

[WL11], [WL42], [GL13], [GL22]

Rewards Accomplishment A form of reward that is given by the system in
response to a milestone or is exchanged
between player in response of an event. It can
lead to awarding in the real world.

Gift [WL03], [WL07], [WL20], [WL25], [WL26],
[WL29], [WL34], [WL39], [WL41], [WL49],
[GL07], [GL08], [GL09], [GL10], [GL12], [GL21],
[GL22]

Score Accomplishment Users can earn virtual points after performing
specific actions in the gamified system. The
score is tracked in the system, and in some cases
can be used to obtain other game mechanics
(e.g., experience points, virtual goods) .

Points [WL01], [WL02], [WL04], [WL05], [WL06],
[WL07], [WL08], [WL09], [WL10], [WL12],
[WL13], [WL14], [WL15], [WL16], [WL17],
[WL18], [WL19], [WL20], [WL21], [WL22],
[WL26], [WL27], [WL28], [WL32], [WL33],
[WL34], [WL38], [WL39], [WL40], [WL41],
[WL44], [WL48], [WL49], [GL01], [GL02],
[GL03], [GL05], [GL06], [GL08], [GL11], [GL14],
[GL16], [GL19], [GL20], [GL21], [GL22]

(Continued)

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:18 T. Fulcini et al.

Table 7. Continued

Mechanic
Octalysis Core

Drive
Definition Synonyms Mentions

Social interac-
tion

Social Influence The feature of a system allowing players to
interact in a textual or vocal way, allowing direct
information exchange between different users.

Social Features [WL01], [WL24], [WL03], [WL49]

Storytelling Epic Meaning A narration layer in which players and actions
are involved in a fictional story that adds
context to actions and real or fictional
characters that are part of the system.

Stories, Story [WL11], [WL24], [WL42], [GL22]

Teams Social Influence Cooperation between different players with the
same goal.

Collaboration [WL16], [WL17], [WL34], [WL38], [GL20]

Timing Scarcity Users are given a certain amount of time in
which they ought to perform or complete a
specific activity.

Timing
Experience,
Time Pressure,
Timer

[WL04], [WL09], [WL13], [WL15], [WL18],
[WL26], [WL30], [WL39], [GL13], [GL14]

Virtual goods Ownership Game assets belonging to a virtual environment
can be traded to redeem virtual artefacts. Unlike
the score, which is usually used for ranking
purposes, virtual goods’ main purpose is to be
exchanged to obtain other game assets.

Virtual
Currency,
Currencies,
Shop System

[WL10], [WL16], [WL17], [WL20], [WL30],
[WL34], [WL34], [WL42], [GL05], [GL17],
[GL18]

We measure a median of 10 citations per gamification mechanic. 10 mechanics had more men-
tions than the median. The most popular mechanic was Score, which was implemented or discussed
in 45 different sources, followed by the highly correlated leaderboard mechanic (36 mentions), and
graphical feedback (22 mentions). The less-mentioned mechanics were Epic Meaning (one men-
tion), Punishment, and Auctions (two mentions each). The absence of punishment mechanics sug-
gests that research and development in the gamified testing field have mostly focused on providing
positive motivation to the users instead of negative disincentives.

In Figure 11, we report the number of mentions for each gamification core drive, according to the
Octalysis Framework. From the graph, it is evident how the main focus of available gamification
implementations for software testing is to provide Accomplishment to the users as a positive means
of motivation (43 WL and 21 GL mentions). Conversely, only two WL sources implemented me-
chanics related to the Avoidance dimension, which is related to the enforcement of correct patterns
by applying punishments and maluses to non-conforming users. Few mentions were also gathered
by the gamification mechanics related to the Epic Meaning macro category of the Octalysis frame-
work. We consider such a low number of mentions as an effect of the still prototypal nature of
most of the described tools, which did not allow for the implementation of complex narratives.

4.3.2 Gamification Tools and Frameworks. In Table 8, we report all tools and/or frameworks
mentioned or proposed in the selected literature. In the table, we report for each tool its name, a
brief description, the adopted gamification mechanics, the testing methodology supported by the
tool (if specified), and the literature item(s) where the tool or framework is mentioned. For tools
that are not explicitly provided with a name, we report the name of the authors of the papers
where the tool is first described. If the tool is mentioned multiple times in different literature items
and different mechanics are mentioned, then we report in the table all the mechanics that are
mentioned at least once in the set of papers mentioning the tool. As is evident from the table, we
have found the description of 30 different tools and/or frameworks in our pool of literature items.
Several tools were mentioned multiple times in the collected sources:

• CodeDefenders, originally described by Rojas and Fraser [WL05], is a serious game that has
originally been used to teach mutation testing in an academic context; which prototype was
first published in early 2016. In the following years, the tool received further development
introducing more features, along with several related experiments, which enriched the ex-
isting literature with experience reports of Code Defenders usage;
• HALO, originally described by Shet et al. [47] is an approach to gamifying software engineer-

ing with the MMORPG (Massively Multiplayer Online Role-Playing Game) game approach.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:19

Table 8. Tools Described and Used in the Collected Literature

Name Description Mechanics Methodology Mentions

Auction-based Bug
Management

It is a tool with the aim of improving software
productivity while developers are assigning tasks. Users
can bid in auctions to obtain the assignment of bugs to
fix.

Auction, virtual goods, timing,
badges, leaderboard

- [WL30], [GL18]

Bodhi Bodhi is a two-player game in which each player is
shown a piece of code snippet and is asked to choose
whether their partner would think there is a buffer
overflow vulnerability at a given position in the code.

Score, leaderboard White Box
Testing

[WL48]

Bug Catcher Bug Catcher is a web-based system for running software
testing competitions.

Score, leaderboard, timing,
hints, levels, rewards

Black Box
Testing

[WL26]

Bug Hunter Bug Hunter is a gamified environment in which
students have the goal to reach the final level achieving
the first ranking position. Bug Hunter includes a live
feedback mechanism and forums to foster, respectively,
competition and social interaction.

Achievements, profile, badges,
duel, leaderboard, level, score,
quest, teams, virtual goods

Black Box
Testing

[WL16], [WL17]

Cacciotto et al. A framework for building a plugin for GUI testing tools
exploiting gaming concepts.

Score, leaderboard, feedback,
easter egg, experience points

Exploratory
Testing, C&R

[WL33]

CleanGame A gamified software tool aimed to teach code smell
detection, composed of two independent modules:
Smell-related Quiz (i.e., questions about code smells
with multiple-choice answers) and Code Smell
Identification, which focuses on identifying code smells
in the source code.

Quiz, score, profile, timing,
leaderboard

- [WL04]

CoCoT The Code Coverage Testing Team (CoCoT) game is
an expansion to the Team Coordination game (TeC),
a zero-fidelity collaborative simulation.

Profile, score, teams White Box
Testing

[GL20]

CodeDefenders Code Defenders is a turn-based mutation testing game.
Two players are involved in each game: an attacker with
the aim of introducing faults and a defender with the
aim of writing tests.

Duel, score, leaderboard,
puzzles, feedback, challenges

Mutation
Testing

[WL02], [WL05],
[WL06], [WL14],
[WL19], [WL32],
[WL40], [GL11]

CodeMetropolis One such tool is CodeMetropolis, which is built on top
of the game engine Minecraft and which uses the city
metaphor to show the structure of the source code as a
virtual city.

Feedback - [WL43]

CoverBot CoverBot is a game for teaching statement coverage:
students act as a character whose survivability depends
on how effectively the player can execute all lines of
code in a given level with the fewest amount of inputs
possible.

Score, duel, levels White Box
Testing

[WL12]

DevRPG DevRPG incorporates RPG-like mechanics to the
everyday software development activity allowing the
creation of a character that reflects the player’s very
own skills and actions.

Achievements, challenges,
rewards, punishments, feedback,
profile

- [WL25]

EMVille EMVille is a web-based system through which the
human experts get involved in the process of analyzing
instances of the equivalent mutant problem through a
game.

Quest, score, virtual goods,
leaderboard, feedback

Mutation
Testing

[WL10]

HALO HALO is a plugin that uses game-like mechanics to
make the whole software engineering process,
particularly the software testing process, more engaging
and social.

Social interaction, quest,
storytelling, achievements,
levels, leaderboard

Black Box
Testing, White
Box Testing

[WL24], [WL47],
[GL15]

Gallotti It is a gamification plugin for visual GUI testing of web
applications

Score, leaderboard, feedback,
easter egg, experience points,
profile, virtual goods

Exploratory
Testing, C&R

[GL05]

GamiWare GamiWare is a SaaS open-source tool to support
gamification in iterative software processes.

Duel, score, rewards,
leaderboard

- [WL07]

GATE GATE is a game-based software testing tool that uses
human computation to support automatic test
generation, improving test adequacy.

Hints, puzzles Automate Test
Case
Generation

[WL46]

GOAL GOAL is a framework that supports the integration of
gamification in a software engineering environment.

Score, levels, leaderboard,
badges, social interaction,
feedback, challenges

- [WL01], [WL03]

GamiTracify GamiTracify is a gamification framework with the aim
of infusing engagement into human-centric traceability
tasks to record trace links.

Score, feedback, experience
points, profile, timing, quest

White Box
Testing

[WL18]

Greenify Greenify is a game with a purpose that generates test
data based on the program’s corresponding control flow
graph with the aim of covering special test paths.

Levels, timing, puzzles, hints,
score

White Box
Testing

[WL15]

Kucmann It is constructed in a two-player game setting. The
attacker selects mutants of a program, plays against the
defender, and selects test cases to find the mutants; their
objective is to win by the kill factor.

Duel, score Mutation
Testing

[GL19]

(Continued)

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:20 T. Fulcini et al.

Table 8. Continued

Name Description Mechanics Methodology Mentions

IoTCityLab IoTCityLab is a collaborative role-based multiplayer
game for IoT testing.

Score, teams Security
Testing,
Interoperability
Testing,
Performance
Testing

[WL38]

OATMEAL The OATMEAL gamified tool is an online interface that
presents data about the correctness of a set of code
samples on a set of test cases.

Puzzles White Box
Testing

[WL50]

OBB OBB is a community-based platform for the
dissemination of web vulnerabilities.

Rewards Penetration
Testing

[WL29]

Pipe Jam Pipe Jam presents the game player with a set of related
ball-and-pipe puzzles. Each pipe is either narrow or
wide, and the player is allowed to control the width of
some pipes. Each ball is either small or large. The
player’s goal is to ensure that the balls never get stuck.

Levels, puzzles, score, hints,
feedback

Black Box
Testing

[WL44]

Puzzle-based Au-
tomatic Testing
(PAT)

PAT is a puzzle-based testing environment that
generates test cases by decomposing complex problems
in small puzzles solved by humans

Puzzles Automated Test
Case
Generation

[WL23]

Rings Rings is a game with a purpose for test data generation
designed such that non-technical players can implicitly
generate test data for program units when solving the
game’s puzzles.

Score, leaderboard,
achievements, badges, hints,
levels

Automated Test
Case
Generation

[WL28]

Sun It is a gamified software testing training system
supporting practical training of black box, white box
testing, and defect repair

Score, leaderboard, levels, quiz White Box
Testing, Black
Box Testing

[WL08]

Testable Testable is a gamified tool designed to be used in
face-to-face education in undergraduate computer
science-related courses.

Storytelling, experience points,
virtual goods, randomization

- [WL42]

VU-BugZoo VU-BugZoo is a digital platform to teach software
testing based on a repository of faulty code.

Mutation
Testing

[WL31], [WL37],
[WL45]

WReSTT-CyLE (SEP-
CyLE)

It is a cyberlearning environment that uses several
learning and engagement strategies to help students to
learn software testing.

Score, leaderboard, badges,
timing, levels, rewards, social
interaction, quiz

White Box
Testing, Black
Box Testing

[WL13], [WL49],
[GL14]

The original tool has been utilized in [WL24] as a basis to implement the “Secret Ninja” ap-
proach by Kiniry and Zimmerman [31], which implies the application of gamification aspects
while keeping the users unaware of their presence. The experience with the usage of HALO
has been published later in other studies [WL47] and [GL15];
• VU-BugZoo was originally described by Silvis-Cividjian et al. [WL45] in a poster from 2020.

Its usage has been reported in two papers from 2021 ([WL31] and [WL37]) along with a
detailed description of the tool that extends the original proof of concept;
• WReSTT-Cyle (Web-based Repository of Software Testing Tools Cyber-Enabled Learning

Environments) was originally described by Clarke et al. [11] as a repository of learning
objects created with the goal of supporting software testing education. Subsequently, the
project evolved, assuming the name SEP-CyLE (Software Engineering and Programming)
first, extending the repository to support new topics, and finally, STEM-CyLE, with the ex-
tension to support the learning process of all STEM disciplines. Gamification was introduced
to support and empower the cyber-enabled learning environment, as mentioned in Reference
[12] and [WL13].
• Auction-based Bug Management, has originally been published as a master’s thesis [GL18]

and subsequently in a journal paper [WL30]. It proposes a gamified approach for bug man-
agement, where developers compete in a virtual auction to obtain the assignment of bugs.

It is worth noticing that three different tools were mentioned only in GL sources:

• CoCoT is an expansion for TeC, an existing serious game that supports team coordination and
communication skills. The tool is adapted to support educational aspects of testing, specif-
ically statement coverage and teamwork skills. This tool has been documented in a PhD
thesis by Alsaedi [GL20];
• Kucmann’s master’s thesis documents a tool that gamifies mutation testing inspired by Code

Defenders, which replaces players with machine learning agents [GL19];

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:21

Table 9. Advantages of the Application of Gamification to Software Testing

Category Name Description Mentions

Better User Experi-
ence

Challenge Users perceived the tasks as a dare to be
fulfilled in the best way

[WL26], [WL31], [WL44]

Cooperation Interaction with other users towards the
same goal

[WL11], [WL21], [WL23], [WL47], [GL12], [GL20]

Competition Interaction with other users competing
to be the best under a certain metric

[WL01], [WL02], [WL09], [WL10], [WL11], [WL25],
[WL26], [WL28], [GL07], [GL09], [GL22]

Control Monitoring of gamified activities [WL25]
Dynamicism A more open environment with greater

interactions
[WL21]

Ease of Use Intuitiveness of the environment [WL4], [WL44], [GL08]
Engagement Users’ feeling of being transported emo-

tionally
[WL02], [WL04], [WL06], [WL08], [WL10], [WL11],
[WL13], [WL14], [WL17], [WL20], [WL23], [WL24],
[WL25], [WL29], [WL32], [WL36], [WL37], [WL44],
[WL47], [WL48], [GL01], [GL02], [GL03], [GL06], [GL09],
[GL12], [GL13], [GL22]

Empowerment Users felt to be in control [GL09], [GL22]
Fun Users had fun while using the tool [WL01], [WL02], [WL06], [WL11], [WL12], [WL14],

[WL16], [WL17], [WL20], [WL24], [WL28], [WL31],
[WL32], [WL36], [WL48], [GL01], [GL04]

Higher Satisfaction Users were pleased of completing their
tasks

[WL17], [WL33], [WL36], [WL40]

Motivation Users were more willing to perform the
activity

[WL09], [WL13], [WL18], [WL20], [WL21], [WL26],
[WL28], [WL30], [GL04], [GL07], [GL09], [GL16]

Perceived Utility Users understood the usefulness of what
they were doing

[WL44], [WL47], [WL48]

Replay Value Interest in re-utilizing the gamified sys-
tem

[WL28], [WL48], [GL04]

Stress Reduction Lower levels of stress perceived by the
tester

[WL36], [GL15]

Higher Efficiency Crowdsourced Contribu-
tions

Community working together con-
tributes more than a single user

[WL23], [WL28], [GL12]

Decreased Costs Operational, infrastructural, or person-
nel costs decreased

[WL15], [WL28]

Flexibility The environment created was considered
very flexible

[WL03]

Informative Content Content provided to support users’ goal [WL01], [WL04], [WL11], [WL20], [WL43], [WL47],
[GL09], [GL18]

Reduced Effort Users need less operations, time, or re-
sources to complete the same tasks

[WL10], [WL23], [WL46], [GL08], [GL10], [GL18]

Higher Effective-
ness

Higher Coverage Improvement of coverage metric (code,
widget, etc.)

[WL06], [WL15], [WL23], [WL33], [WL40], [WL46],
[GL01], [GL02], [GL03]

Higher Mutation Score Improvement of the obtained mutation
score

[WL06], [WL40]

Improved Learning Improvement of average learning effect
in students

[WL02], [WL08], [WL13], [WL16], [WL21], [WL24],
[WL29], [WL31], [WL37], [WL40], [WL49], [GL05],
[GL06], [GL11], [GL15], [GL20], [GL22]

Increased Effectiveness Improvement of effectiveness of a testing
practice, according to the definition

[WL09], [WL10], [WL18], [WL48], [GL07], [GL15]

More Bugs Found Users identified more bugs [WL02], [GL01]
More Code Smells Users identified more code smells [WL04]
More Comments Added Users provided more bug reports [WL01]
More Issues Found Users identified more issues [WL01]
More Requirements Cov-
ered

Users created a test suite covering more
requirements

[WL01]

More Test Cases Generated Users produced more test cases [WL02], [WL46], [GL06], [GL07]

• Finally, one master’s thesis from the pool of grey literature proposed a prototype tool based
on the framework of Cacciotto et al. [WL33] for the gamification of Capture & Replay testing
of web applications, implementing profiles, currency, and achievement management [GL05].

No testing methodologies have been explicitly mentioned for several tools (i.e., Auction-based
Bug Management, CleanGame, CodeMetropolis, DevRPG, GamiWare, GOAL, and Testable).

4.3.3 Advantages of Gamified Software Testing. After the application of Open Coding, we came
up with 35 different codes, i.e., categories of advantages discussed by the selected papers. The
application of Axial Coding resulted in the identification of three main categories of advantages.
In Table 9, we report the complete list of codes in each category and, for each code, its description
and the sources where it is mentioned.

• Better User Experience. We include in this category all the discussed benefits related to the
user’s experience of the practice of software testing when gamified mechanics are adopted.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:22 T. Fulcini et al.

Under this category, the most mentioned benefit (20 WL and 8 GL sources) is a higher En-
gagement (or involvement) guaranteed for the testing activity when gamified mechanics are
implemented. Clegg et al. report quantitative results about enhanced engagement in the field
of unit testing [WL32]; Sun reports a better engagement in testing learning by 94% of the
sample of students interviewed [WL08].
Many studies (15 WL and 2 GL sources) identified gamified activities are more fun than
traditional testing activities. This aspect was especially highlighted in the context of testing
education: Fraser et al. report that, in the context of unit testing teaching, “Although students
tend to claim they do like to write tests even outside the game, they confirm it is more fun to do
so as a part of the game” [WL14].
Several gamification mechanics have been proven to provide additional Motivation to the
involved testers. Saloum and Rissanen report, in the context of unit testing, that “the use
of badges motivated most of the subjects to write better unit tests [...] and to complete the
tasks” [GL16]. Other mechanics that strongly enhance the user experience of testers are
Cooperation, and also healthy Competition with other players.
• Higher Efficiency. Efficiency, as defined by the ISO 9001 standard, is “the extent to which

time, effort or cost is well used for the intended task or purpose” [1].
We include in this category all the discussed advantages related to reduced efforts and
costs in test case definition, generation, or execution caused by the application of gamified
mechanics.
One of the most positively commented aspects of the environments described in the elicited
sources is the possibility of adding Informative Content to the gamified practices, thereby
reducing the effort required by the testers to gather information to complete the required
testing procedures. Lorincz et al., as the result of an experiment with students, report that
“having clear goals and destinations encourages information gathering to achieve [the desired
tasks]” [WL11].
Several sources consider gamification a means to reduce the required effort to perform
test-related activities. The report by Usfekes, related to an auction-based crowdsourced
mechanism for bug resolution, reports that the use of the tool “makes the allocation of
resources more effective, as the effort from the general public can be utilised to [perform testing
activities]” [GL18]. Crowdsourced Contributions is mentioned in several sources and are seen
as a primary means to improve the efficiency of gamified testing techniques. Robson et al.
argue about the opportunities offered by crowdsourcing: “It is rational to assume that the
number of unit testers of an organisation is significantly smaller than the population of a game-
players community, and programmers’ cost is remarkably higher than a casual player” [WL28].
• Higher Effectiveness. Effectiveness, as defined by the ISO 9001 standard, is “the extent to

which planned activities are realised and planned results are achieved” [1].
We include in this category all the discussed advantages related to an enhancement of the
outcomes of the gamified testing procedures.
Many sources of our final pool identified higher effectiveness in the purpose of testing
education (Improved Learning). For instance, the empirical study conducted by Alsaedi
reports “a significant difference in the students’ test scores before and after [the introduction
of gamification]” [GL20]; Sun also reports significant positive results in the scores for
software testing courses [WL08]. Many studies (6 WL, 3 GL) report higher coverage as
the measure of increased effectiveness of the gamified testing tool; for instance, Fraser
et al. report an increased branch coverage and mutation score for gamified mutation
testing [WL40]. Six sources mention a general increase in effectiveness guaranteed by
gamified mechanics. Other specific effectiveness-related aspects are mentioned in other

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:23

Fig. 12. Number of sources mentioning the dif-

ferent categories of benefits.

Fig. 13. Number of sources mentioning the dif-

ferent categories of drawbacks.

sources, e.g., effectiveness in finding bugs, identifying code smells, finding issues, and
adding comments to the original code. For instance, Dos Santos et al. report the results of
an experiment with CleanGame, where the subjects were able to identify approximately
twice as many codes smells with respect to non-gamified techniques [WL04].

In Figure 12, we report the number of manuscripts that report at least one advantage for each
of the main categories. It is evident that gamification is mainly evaluated in the selected sources
in terms of the benefits that are provided to the tester in terms of user experience (32 WL and
14 GL sources). A lower overall amount of sources mentioned benefits related to effectiveness (21
WL, 10 GL) and efficiency (12 WL, 5 GL). The inclusion of grey Literature allowed the identifica-
tion of one benefit related to user experience (Empowerment), which was not mentioned in white
literature.

4.3.4 Drawbacks of Gamified Software Testing. After the application of Open Coding, we came
up with 23 different codes, i.e., categories of disadvantages discussed in the selected papers. The
application of Axial Coding resulted in the identification of five main categories of drawbacks. In
Table 10, we report the complete list of codes and for each code, the category, and the sources
where it is mentioned.

• Design Issues. Several signalled issues related to gamification that are mentioned in the
sources are related to the design of the game mechanics implemented. Multiple sources (2
from WL and 6 from GL) mention design issues related to specific gamification mechanics
and how they proved not suitable for their purposes. For instance, Arnarsson and Johan-
nesson report that “the badges, in general, are not seen as motivating as other mechanics [...]
the design of the badge system was unbalanced” [GL06]; Bryce et al. in the context of soft-
ware testing education, report that “[the subjects] did not like the design choice because we
did not tell them how many bugs are in each problem” [WL26]. Garcia et al. mention possible
misalignment issues, i.e., “gamification should not interfere with other improvement actions
being implemented at the same time” [WL01]. Reported design issues are also related to the
selection of specific gamified mechanics for wrong target or purposes (5 WL and 3 GL men-
tions). Breum reports that “experience points can have some drawbacks it [sic] can create a
more competitive environment which may not be suited for users who do not have a competi-
tive nature” [GL04]. Finally, five WL sources from the pool report the necessity to carefully
calibrate the gamified mechanics to disincentivize possible cheating actions from users try-
ing to exploit them to gain benefits.
• Implementation Issues. A limited number of sources in the selected pool mentioned

implementation-related issues for gamified tools and frameworks. The main researchers’ im-
plementation concerns were related to the scalability of the approach (“For complex test path
constraints, the game’s length may be relatively long. In this condition, the game will be diffi-
cult to solve” [WL28] and to generalizability to different organizations [GL01] or to different
testing techniques and strategies [GL15].

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:24 T. Fulcini et al.

Table 10. Discussed Drawbacks of the Application of Gamified Mechanics

Category Name Description Mentions

Design Issues Bad design Problems in the game mechanics concep-
tion

[WL01], [WL26], [WL31], [GL02], [GL03], [GL04],
[GL06], [GL08], [GL16]

Cheating Users exploiting elements of the gami-
fied design

[WL02], [WL13], [WL32], [WL40], [WL50]

Wrong target Users misinterpreting the designer’s fo-
cus or designer misinterpreting the users’
needs

[WL02], [WL13], [WL20], [WL32], [WL35], [GL04],
[GL08], [GL17]

Implementation
Issues

Evaluability Impossibility of correctly assessing the
tool

[WL07]

Limited generalizability Tools or results cannot be scoped else-
where

[WL09], [WL30], [GL01], [GL15]

Limited scalability Tool does not adapt well in bigger con-
text

[WL28], [WL32], [WL40], [GL17]

Malicious use User exploits the tool to invalidate its us-
age

[WL41]

Privacy Users are concerned about their data [WL35]

Bad User
Experience

Change resistance Difficult adoption of the tool due to re-
sistance to change current working and
learning processes

[WL07], [WL20], [WL21], [WL22], [WL28], [GL12]

Limited cooperation Users not interacting constructively [WL16], [GL20]
Limited motivation User feeling the burden of using the tool [WL17]
Difficult understanding The tool is considered cumbersome to be

used by the users
[WL04], [WL22], [WL32], [GL12], [GL22]

Discouragement Users losing enthusiasm with the gami-
fied environment

[WL04], [WL06], [WL24], [WL31], [WL39], [WL47],
[GL01]

Utility not perceived Users perceiving the tool as useless [WL22], [WL35], [GL17]

Lower
Effectiveness

Decreased learning Decrease of average learning effect in
students

[WL16], [WL40], [GL20]

Reduced performance Decrease of ability of fulfillment of a goal [WL06], [WL16], [WL17], [WL20], [WL39], [GL02],
[GL03], [GL04], [GL16]

Lower
Efficiency

Additional Effort Users are required more time or re-
sources to perform the same task

[WL03], [WL07], [WL13], [WL17], [WL32], [WL37],
[WL47], [WL48], [WL50], [GL01], [GL07], [GL08],
[GL12], [GL22]

• Bad User Experience. In this category of drawbacks, we include all those related to the neg-
ative impacts of the mechanics in terms of the final user’s experience. The most mentioned
user experience issue was a high learning curve for the users of the gamified techniques.
For instance, Berkling and Thomas, in an educational context, report that “the benefits of
a game environment for the classroom are not evident to the students” [WL22]. Other fre-
quently discussed user-centered drawbacks are related to the difficulty in making users or
organizations transition to the usage of gamified mechanics (Change Resistance). As Harranz
et al. report, “Achieving the commitment of the top managers is a very hard task” [WL07].
• Lower Effectiveness. Many sources (5 WL, 4GL) report a reduced or unchanged effective-

ness of the testing methodologies or procedures when gamification is introduced. A grey
literature source reports that the visualization of reached objectives can reduce the effec-
tiveness of a gamified tool, since the tester can feel a sense of early gratification and stop
actively searching for defects [GL04].
Three studies report failed attempts at gamifying software testing education. As an exam-
ple, De Jesus et al. provide an experience report in which “there was no difference regarding
learning level when either traditional or gamified approaches are adopted” [WL16].
• Lower Efficiency. In this macro-category, we only consider a generic drawback, i.e., Addi-

tional Effort required to perform the same activities when the environment, tool, or method-
ology is gamified. Different mechanics of a gamified tool can cause overhead. Pedreira et al.
highlight that setting up a gamified work environment has not a negligible cost: “The effort
(and therefore the cost) of gamifying a work environment should not be forgotten due to its im-
portance for real organisations” [WL03]. On the same line, De Jesus et al. report that “building
a gamified environment is a complex and incremental process, especially in the definition phase
of a reward system and the ranges of scores and levels, which are related to the game mechanics
and dynamics” [WL17].

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:25

Table 11. Discussed Challenges and Future Directions for Gamified Software Testing Research

Category Name Description Mentions

Design
Improvements

Add communication Adding instruments to make users com-
municate with each other

[WL02], [WL06], [GL11]

Add competition Addition of a resource to compete for [GL02], [GL03]
Add cooperation Addition of a dynamic of collaboration

between users
[GL14], [GL15]

Ethics Considering possible issues regarding
people with some difficulties

[WL21], [GL06]

Manage cheating Solving design issue avoiding unex-
pected bad usage of the tool

[WL13]

Narrative Addition of a storytelling dynamic [WL06], [WL27]
Graphical feedback Addition or improving the existing

graphical feedback
[WL03], [WL12], [WL21], [WL35], [GL02], [GL03]

Redesign mechanics Addition or improving the existing game
mechanics

[WL05], [WL06], [WL10], [WL12], [WL15], [WL22],
[WL27], [WL28], [WL31], [WL32], [WL33], [WL36],
[WL44], [WL46], [WL50], [GL02], [GL04], [GL11],
[GL15], [GL20], [GL21]

Simplification Making the tool simpler to use [WL11], [GL15]

Implementation
Improvements

Add crowdsourcing Implement community contribution [WL23], [WL32]

Decoupling Decoupling game scenario from the code [WL03], [WL05], [WL06], [WL28], [WL43]
Deployment Deploy the tool in a different way [WL48], [WL50], [GL18]
Generalization Adapt the tool to different context [WL01], [WL02], [WL06], [WL07], [WL09], [WL12],

[WL28], [WL29], [WL37], [WL49], [GL15], [GL20]
Reusability Application of the tool in practice [WL06]
Scalability Adapt the tool to a bigger context [WL06], [GL02], [GL03]
Test oracles Incorporating test oracles in the tool [WL06], [WL45]

Evaluation Automatic analysis Using analysis tool to extract metrics [WL03]
Control results Assessment of the obtained result [WL13]
Empirical studies Additional empirical evaluation with the

tool in the same or different condition
[WL01], [WL05], [WL06], [WL07], [WL10], [WL16],
[WL17], [WL19], [WL24], [WL26], [WL27], [WL32],
[WL33], [WL34], [WL38], [WL39], [WL41], [WL42],
[WL43], [WL46], [WL49], [GL01], [GL02], [GL03],
[GL05], [GL20]

Expert evaluation Empirical study under the supervision of
expert of the field

[WL05], [WL30], [WL37], [WL45]

Industrial case studies Case study in an industrial context [WL20], [WL33], [WL35], [GL16]
Longitudinal case studies Case study over a longer time span [WL01]

In Figure 13, we report the number of manuscripts that report at least one drawback for each of
the main categories. Bad User Experience proved to be overall the most mentioned concern in the
selected set of sources, with 16 mentions in WL papers and 5 in GL. The less-mentioned issues were
those related to a reduced effectiveness of the gamified techniques and technical issues related to
the implementation of the designed mechanics. No specific drawbacks were mentioned only in
grey literature sources.

4.3.5 Challenges and Future Research Directions for Gamified Software Testing. After the appli-
cation of Open Coding, we came up with 22 different codes, i.e., categories of challenges and future
directions discussed in the selected papers. The application of Axial Coding resulted in the iden-
tification of four main categories of challenges and future directions. In Table 11, we report the
complete list of codes and for each code, the category, and the sources where it is mentioned.

• Design Improvements. Under this category, we filed challenges and future directions re-
lated to adding new gamified mechanics or improving existing ones. De Jesus et al., for
instance, discuss the calibration of the difficulty of the game mechanics: “For instance, in the
current implementation, all the problem instances’ difficulty has been considered equal. A possi-
ble improvement is to compute the difficulty of each problem instance and score the participants
according to the difficulty of the instance that they solve correctly” [WL10].
Another frequently required design improvement is related to the addition of graphical feed-
back to the gamified mechanics, which is in many cases missing due to the prototypal nature
of the described tools. Many sources highlight the need for metaphorical graphical means
to make the introduced mechanics comprehensible to the end-user. In their architecture for
gamification of general software engineering tasks, for instance, Pedreira et al. report that

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:26 T. Fulcini et al.

Fig. 14. Number of sources mentioning the different categories of challenges and future directions.

“the engine might also be extended with a visualisation component to show, for instance, user
performance and rankings. Appropriate visualisations metaphors could be used” [WL03].
• Implementation Improvements. According to the selected sources, many required im-

provements are more related to the technical implementation of the gamified tool and frame-
works than to the actual design of the game mechanics.
The highest number of sources mentioning implementation improvements advocate a gen-
eralizable implementation that can be evaluated on variable settings.
Several studies highlight research and implementation needs to guarantee higher scalability
and dependability of the solutions and deploy the techniques as online and easily reachable
platforms to enable the collection of crowdsourced inputs. Chen and Mao, who developed
Bodhi for the detection of buffer overflow in software, indicate in their agenda “[the plan]
to deploy the game on the internet to make it played by more people and detecting buffer over-
flows for more software” [WL48]. In one grey literature item, it is underlined the necessity to
address “the possibility of managing synchronisation between different testing sessions carried
out simultaneously on the same domain at the same time” [GL02].
• Evaluation. The most frequently mentioned future directions for gamification in software

testing are related to evaluating gamified mechanics. Most literature items highlight the ne-
cessity of empirical evaluations in academic settings to quantitatively assess such mechanics’
theoretical and qualitative benefits.
Four selected sources advocate for the utilization of expert evaluation of the outcomes of
gamified mechanics, especially when they allow crowdsourced contributions that need to
be verified. Usfekes et al. underline that “in the future, a development team could use a combi-
nation of known developer predictive resolution bids placed across various auctionable defects
[...] This would represent a positive development for effective defect clearance through the ap-
plication of gamification techniques” [WL30].
The evaluation of gamified mechanics in real-world industrial contexts is also indicated as a
primary need for the field. As Saloum et al. point out, “it would be necessary to test the effect of
gamification inside a real project in the industry where the developers act with the gamification
features added to their every-day tools” [GL16].

In Figure 14, we report the number of manuscripts that report at least one challenge or future
research direction for each of the main categories. Evaluation is reported as the primary challenge
and research direction in the selected literature (28 WL, 6 GL sources). The need for empirical or
longitudinal evaluations was mentioned mostly in white literature sources. Fewer sources men-
tioned the need for design improvements (19 WL, 10 GL) or implementation improvements (18
WL, 5 GL). Two design-related needs (Add competition and Add cooperation) were mentioned in
grey literature sources only.

5 DISCUSSION

In this section, we recollect and frame the results for each Review Question, and we discuss possible
threats to the validity of our findings.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:27

Fig. 15. Collaboration between authors (n > 2) of the collected literature.

5.1 Summary of Findings

The main objective of our work was to identify the current state-of-the-art and practice in the
field of gamified software testing. For that purpose, we considered both white and grey literature
to analyze the available gamification techniques and tools, the gamification mechanics adopted
by researchers and tool developers, and the benefits, drawbacks, and future challenges. In this
section, we summarize the findings that we gathered as answers to the specific review questions
of the article.

5.1.1 Literature Mapping. The first goal of our study aimed at defining a mapping of all the
elicited sources. The studies were classified according to the literature category, the type of con-
tributor (industrial vs. academic), and the kind of contribution provided to the community.

Bibliometric Trends for Gamified Software Testing. By analyzing the mapping in Figure 2,
we can state that gamification in software testing is a topic with a positive trend, presenting a grow-
ing number of publications over the years, from both white and grey literature. In the mapping, we
see an exception with the year 2020: As a possible hypothesis for the missing grey literature items,
we may mention the outbreak of the Covid-19 pandemic and the consequent shift in working
modes and communication priorities in the development and testing communities.

Our mapping also allowed us to determine how the research community in this field is dis-
tributed. The collaboration graph, shown in Figure 15 (where, for the sake of clarity, we include
only authors of at least two papers in our final pool) clearly shows that the different manuscripts
analyzed have little to no author overlap, and therefore few collaborations are established in the
field between different research groups and most prolific authors. What emerges are many isolated
research groups providing autonomous contributions, with a handful of collaborations between
different groups. This situation substantially differs from collaboration graphs that are reported
for more mature communities (e.g., for the Graphical User Interface Testing Community [44]), con-
firming the relative immaturity of the field. The most significant research group is composed of G.
Fraser and J. Rojas, respectively, with nine and eight items produced.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:28 T. Fulcini et al.

Types of Contributions. The results related to RQ1.1 denote that the main contributors to
the state-of-the-art are researchers from academia, who contributed five times more than industry
(57 vs. 11 items) as shown in Figure 4. Industrial contributions are directed toward grey literature,
while academia leaned toward the publication of white literature items. Few collaborations have
been found. These data denote the fact that industry may be far from applying gamification to
software testing: Future research efforts should be directed toward the usage of gamified environ-
ments in industrial contexts to execute case studies with the final purpose of validating whether
the observed benefits and drawbacks, still mostly analyzed in-vitro, also apply to practitioners.

More than half of the considered sources provided tool presentations or experience reports from
the field. We observe a limited amount of literature items (both white and grey) providing guide-
lines or theoretical frameworks discussing the application of gamification to software testing, as
shown in Figure 5. The effort so far has been devoted primarily to creating tools and assessing them
in experimental settings. Academic literature currently lacks large-scale empirical studies able to
confirm the available preliminary assessment, providing generalizable results. Current literature,
especially in the educational setting, mostly provide experience reports that are gathered from
ad hoc settings and are sometimes strongly contradicting (RQ1.2). Future research in this regard
should provide evidence on how the results obtained in case studies and reports can be reproduced
to achieve the claimed benefits, with practical suggestions on how to apply a successful gamified
environment, and replication of experiments to actually demonstrate the positive impact of gam-
ification. Future research could also focus on extracting common and universal sets of guidelines
for developers of gamified environments for testing practice and education.

5.1.2 Testing-focused Characterization. The second goal of our study aimed at identifying the
characteristics of the software testing activities that are most commonly augmented with gamified
components.

Gamified testing levels, phases, and methodologies. The results to review question 2.1 high-
light that—currently—gamified techniques are applied mostly to Unit-testing tools, being used in
more than half of the considered studies. Next are System and Integration testing tools, both with
a significantly smaller number of documented applications. Some items, especially those dealing
with software testing education, explicitly mentioned more than one testing level, others neither
mentioned, nor intended, any level; this could be explained by the sources discussing a general
approach that may be applied to different testing levels. Creating a gamified environment related
to integration testing or even system testing appears to be more complex, because those testing
levels require the incorporation of libraries, third-party code, or more difficult deployment for the
solution than just the integration within an existing unit testing engine. All those additional as-
pects constitute a significant execution and building overhead, possibly driving away investigators.
Future research should address those higher testing levels, rather than just focusing on unit testing
and its variations.

We can identify five distinct process stages related to testing: design, creation, execution, re-
porting, and maintenance. As the results of our review question 2.2 suggest, gamified mechanics
are mainly implemented in the phase of test creation and execution, while a limited number of
applications of gamified mechanics have been provided for other software testing activities, e.g.,
test reporting, test maintenance, or test design. The two most frequent phases are the most op-
erative ones, which are repeated several times during the iterative process. When test creation is
automated, the creation phase involves the definition and implementation of test scripts, while
in manual testing the creation typically overlaps with test execution in the exploration phases
of the SUT. Given these premises, it seems natural that the effort has been directed primarily at
these two phases. However, we believe that further study is needed especially for test maintenance

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:29

and test reporting activities. Especially the former, in fact, has been identified by many literature
items as crucial and costly in the testing pipeline. Therefore, we advocate further investigations
in gamifying testing activities different than test creation and execution.

Regarding the most frequently mentioned test methodologies (RQ2.3), we find that gamified
activities are most frequently applied in tasks that are either simple (such as mutation, black-box,
and white-box testing at unit-level) or do not require significant programming skills (e.g., manual
and Capture & Replay testing at the system level). The presented distribution may serve as another
confirmation of the novelty of the gamified approach, mainly applied to traditional white-box and
black-box testing activities. Mutation testing is an exception in this respect but, even if it has been
mentioned in 15 papers, 9 of them are from the author pair Fraser and Rojas, dealing with the
evolution of the same tool, i.e., Code Defenders. The importance of their work is so great that we
can consider the two authors as the main investigators in the scope of this research work (as better
explained in Section 5.2.1). Future research works should be directed towards other less exposed
techniques, aiming at identifying other fertile ground for gamification to be applied.

Tools and languages for gamified testing. The results for RQ 2.4 show that gamification was
applied mostly to open-source unit-testing tools. Besides the vast majority of the items (46 out of
73) not specifically mentioning any tool in their discussion, the data shows how widespread is the
usage of JUnit. This result is highly justifiable, since JUnit can be considered a de facto standard
test runner for any testing activity to be performed on SUTs written in Java. Another commonly
mentioned tool in the elicited work is the Capture & Replay testing tool Scout. What emerges
from the results is a highly fragmented situation: Apart from JUnit, each research group used
a specific tool. The interpretations of this result can be manifold: (i) researchers that are dealing
with low-level and simple testing activities can build upon JUnit to implement gamified mechanics;
(ii) researchers dealing with higher-level and more complex testing activities (e.g., GUI testing or
system-level testing) rely on building completely new testing environments to implement gamified
mechanics. Therefore, we stress the need for research for generic, possibly open-source, gamifi-
cation frameworks that would allow the introduction of gamification in more complex scenarios.
The presence of easily implementable and generalizable gamification frameworks may also fuel
comparative and quantitative empirical research across multiple settings and different SUTs to
better assess the benefits and drawbacks of gamified practices.

Regarding languages (RQ 2.5), the vast majority of the collected studies provide solutions that
adopt Java as the target programming language. This data is in accordance with the previous
review question, highlighting JUnit as the most used tool, and with other studies affirming Java
as the most-used language for test scripting [2]. Regarding the target testing domain, few data
are available. Actually, only a few items provide specifications about the domain of application
of the gamified testing tool: This data can be explained as the studies are mainly focused on unit
testing; at this level, the code under test is agnostic of any domain and it can be used at low-
level for any application context (e.g., desktop, mobile, or web). The studies explicitly reporting
a domain suggest an almost even distribution between mobile and web, with the exception of a
single IoT-related source. New contributors should consider the exploration of gamified testing in
the embedded and IoT domain, which remains an unexplored topic for the practice.

Practice vs. Education. The results collected for RQ2.6 show a prevalence in white literature
sources for the application of gamification in educational settings. Researchers’ interest in
applying gamification in educational contexts is not new; indeed, there is a firm and shared
belief in the literature that students (especially adolescents and pre-adolescents) are likely to
enjoy a gamified environment due to their familiarity with games [7]. Industrial approaches
to gamified software testing are almost equally distributed between white and grey literature,

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:30 T. Fulcini et al.

meaning that practitioners are more interested in the application of game elements to support
the practical testing process, rather than using them in the testing learning process. Only a few
are the proposed approaches that can be used both to teach how to test and to conduct testing
in industrial settings. We look forward to future research works to explore the mixed approach,
proposing tools, frameworks, and guidelines able to support both test education and practice.

5.1.3 Gamification-Focused Characterization. The third goal of the study had the objective of
providing a characterization of the most frequently adopted and evaluated gamification mechanics
and tools in both white and grey literature.

Game mechanics and Gamification tools. By performing a meta-analysis on the collected
data, before applying the synthesis process, we observed two main trends: First, the collected liter-
ature items do not adopt an unambiguous definition of game elements; in fact, in most of the liter-
ature items, there is no distinction between game dynamics and mechanics. Thus, we categorized
all the mentioned game elements as game mechanics for our discussion. In future dissertations, we
suggest adopting the more strict game elements classification provided by Robson et al. [43] to
distinguish between game mechanics adopted and game dynamics stimulated.

Second, we observed that only a few items employed a standardized ad hoc method to build or
to evaluate a gamification tool.3 We highlight the fact that, being a gamified tool highly depen-
dent on the perception of its users, its evaluation should take into account the user experience
as a whole (some examples are Octalysis [10] and GAMEX [19]). This implies the selection of the
correct evaluation method for a fair assessment of the developed tool and the usage of frameworks
helping in the selection of the right game elements to build a balanced and successful gamification
environment.

After performing a mapping of gamified mechanics, we observe that few stood out significantly
with respect to others. We also adopted the classification provided by the Octalysis framework to
aggregate the found game mechanics; this allowed us to discover trends and lacks of existing
gamification design. The main trend is to adopt elements based on the Accomplishment core drive,
providing positive feedback to the user. Although this trend is not negative in itself, the negative
aspect is the lack of a counterbalance in Avoidance elements, which make the game experience
quite unbalanced in most cases. Epic Meaning core drive is also quite often neglected, with almost
no narrative layer in the tools. . Since gamification is mainly designed to increase engagement and
to make testing activities less stressful and redundant, we argue that the addition of black-hat or
punishment-related aspects of gamification has not been yet considered by the authors developing
gamified approaches, but, since there is no evidence of its uselessness, future research effort should
try to incorporate them.

Even though the gamified approach can still be considered in its infancy for software testing
research, we found 30 distinct tools in the collected literature. It is worth mentioning, however,
that the level of maturity of the tools is highly variable and ranges from mature tools already
empirically evaluated in multiple settings (e.g., CodeDefenders) to pure academic prototypes and
demonstrators (RQ3.2).

Pros and Cons of Gamification. Many studies among the collected sources analyzed the ben-
efits and drawbacks introduced by gamification in the testing practice. Among the benefits and
drawbacks, we identified three factors that were mentioned in both directions: user experience,
effectiveness, and efficiency. When discussing the drawbacks, the sources also mentioned difficul-
ties in design and implementation, which were not mentioned explicitly among the benefits. Since

3See the ResearchQuestion sheet at https://doi.org/10.6084/m9.figshare.19804147.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

https://doi.org/10.6084/m9.figshare.19804147

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:31

Fig. 16. Number of conflicting benefits and drawbacks of gamified testing by category.

the sources often provided little details on the analyzed case studies, to provide a general balance
between pros and cons, we simply counted the number of sources that reported the given common
factors as either benefits or drawbacks. Figure 16 summarizes graphically the number of mentions
for each of the factors by type of literature. A better User Experience is the most reported benefit,
with 96 claims in this regard, while only 24 papers mention bad user experience as a drawback of
gamified testing. The same kind of proportion is also found regarding the effectiveness of a gami-
fied environment (44 claims in favor, 12 against). By contrast, more discordant opinions are found
regarding efficiency (20 claims in favor, 14 against).

These findings show that there is little disagreement about the better User Experience obtained
when gamification is applied to software testing. Negative opinions can also be observed in the lit-
erature; this contrast should not discourage researchers, since, Gamification being a user-centered
technique, it can be considered normal that the way it is perceived can vary in different studies,
domains, and practices. A higher disagreement is found when considering the enhancement of
effectiveness provided by gamification. We attribute this disagreement to the dependence of the
measurement of effectiveness in the practical domain where gamified testing is applied (e.g., ef-
fectiveness might refer to bugs found, coverage reached, test cases produced, and so on). In this
respect, we highlight the need for a unified metrics framework to assess effectiveness.Positive
opinions overcome negative opinions also for efficiency—however, in this aspect, opinions are
even more contrasting. We argue that building and maintaining a gamified environment typically
constitutes a significant overhead in the software testing process, and it is reasonable that no un-
equivocal opinion can be found about such necessary overhead. Therefore, we highlight the need
for further investigations into the efficiency provided by gamification in future research activities.

Future Challenges for Gamification. Among the future challenges for academic researchers
and industry players in the field of software testing, there is a general consensus about the need
for a more thorough evaluation and experimentation of gamified mechanics in real-world settings.
These evaluations are required, since often the reported results refer to preliminary evaluation.
Experts are also required to be involved in such validations, both to determine if the effects ob-
served with students also apply to practitioners and to clarify if the results reached are considered
valid by the testers’ community. The category Design Improvements denotes the fact that tools are
often developed iteratively by learning from the errors without a systematic approach. Differently,
Implementation Improvements show that, even if many attempts have positive results, there is
room for features and variations of gamified software testing in other contexts and domains.

Future research and practical direction regarding this topic should include:

• The definition of a set of unified and unambiguous metrics to properly assess the effective-
ness and efficiency of subjects, considering all the possible aspects of software testing (i.e.,
using the same metric when assessing one dimension in the same way).

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:32 T. Fulcini et al.

• Longitudinal experiments, to ascertain how exposing testers to gamified environments over
a longer period of time affects the benefits found on their first experience.

5.1.4 White Literature vs. Grey Literature. Comparing efforts from academia and industry in the
field of gamified software testing can be performed in two ways: first, comparing white literature
items (mostly associated with the academia) with grey literature items (mostly including industry-
related content); second, comparing theoretical with practical dissertations.

The comparison between white and grey literature does not show notable differences, as from
the results we can state that researchers and practitioners follow roughly the same trend. Regard-
ing test phases, both WL and GL focus mostly on test creation and test execution; the test levels that
are addressed the most are almost equally unit and system testing; also, the adopted gamification
aspects follow a similar distribution.

The main difference that we observe between WL and GL items concerns the relative propor-
tion of two mechanics categories: social influence and unpredictability; the former being relatively
more common in WL and the latter in GL. Another minor difference that we highlight is in the
testing methodologies adopted, where exploratory testing and capture and replay have been con-
sidered more for practical usage than for research. Considering Grey Literature in our final pool of
literature items, we included three tools, one possible advantage of gamification, and two future
challenges that were not signalled in white literature.

By analyzing the type of literature items discussing gamified software testing (either WL or
GL), we notice that the main types of contributions consist of tool presentations and experiments.
Literature items providing guidelines and frameworks are scarce and typically provide experience-
based analyses and not empirical results. General discussions are mainly found in grey literature,
hypothesizing possible benefits or providing clues on how to apply gamification to testing activi-
ties. All this evidence supports our conclusion that the application of gamification to testing is still
in an immature phase without consolidated practice or well-rooted empirical evidence.

5.1.5 Comparison with Existing Secondary Studies. The results and discussion presented in this
article expand the existing state-of-the-art by complementing the outcome of previous similar
secondary studies. In particular, with respect to Mäntylä and Smolander [35], we included 50 more
recent additional sources. This allowed us to find a larger set of game elements; we provided a
deeper testing-related characterization by decomposing testing into seven dimensions. We also
found a meta-analysis of the discussed findings and challenges, providing updated clues for those
who will approach the topic in the future.

Comparing our work to De Jesus et al. [14], we included 58 additional literature items containing
also grey literature, thanks to the multivocal nature of our study and the usage of both backward
and forward snowballing activities, which were missing in Reference [14]. We expanded the au-
thors’ testing characterization from three to seven testing dimensions (including the testing tools
used, the target language, the domain, and the goals, whether practical or educational), providing
a new point of view and new data to be analyzed. Our game characterization included 13 more
game elements, plus a link to Octalysis’ core drives. Another difference is that they focused on
the goals that each paper had in applying gamification to testing, while we considered the stated
outcomes grouped in benefits and drawbacks, considering also the open challenges presented by
authors.

Our results include several new tools and frameworks that were not covered by previous sec-
ondary studies. However, we notice that most of the contributors of such tools and frameworks
have a practical focus and provide few empirical results and validations; as well as they lack theo-
retical discussion required to establish consolidated methodologies for gamified software testing.
With the current manuscript, we expand the previously presented views on the currently available

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:33

instrumentation for gamified software testing, hopefully providing inputs for future comparative
investigations.

5.2 Threats to Validity

5.2.1 Threats to Construct Validity. Threats to Construct validity for a Literature Review con-
cern possible issues in reaching full coverage of the spectrum of all the studies related to the chosen
topic. This study mitigated that threat by identifying five essential sources of white literature stud-
ies that we required to be present in the retrieved pool of sources coming from the used search
string in the different repositories. Namely, we selected the following items of literature:

• Gamification of Software Testing, by Fraser et al. [20],
• Is It Worth Using Gamification on Software Testing Education? An Experience Report, by De

Jesus et al. [WL16],
• Code Defenders: A Mutation Testing Game, by Rojas et al. [WL05],
• A Framework for Gamification in Software Engineering, by Garcia et al. [WL01],
• Gamification-based Cyber-Enabled Learning Environment of Software Testing, by Fu

et al. [WL13].

We decided to train our search string iteratively until the essential sources were found. This
process required only one iteration. Despite its importance, one of the essential sources was not
included in the final pool of sources due to the exclusion criterion allowing only primary studies in
the selection. This does not represent a threat, as these studies were used to test the search strings.

Grey literature was also considered to include gamification tools, gamification frameworks, and
related empirical evaluations that are not presented in peer-reviewed papers.

For both white and grey literature, we applied a reproducible methodology based on established
guidelines. To broaden the research as much as possible, we included the most commonly used
terms in the search strings, as well as the main synonyms already used in other SLRs, as seen
in Section 2.4. However, it is still possible that some terms describing other relevant works in the
literature may have been overlooked. Regarding grey literature, there is a possibility that literature
items about relevant tools and frameworks have not been included in the analysis because of the
inability to access the documents.

5.2.2 Threats to Internal Validity. Threats to Internal validity are those related to the data ex-
traction and synthesis phases of the Literature Review. All the primary sources resulting from the
search strings application were read and evaluated by all authors and collaborators of this study
to assess their quality. When in doubt about the decision to include a resource or not, the final
decision was taken by a majority vote. The authors also applied inclusion and exclusion criteria
and extraction the information to answer the Review Questions of the study. Hence, the validity
of the study is threatened by possible errors in the authors’ judgment when examining the sources
and/or misinterpretations of the original content of the papers. This threat was mitigated by multi-
ple readings of the same sources and discussion among the authors about potential disagreements
during the review phase.

5.2.3 Threats to External Validity. Threats to External validity concern the generalizability of
the findings of the Literature Review. We scoped our research to gamification applied to software
testing. We also included in our search literature items in the general field of Software Engineering,
but that showed clear applicability to software testing. We can not estimate the generalizability
of our findings to the application of gamification to software engineering activities other than
software testing. As well, very specific gamification tools and mechanics, testing tools, or domains
can exhibit benefits and drawbacks that have been not found in our analysis.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

310:34 T. Fulcini et al.

6 CONCLUSION AND FUTURE WORK

In the present work, we defined, conducted, and documented the results of a Multivocal Systematic
Literature Review applied to the field of gamification in software testing. The literature items
considered were published between 2010 and the first quarter of 2022. We provide three main
contributions: a mapping of the type of sources available in the literature; a characterization of the
testing-focused gamified tools; a game-related characterization with the goal of describing all the
gamified mechanics mentioned in literature and their benefits and drawbacks.

Our literature search led us to collect a total of 73 studies (50 from white literature and 23 from
grey literature), bridging the gap with past secondary studies dated 2016 [35] and 2018 [14].

Based on our findings, discussed in Section 5, we can state that gamification represents a promis-
ing direction in the field of software testing for both research and industry. Well-established gam-
ification frameworks have already been defined in other disciplines, and preliminary studies and
experience reports in the field of software testing have proven that its utilization can lead to sig-
nificant increases in the engagement and productivity of software testers. Gamification is also
considered a valid instrument in software testing education.

Gamified mechanics, however, are by no means a silver bullet; evidence from the literature
highlights the need for careful calibration of the mechanics to implement. Special care must be
taken to avoid misalignment with the main purposes of the testing activities, exploitation by the
players, and negative impacts on the efficacy or efficiency of the gamified tasks.

On top of our findings, we identify a set of actionable guidelines for different stakeholders in-
terested in software testing gamification, which we summarize as follows:

• Researchers in the software testing field may consider the possibility of performing rigor-
ous empirical assessments of the benefits introduced by the application of gamified mechan-
ics to existing tools and practices. Longitudinal case studies are encouraged to verify the
transferability of the techniques to the industrial context;
• Developers of software testing tools should carefully evaluate the mechanics they wish

to adopt, and they should follow existing frameworks of mechanics to provide a balanced
gamified experience for software testers. Gamification-based approaches should be designed
sensibly to match the needs of the specific technique and to prevent exploitation by the users
with the ensuing possible reduction of effectiveness;
• Educators are highly recommended to incorporate gamified approaches in software testing

education to support the execution of activities during the learning process, since evidence
in the literature suggests a strong motivating impact of game-like mechanics when adopted
in software testing classes.

REFERENCES

[1] 2005. ISO 9001:2005 - Quality Management Systems - Requirements. Standard. International Organization for

Standardization.

[2] Shamsu Abdullahi, Abubakar Zakari, Haruna Abdu, Amina Nura, Musa Ahmed Zayyad, Salisu Suleiman, Alhassan

Adamu, and Abdulfatahu Samaila Mashasha. 2020. Software testing: Review on tools, techniques and challenges. Int.

J. Adv. Res. Techn. Innov. 2, 2 (2020), 11–18.

[3] Richard Adams, Palie Smart, and Anne Sigismund Huff. 2017. Shades of grey: Guidelines for working with the grey

literature in systematic reviews for management and organizational studies. Int. J. Manag. Rev. 19, 4 (2017), 432–454.

DOI:https://doi.org/10.1111/ijmr.12102

[4] Carlos Futino Barreto and César França. 2021. Gamification in software engineering: A literature review. In Proceedings

of the IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).

105–108. DOI:https://doi.org/10.1109/CHASE52884.2021.00020

[5] Fevzi Belli, Nimal Nissanke, Christof J. Budnik, and Aditya Mathur. 2005. Test generation using event sequence graphs.

Softw. Eng, 52 (2005).

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

https://doi.org/10.1111/ijmr.12102
https://doi.org/10.1109/CHASE52884.2021.00020

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:35

[6] Stefan Berner, Roland Weber, and Rudolf K. Keller. 2005. Observations and lessons learned from automated testing. In

Proceedings of the 27th International Conference on Software Engineering. 571–579.

[7] Jenny Bittner and Jeffrey Schipper. 2014. Motivational effects and age differences of gamification in product advertis-

ing. J. Consum. Market. 31 (08 2014), 391–400. DOI:https://doi.org/10.1108/JCM-04-2014-0945

[8] Andreas Bruns, Andreas Kornstadt, and Dennis Wichmann. 2009. Web application tests with selenium. IEEE Softw. 26,

5 (2009), 88–91.

[9] Ilaria Caponetto, Jeffrey Earp, and Michela Ott. 2014. Gamification and education: A literature review. In Proceedings

of the European Conference on Games Based Learning. Academic Conferences International Limited.

[10] Yu-Kai Chou. 2015. Actionable Gamification: Beyond Points, Badges, and Leaderboards. Createspace Independent Pub-

lishing Platform. Retrieved from https://books.google.it/books?id=jFWQrgEACAAJ.

[11] Peter John Clarke, Andrew Allen, Tariq King, Edward Jones, and Prathiba Natesan. 2010. Using a web-based repository

to integrate testing tools into programming courses. In Proceedings of the ACM International Conference Companion

on Object Oriented Programming Systems Languages and Applications Companion (OOPSLA’10). Association for Com-

puting Machinery, 193–200. DOI:https://doi.org/10.1145/1869542.1869573

[12] Peter John Clarke, Debra Davis, Tariq King, Jairo Pava, and Edward Jones. 2014. Integrating testing into software

engineering courses supported by a collaborative learning environment. ACM Trans. Comput. Educ. 14, 3 (Oct. 2014).

DOI:https://doi.org/10.1145/2648787

[13] Andrei Contan, Catalin Dehelean, and Liviu Miclea. 2018. Test automation pyramid from theory to practice. In Pro-

ceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 1–5.

[14] Gabriela Martins de Jesus, Fabiano Cutigi Ferrari, Daniel de Paula Porto, and Sandra Camargo Pinto Ferraz Fabbri. 2018.

Gamification in software testing: A characterization study. In Proceedings of the Brazilian Symposium on Systematic

and Automated Software Testing (SAST’18). Association for Computing Machinery, New York, NY, 39–48. DOI:https:

//doi.org/10.1145/3266003.3266007

[15] Anca Deak, Tor Stålhane, and Guttorm Sindre. 2016. Challenges and strategies for motivating software testing per-

sonnel. Inf. Softw. Technol. 73 (2016), 1–15. DOI:https://doi.org/10.1016/j.infsof.2016.01.002

[16] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From game design elements to gamefulness:

defining “gamification.” In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future

Media Environments (MindTrek’11). Association for Computing Machinery, New York, NY, 9–15. DOI:https://doi.org/

10.1145/2181037.2181040

[17] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travassos. 2007. A survey on model-based

testing approaches: A systematic review. In Proceedings of the 1st ACM International Workshop on Empirical Assess-

ment of Software Engineering Languages and Technologies: Held in Conjunction with the 22nd IEEE/ACM International

Conference on Automated Software Engineering (ASE). 31–36.

[18] Michael Ellims, James Bridges, and Darrel C. Ince. 2006. The economics of unit testing. Empir. Softw. Eng. 11, 1 (2006),

5–31.

[19] René Eppmann, Magdalena Bekk, and Kristina Klein. 2018. Gameful experience in gamification: Construction and

validation of a gameful experience scale [GAMEX]. J. Interact. Market. 43 (2018), 98–115. DOI:https://doi.org/10.1016/

j.intmar.2018.03.002

[20] Gordon Fraser. 2017. Gamification of software testing. In Proceedings of the IEEE/ACM 12th International Workshop on

Automation of Software Testing (AST). 2–7. DOI:https://doi.org/10.1109/AST.2017.20

[21] Gabriel García-Mireles and Miguel Ehecatl Trujillo. 2020. Trends and Applications in Software Engineering. In Proceed-

ings of the 8th International Conference on Software Process Improvement (CIMPS’19). Springer International Publishing.

[22] Vahid Garousi, Michael Felderer, and Tuna Hacaloğlu. 2017. Software test maturity assessment and test process im-

provement: A multivocal literature review. Inf. Softw. Technol. 85 (2017), 16–42. DOI:https://doi.org/10.1016/j.infsof.

2017.01.001

[23] Vahid Garousi, Michael Felderer, Marco Kuhrmann, and Kadir Herkiloğlu. 2017. What industry wants from academia

in software testing? Hearing practitioners’ opinions. In Proceedings of the 21st International Conference on Evaluation

and Assessment in Software Engineering. 65–69.

[24] Vahid Garousi, Michael Felderer, and Mika Mäntylä. 2019. Guidelines for including grey literature and conducting

multivocal literature reviews in software engineering. Inf. Softw. Technol. 106 (2019), 101–121. DOI:https://doi.org/10.

1016/j.infsof.2018.09.006

[25] Vahid Garousi and Mika Mäntylä. 2016. When and what to automate in software testing? A multi-vocal literature

review. Inf. Softw. Technol. 76 (2016), 92–117. DOI:https://doi.org/10.1016/j.infsof.2016.04.015

[26] Spencer E. Harpe. 2015. How to analyze Likert and other rating scale data. Curr. Pharm. Teach. Learn. 7, 6 (2015),

836–850.

[27] Mary Jean Harrold. 2000. Testing: A roadmap. In Proceedings of the Conference on the Future of Software Engineering

(ICSE’00). Association for Computing Machinery, New York, NY, 61–72. DOI:https://doi.org/10.1145/336512.336532

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

https://doi.org/10.1108/JCM-04-2014-0945
https://books.google.it/books?id=jFWQrgEACAAJ
https://doi.org/10.1145/1869542.1869573
https://doi.org/10.1145/2648787
https://doi.org/10.1145/3266003.3266007
https://doi.org/10.1016/j.infsof.2016.01.002
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1016/j.intmar.2018.03.002
https://doi.org/10.1109/AST.2017.20
https://doi.org/10.1016/j.infsof.2017.01.001
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2016.04.015
https://doi.org/10.1145/336512.336532

310:36 T. Fulcini et al.

[28] Itti Hooda and Rajender Singh Chhillar. 2015. Software test process, testing types and techniques. Int. J. Comput.

Applic. 111, 13 (2015).

[29] Juha Itkonen, Mika V. Mantyla, and Casper Lassenius. 2009. How do testers do it? An exploratory study on manual

testing practices. In Proceedings of the 3rd International Symposium on Empirical Software Engineering and Measure-

ment. IEEE, 494–497.

[30] Samireh Jalali and Claes Wohlin. 2012. Systematic literature studies: Database searches vs. backward snowballing. In

Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement. IEEE, IEEE

Computer Society, Los Alamitos, CA, 29–38. DOI:https://doi.org/10.1145/2372251.2372257

[31] Joseph Kiniry and Daniel Zimmerman. 2008. Secret Ninja formal methods. In FM 2008: Formal Methods. Springer

Berlin, 214–228. DOI:https://doi.org/10.1007/978-3-540-68237-0_16

[32] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software

engineering. (2007). https://www.researchgate.net/profile/Barbara-Kitchenham/publication/302924724_Guidelines_

for_performing_Systematic_Literature_Reviews_in_Software_Engineering/links/61712932766c4a211c03a6f7/

Guidelines-for-performing-Systematic-Literature-Reviews-in-Software-Engineering.pdf.

[33] Richard N. Landers, Elena M. Auer, Andrew B. Collmus, and Michael B. Armstrong. 2018. Gamification science, its

history and future: Definitions and a research agenda. Simul. Gaming 49, 3 (2018), 315–337.

[34] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous, evolutionary and large-scale: A

new perspective for automated mobile app testing. In Proceedings of the IEEE International Conference on Software

Maintenance and Evolution (ICSME’17). 399–410. DOI:https://doi.org/10.1109/ICSME.2017.27

[35] Mika Mäntylä and Kari Smolander. 2016. Gamification of software testing—An MLR. In Product-focused Software Pro-

cess Improvement. Springer International Publishing, 611–614. DOI:https://doi.org/10.1007/978-3-319-49094-6_46

[36] Gursimran Singh Walia, Mourya Reddy Narasareddy Gari, and Alex David Radermacher. 2018. Gamification in com-

puter science education: A systematic literature review. In Proceedings of the ASEE Annual Conference & Exposition.

Retrieved from https://peer.asee.org/30554.

[37] Lennart E. Nacke and Christoph Sebastian Deterding. 2017. The maturing of gamification research. Comput. Hum.

Behav. 71 (2017), 450–454.

[38] Stanislava Nedyalkova and Jorge Bernardino. 2013. Open source capture and replay tools comparison. In Proceedings

of the International C* Conference on Computer Science and Software Engineering. 117–119.

[39] Nicholas O’Donnell, Dennis Kappen, Zachary Fitz-Walter, Sebastian Deterding, Lennart Nacke, and Daniel Johnson.

2017. How multidisciplinary is gamification research? Results from a scoping review. In Extended Abstracts Publication

of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY’17 Extended Abstracts). Association for

Computing Machinery, New York, NY, 445–452. DOI:https://doi.org/10.1145/3130859.3131412

[40] Rodney Ogawa and Betty Malen. 1991. Towards rigor in reviews of multivocal literatures: Applying the exploratory

case study method. Rev. Educ. Res. 61, 3 (1991), 265–286. DOI:https://doi.org/10.3102/00346543061003265

[41] Oscar Pedreira, Félix García, Nieves Brisaboa, and Mario Piattini. 2015. Gamification in software engineering—A sys-

tematic mapping. Inf. Softw. Technol. 57 (2015), 157–168. DOI:https://doi.org/10.1016/j.infsof.2014.08.007

[42] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic mapping studies in software

engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering

(EASE’08). BCS Learning & Development Ltd., Swindon, GBR, 68–77. DOI:https://doi.org/10.14236/ewic/EASE2008.8

[43] Karen Robson, Kirk Plangger, Jan Henrik Kietzmann, Ian McCarthy, and Leyland Pitt. 2015. Is it all a game? Under-

standing the principles of gamification. Bus. Horiz. 58, 4 (2015), 411–420. DOI:https://doi.org/10.1016/j.bushor.2015.03.

006

[44] Olivia Rodríguez-Valdés, Tanja E. J. Vos, Pekka Aho, and Beatriz Marín. 2021. 30 years of automated GUI testing: A

bibliometric analysis. In Proceedings of the International Conference on the Quality of Information and Communications

Technology. Springer, 473–488.

[45] Richard Ryan and Edward Deci. 2000. Self-determination theory and the facilitation of intrinsic motivation, social

development, and well-being. Amer. Psychol. 55, 1 (2000), 68. DOI:https://doi.org/10.1037/0003-066X.55.1.68

[46] Joachim Schöpfel and Dominic Farace. 2010. Grey literature in library and information studies. Encycl. Libr. Inf. Sci.

(2010), 2029–2039.

[47] Swapneel Sheth, Jonathan Bell, and Gail Kaiser. 2011. HALO (highly addictive, socially optimized) software engineer-

ing. In Proceedings of the 1st International Workshop on Games and Software Engineering (GAS’11). Association for

Computing Machinery, New York, NY, 29–32. DOI:https://doi.org/10.1145/1984674.1984685

[48] Joanna Smith, Joe Tessler, Elliot Kramer, and Calvin Lin. 2012. Using peer review to teach software testing. In Proceed-

ings of the 9th Annual International Conference on International Computing Education Research. 93–98.

[49] StackSocial. 2014. The most popular coding language at top US universities. (2014). Retrieved from http://blog.

stacksocial.com/popular-coding-language/.

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

https://doi.org/10.1145/2372251.2372257
https://doi.org/10.1007/978-3-540-68237-0_16
https://www.researchgate.net/profile/Barbara-Kitchenham/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering/links/61712932766c4a211c03a6f7/Guidelines-for-performing-Systematic-Literature-Reviews-in-Software-Engineering.pdf
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1007/978-3-319-49094-6_46
https://peer.asee.org/30554
https://doi.org/10.1145/3130859.3131412
https://doi.org/10.3102/00346543061003265
https://doi.org/10.1016/j.infsof.2014.08.007
https://doi.org/10.14236/ewic/EASE2008.8
https://doi.org/10.1016/j.bushor.2015.03.006
https://doi.org/10.1037/0003-066X.55.1.68
https://doi.org/10.1145/1984674.1984685
http://blog.stacksocial.com/popular-coding-language/

Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing 310:37

[50] Philipp Straubinger and Gordon Fraser. 2022. Gamekins: Gamifying software testing in Jenkins. DOI:https://doi.org/

10.1145/3510454.3516862

[51] Mark Utting and Bruno Legeard. 2010. Practical Model-based Testing: A Tools Approach. Elsevier.

[52] James A. Whittaker. 2009. Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide Test Design. Pearson

Education.

Received 8 June 2022; revised 20 January 2023; accepted 23 January 2023

ACM Computing Surveys, Vol. 55, No. 14s, Article 310. Publication date: July 2023.

https://doi.org/10.1145/3510454.3516862

