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DARTS--a design method for real-time systems--leads to a highly 
structured modular system with well-defined interfaces and reduced 
coupling between tasks. 

A SOFTWARE DESIGN METHOD 
FOR REAL-TIME SYSTEMS 

H. GOMAA 

Real-time systems typically consist of several concur- 
rent processes or tasks. Each task is sequential, and 
concurrency is obtained by having asynchronous tasks 
running at different speeds. From time to time, the 
tasks need to communicate and synchronize with each 
other. 

This paper surveys briefly several existing software 
design methods and considers how suitable they are for 
real-time systems. It outlines the requirements of real- 
time systems design and describes a real-time design 
method known as DARTS (Design Approach for Real- 
Time Systems). An example, the design of a robot con- 
troller, is given to illustrate the use of the DARTS 
method. 

SURVEY OF SOFTWARE DESIGN METHODS 
The software design methods surveyed in this section 
are the Jackson and Warnier methods, Structured De- 
sign, and the Higher Order Software, Mascot, and Infor- 
mation Hiding methods. A more detailed review is 
given in [6]. 

The Jackson [9] (also known as Jackson Structured 
Programming) and Warnier [11] design methods are 
data-structure-oriented design methods primarily appli- 
cable to program design. Neither method handles the 
problem of decomposing a system into modules or 
tasks, and consequently neither is appropriate for real- 
time systems design. 

Structured Design [10, 15] is a systems design method 
that deals with decomposing a system into modules. It 
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can lead to highly functional modular designs but pro- 
vides no help with structuring a system into tasks. Nor 
does it address the issue of internal module design. 
Structured Design is often used in conjunction with 
Structured Analysis [3, 5], which makes use of data 
flow diagrams and functional decomposition. 

The Higher Order Software design method [8] also 
uses functional decomposition for decomposing a sys- 
tem into modules, but it, too, fails to address the issue 
of decomposing a system into concurrent tasks. 

The Mascot method [14] is well suited for real-time 
systems since it deals specifically with structuring a 
system into tasks and defining the interfaces between 
them. However, it starts with a network diagram of 
tasks and addresses neither the issue of how to struc- 
ture a system into tasks nor the structure of the indi- 
vidual tasks themselves. 

Parnas' Information Hiding method [12] is a powerful 
design concept that leads to highly modular systems 
with low module coupling. The technique has been 
adopted by other design methods such as Structured 
Design, Mascot, and Object Oriented Design [1]. 

REQUIREMENTS OF A REAL-TIME 
SYSTEMS DESIGN METHOD 
The above survey of design methods shows that each 
method has some limitations in terms of real-time sys- 
tems design. The two methods that come closest to sat- 
isfying the needs of real-time systems design are Struc- 
tured Design and Mascot. This section identifies the 
essential requirements of an adequate real-time sys- 

038 Communications of the ACM September 1984 Volume 27 Number 9 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358234.358262&domain=pdf&date_stamp=1984-09-01


Computing Practices 

terns design method and points out to what degree 
these requirements are satisfied in existing design 
methods. 

Data-Flow-Oriented Design 
The data flow approach to software design is particu- 
larly appropriate for the design of real-time systems 
because the data in these systems may be considered to 
flow from input to output and in between to be trans- 
formed by software tasks. 

The data-flow-oriented methods are best exemplified 
by Structured Analysis and Structured Design, which 
are frequently used together. With Structured Analysis, 
data flow diagrams are used to show the functions 
(transforms) of a system as well as the data flows be- 
tween the transforms and the data stores accessed by 
them. Other features are the use of a data dictionary 
and the hierarchical decomposition of transforms. 

Structured Design [15], also known as Composite De- 
sign [10], consists of two main components: (1) two sets 
of criteria, cohesion and coupling, which are used for 
evaluating the quality of a design; and (2} a design 
method for guiding designers in a top-down decomposi- 
tion of a system into modules. The objective of Struc- 
tured Design is to produce a design in which modules 
have high cohesion and low coupling. 

The Structured Design method consists of two design 
approaches, Transform Centered Design and Transac- 
tion Centered Design. With Transform Centered Design, 
the major streams of data are identified as they flow 
and are transformed from external input to external 
output. The system is then structured so that each ma- 
jor abstract input stream, each major abstract output 
stream, and each major transformation has a corre- 
sponding branch in the structure chart. Transaction 
Centered Design is applicable where the data flow con- 
sists of data or control information that is passed to a 
transform initiating some action or sequence of actions 
based on the incoming data. 

Because real-time systems are usually data flow ori- 
ented, the DARTS method starts with a data flow anal- 
ysis of the system. 

Task Communication and Synchronization 
Because it is essential in real-time systems for tasks to 
communicate and synchronize their operations, most 
real-time operating systems support some mechanism 
for task communication and/or synchronization. The 
most common of these mechanisms are discussed be- 
low. 

Task Synchronization. Two kinds of task synchroni- 
zation found in real-time systems are mutual exclusion 
and cross stimulation. Mutual exclusion is typically re- 
quired when shared data can be accessed concurrently 
by two or more tasks [4]. It is enforced by means of 
binary semaphores. Cross stimulation occurs when one 
task is awaiting a signal from another task before it can 
proceed. Binary semaphores and event synchronization 
can be used to effect cross stimulation. Both mutual 

exclusion and cross stimulation are used for task syn- 
chronization in DARTS. 

Task Communication. Task communication occurs 
when a producer task needs to pass information to a 
consumer task. The most common form of task commu- 
nication is Message Communication [2]. The communi- 
cation may be closely coupled (i.e., each time the pro- 
ducer sends a message, it waits for a response from the 
consumer), or it may be loosely coupled (i.e., the pro- 
ducer and consumer proceed at their own rates and a 
queue of messages builds up between the producer and 
consumer). In either case, if the consumer requests a 
message from the producer and the queue is empty, the 
consumer has to wait until a message becomes avail- 
able. 

The message communication mechanism is provided 
in one of three ways: by the operating system; by pro- 
viding multitasking with a task communication capabil- 
ity in the implementation language (e.g., Ada [1]); or by 
means of a module that handles message communica- 
tion, using the synchronizing primitives provided by 
the operating system. This is the approach used in Mas- 
cot where tasks communicate with each other via 
channels. Channels are used for passing data, such as 
messages, between tasks. 

Both loosely and closely coupled message communi- 
cation are supported in DARTS. 

Information Hiding 
The concept of Information Hiding (also known as data 
abstraction) was introduced by Parnas [12] as a criter- 
ion for decomposing a system into modules. The objec- 
tive is to hide key design decisions; that is, each key 
design decision should be known to only one module. 
With Information Hiding, information sharing between 
modules is kept to a minimum. 

The advantage of this method is that modules are 
more self-contained and the system more modifiable 
and thus more maintainable. The disadvantage is the 
overhead consumed by accessing a data structure via a 
function rather than directly. 

Mascot uses the Information Hiding concept to the 
extent that access to data in channels (which may be 
used for message communication) and pools (used for 
shared data) is provided only by means of access proce- 
dures. In this way, both the details of the data structure 
and the synchronization of access to the data structure 
are hidden from the calling task. 

In DARTS, as in Mascot, Information Hiding is used 
to define task interfaces. Two classes of task interface 
modules are supported--Task Synchronization Mod- 
ules (TSM) and Task Communication Modules (TCM), 
which minimize coupling between tasks. 

State Dependency in Transaction Processing 
Many real-time systems are transaction oriented or in- 
corporate some degree of transaction processing (i.e., 
the action or sequence of actions to be carried out de- 
pends on the nature of the incoming data). Transaction 
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Centered Design, a component of the Structured Design 
method [15], addresses this issue although it has a seri- 
ous limitation in that it does not deal with state de- 
pendency in transaction processing. DARTS overcomes 
this limitation. 

DARTS 
The DARTS design method starts with the Require- 
ments Specification, which defines what features the 
system will provide with no consideration as to how 
they will be provided. As a given specification can be 
designed and implemented in many different ways, the 
development of data flow diagrams is considered the 
first phase of the design process. At this stage, the sys- 
tem is decomposed into subsystems and the subsystem 
interfaces identified. 

The DARTS design method can be thought of as ex- 
tending the Structured Analysis/Structured Design 
method by providing an approach for structuring the 
system into tasks as well as a mechanism for defining 
the interfaces between tasks. In this sense, it draws on 
the experience gained in concurrent processing. As 
with other design methods, DARTS is intended to be 
iterative. The steps in the DARTS design method are 
described below. 

Data Flow Analysis 
Data flow diagrams are used as an analysis tool. Start- 
ing with the functional requirements of the system, the 
data flow through the system is analyzed and the major 
functions determined. The data flow diagrams are de- 
veloped and decomposed to sufficient depth to identify 
the major subsystems and the major components of 
each subsystem. 

Each data flow diagram contains transform bubbles 
representing functions carried out by the system, ar- 
rows representing data flows between transforms, and 
data stores representing data repositories. 

A data dictionary defines the data items contained in 
the data flows and data stores. 

Decomposition into Tasks 
Having identified all the functions in the system and 
the data flows between them, we are now in a position 
to identify concurrency. The next stage of the DARTS 
method therefore involves determining how concurrent 
tasks will be identified on the data flow diagram. 

The main consideration in decomposing a software 
system into concurrent tasks is the asynchronous na- 
ture of the functions within the system. The transforms 
in the data flow diagrams are analyzed to identify 
which may run concurrently and which are sequential 
in nature. By this means, tasks are identified: One 
transform may correspond to one task, or one task may 
encompass several transforms. 

The data flow diagrams are now redrawn showing 
the tasks and their interfaces. In so doing, a box is 
drawn around each transform or set of transforms that 
logically form a task. Each box then becomes a task. 

The criteria for deciding whether a transform should 

be a separate task or grouped with other transforms 
into one task are the following. 

Dependency on I /0 .  Depending on input or output, a 
transform is often constrained to run at a speed dictated 
by the speed of the I /O device with which it is inter- 
acting. In this case, the transform needs to be a separate 
task. 

Time-critical functions. A time-critical function needs 
to run as a high priority and therefore needs to be a 
separate task. 

Computational requirements. A computationally inten- 
sive function (or set of functions) can run as a lower 
priority task consuming spare CPU cycles. 

Functional cohesion. Transforms that perform a set of 
closely related functions can be grouped together into a 
task. Since the data traffic between these functions may 
be high, having them as separate tasks will increase 
system overhead, whereas implementing each function 
as a separate module within the same task ensures 
functional cohesion both at the module and task levels. 

Temporal cohesion. Certain transforms perform func- 
tions that are carried out at the same time. These func- 
tions may be grouped into a task so that they are exe- 
cuted each time the task receives a stimulus. 

Although temporal cohesion is not considered a good 
module decomposition criterion in Structured Design, it 
is considered in DARTS to be acceptable at the task 
level. Each function should be implemented as a sepa- 
rate module to achieve functional cohesion at the mod- 
ule level. These modules in turn are grouped into the 
task thereby achieving temporal cohesion at the task 
level. 

Periodic execution. A transform that needs to be exe- 
cuted periodically can be structured as a separate task 
that is activated at regular intervals. 

When a system is structured into tasks, the tasks may 
all run on the same processor or may be split among 
two or more processors. The design decisions to be 
made at this stage are based on various factors such as 
system performance. 

Definition of Task Interfaces 
It is now time to consider the interfaces between tasks. 
On the data flow diagrams, the interfaces are in the 
form of data flows or data stores. The next stage in- 
volves formalizing the task interfaces. 

In DARTS, task interfaces are handled by defining 
two classes of task interface modules, Task Communi- 
cation Modules (TCM) and Task Synchronization Mod- 
ules (TSM). 

Task Communication Modules. A TCM handles all 
cases of communication among tasks. Typically, a TCM 
contains a data structure and defines the access proce- 
dures to it. 

Conceptually, a TCM always runs in the task that 
invokes it. Thus, it is possible for a TCM to execute 
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FIGURE 1. Message Communication 

concurrently within two tasks. It is therefore essential 
that access procedures provide the synchronization and 
mutual exclusion conditions necessary to ensure con- 
sistent and correct access to the data. 

A TCM makes use of the synchronizing primitives 
provided by the operating system. Thus, the implemen- 
tation of a TCM will vary from system to system, but 
conceptually its function will be similar. 

Two different types of TCMs are supported in 
DARTS: 

Message Communication Module. Message communica- 
tion is handled by a TCM called the Message Commu- 
nication Module (MCM). MCMs support both loosely 
coupled and closely coupled message communication. 

In loosely coupled message communication, the mes- 
sage queue includes binary semaphores for controlling 
mutual exclusion. Event synchronization is used for 
suspending the producer when the queue becomes full 
and suspending the consumer when the queue is 

empty. Access routines are provided for sending and 
receiving messages as well as getting and releasing mes- 
sage blocks. Furthermore, a maximum size is imposed 
on each message queue. 

In the case of closely coupled message communica- 
tion, the maximum size of the queue is reduced to one 
element. Sending and receiving of replies are supported 
by having a one-element message queue in each direc- 
t ion-one  for messages and one for replies. 

In addition, chiefly in loosely coupled communica- 
tion, a task may wait for a message or reply to arrive at 
any one of several message queues. The task is acti- 
vated when a message or reply arrives. This is achieved 
by having each message queue associated with an 
event occurrence. Adding a message to an empty queue 
results in an event's being signaled and the task acti- 
vated. 

The message communication mechanisms supported 
in DARTS and the graphical notation for loosely cou- 
pled and closely coupled message communication are 
shown in Figure 1. 

Information Hiding Module. The concept of a pool or 
data store is required for data used for reference pur- 
poses. The shared data are accessible to two or more 
tasks either for read only or read/write purposes. A 
TCM called the Information Hiding Module (IHM) is 
used for this purpose. The IHM defines the data store as 
well as the access procedures to it. 

Figure 2 shows the graphical notation used in DARTS 
for an IHM. The data store is shown as a box, and the 
access procedures are conceptually executed in tasks A 
and B. The arrows indicate the data flows between task 
and data store. 

Task Synchronization Module. Events are used for 
synchronization purposes between tasks where no ac- 
tual information transfer is needed. A destination task 
may wait for an event occurrence, or a source task may 
signal an event that activates the destination task. The 
graphical notation used for task synchronization in 
DARTS is given in Figure 3. 

In DARTS, the synchronization mechanism is ex- 
tended to allow one task to wait for any one of several 
events to be signaled. If any one event is signaled, the 
task is activated. A task may wait for events used only 
for synchronization purposes as well as events associ- 
ated with message queues. 

The primitives for signaling an event and waiting for 
an event are provided by the operating system. Waiting 

Data Written 

Data Read 

FIGURE 2. Information Hiding Module 
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FIGURE 3. Task Synchronization 

for a number  of events can be a more complicated syn- 
chronization situation, and, for this reason, the concept 
of a TSM is introduced. 

A TSM is typical ly the main or supervisory module 
of a task. There is usually only one TSM per task, and it 
is required only for tasks that do a significant amount  
of task synchronization. In this module,  the task waits 
for one or more events to occur; these may be synchro- 
nizing events or message queuing events. Depending on 
the circumstances,  the task may wait  for different 
events at different times. 

Task Interfaces. In DARTS, task interfaces are for- 
malized according to the following guidelines. 

A data flow between two tasks is treated as one of 
the following: 

1. A loosely coupled message queue if one task needs 
to pass information to the other and the two tasks 
may proceed at different speeds. This message 
queue is handled by an MCM. 

2. A closely coupled message / rep ly  if information is 
passed from one task to another, but  the first task 
cannot proceed until  it has received a reply from 
the second. This is also handled by an MCM. 

3. An event signal if only a notification of an event 
occurrence and no data transfer are required. 

A data store that needs to be accessed by two or more 
tasks is handled as an IHM in which the data structure 
is defined as well as the access routines to the data 
structure. 

In addition, each task that waits for one or more 
events may need a TSM. 

Task Design 

Structured Design. The next stage of the DARTS 
method involves designing each individual  task, where  
each task represents a sequential  program. In develop- 
ing data flow diagrams in the first step of the design 
process, it may have already been de termined that 
within a task ~ are several transforms connected by data 
flows and data stores. 

If the decomposit ion was not taken to this level of 
detail, a data flow diagram should be drawn for the 
task. The task is now structured using the Structured 
Design method. (Depending on the nature of the task, 
either Transform Centered or Transaction Centered de- 
sign is used [15].) The structure chart  developed for 

each task identifies the modules in that task and the 
interfaces between them. 

State Dependency in Transaction Processing. A ma- 
jor l imitation of Transaction Centered Design is that the 
action to be taken on the incoming transaction depends 
only on the input  data. In s ta te-dependent  real- t ime 
systems, the action to be taken depends not only on the 
incoming data but  also on the current  state of the sys- 
tem (i.e., on what  has happened before). 

Yourdon [15] notes that the "difficulty with state- 
dependent  decision procedures is a fundamental  defect 
in the transaction centered structure." The approach 
proposed by Yourdon consists of distr ibuting transac- 
tion processing so that state dependencies  are localized. 
However, in many cases where  decision making needs 
to be centralized, this is not a satisfactory solution. 

An alternative is to have one module,  a State Transi- 
tion Manager (STM), maintain both the current  state of 
the system and a state transit ion table defining all legal 
and illegal state transitions. A task that needs to process 
a transaction calls the STM with the desired action as 
an input parameter.  

The STM then checks the state transit ion tables to 
determine whether  the desired action is legal, given the 
current  state of the system. If the transaction is legal, 
the STM changes the state of the system, if necessary, 
and then returns a positive response to the calling task. 
Otherwise, it returns a negative response. In some de- 
signs, it may be necessary for the STM to re turn  a valid 
action in addit ion to a positive response (e.g., when the 
valid action to be taken also depends on the current  
state of the system). 

In DARTS, the STM is designed as a TCM of the IHM 
type. It maintains a data structure,  namely the State 
Transition Table, which is hidden from the calling 
tasks. The module also contains the access procedures 
that check the val idi ty of task requests and perform the 
state transitions. As with other TCMs, the STM runs in 
the task that invokes it. 

To ensure that state transitions are processed sequen- 
tially, they must be mutual ly  exclusive. A good way to 
ensure mutual  exclusion as well as fast state transit ions 
is to increase the priori ty of the task when the STM is 
entered and restore the old task priori ty when the STM 
is exited. 

EXAMPLE OF USING THE 
DARTS DESIGN METHOD 
The DARTS real-t ime systems design method has been 
successfully applied to the design of a robot controller  
system at General Electric's Industrial  Electronics De- 
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FIGURE 4. Control Panel 

velopment Laboratory. The case study presented here 
consists of a robot controller that controls up to six axes 
of motion and interacts with digital I /O sensors. Al- 
though substantially simplified from the actual design 
for the purposes of this paper, the case study does serve 
to illustrate the main concepts of the design method. 

Control of axes and I /O is effected by a program 
initiated from a Control Panel. The Control Panel con- 
sists of a number of push buttons and a selector switch 
for program selection (Figure 4). The state transition 
diagram for the controller is shown in Figure 5. For 
reasons of simplicity, error conditions have been ig- 
nored. 

When the POWER ON button is pressed, the system 

enters the Powering Up state. On successful completion 
of the power up sequence, the system enters Manual 
state. The operator may now select a program using the 
Program Select rotary switch, which can be set to indi- 
cate the desired program number. Pressing RUN initi- 
ates execution of the program currently selected, and 
the system transitions into Running state. Execution of 
the program may be suspended by pressing STOP, at 
which time the system enters the Suspended state. The 
operator may then resume program execution by press- 
ing RUN, returning the system to Running state, or 
terminate the program by pressing END. Program END 
having been pressed, the system enters Terminating 
state; when the program finally terminates execution, 
the system returns to the Manual state. 

Data Flow Analysis 
The overall data flow diagram for the robot controller is 
given in Figure 6. Control panel inputs are read in and 
validated. Each time a push button is pressed, the input 
is read and converted to the internal system format by 
Read Panel Input. Panel inputs are then passed to Vali- 
date Panel Input. Since the validity of the inputs de- 
pends on the current state of the system, the controller 
state transition table has to be checked. To keep the 
example simple, it is assumed that invalid user inputs 
are ignored. 

Valid panel inputs are passed on to Process Panel 
Input, where they are processed and then passed to the 
appropriate transform, either Interpret Program State- 
ment or Output Axis Data. In addition, Process Panel 
Input passes panel outputs (corresponding to control 

Power On 

~:~:i~:~ii~i~;i~i~ii: ~i ~ ~ 

r 

Program 
Select 

FIGURE 5. State Transition Diagram 

Successful ~, Power Up 
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panel status lights} to Output to Panel. 
When the setting on the Program Select switch is 

changed, the new switch setting is passed to Process 
Panel Input, which updates the selected program id. 
When RUN is pressed, Validate Panel Input recognizes, 
by checking with the State Transition Table, that this is 
a Run Start. Process Panel Input passes the Run Start 
request to Interpret Program Statement, which then 
starts interpreting the program. It executes arithmetic 
and logical statements directly, but motion and I/O 
statements require further processing. A motion com- 
mand is passed to Process Motion Command, which 
does some mathematical transformations on the data 
and then passes a motion block to Output Axis Data. 
Output Axis Data converts the data to the required 
format for the Axis Controller and passes an axis block 
to the Axis Controller. 

When STOP is pressed, Output Axis Data stops feed- 
ing axis blocks to the Axis Controller; when RUN is 
pressed, it resumes. When the axis motion associated 
with an axis block has been completed, an Axis Ac- 

knowledgment is sent to Receive Acknowledge by the 
Axis Controller. This acknowledgment is processed and 
then passed back as a Motion Acknowledgment to In- 
terpret Program Statement. 

In the case of a sensory I/O statement, Interpret Pro- 
gram Statement sends an I/O command to Process I /O 
Command. Process I /O Command receives sensor input 
data from Read Sensors and passes sensor output data 
to Output to Sensors. 

Structuring the System into Tasks 
Having drawn the data flow diagram (Figure 6), we 
need to consider how the system can be structured into 
concurrent tasks. Figure 7 shows a box drawn around 
each transform or group of transforms that logically 
form a task, whereas Figure 8 shows the system struc- 
tured into tasks. 

As a first task-structuring criterion, typically any 
function that interacts directly with an I /O device 
needs to be a separate task since its effective speed is 
governed by the speed of the device with which it is 
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interacting. Consequently, the Read Panel Input trans- 
form needs to be a separate task, the Control Panel 
Input Handler, since it has to receive inputs from the 
control panel. Similarly, the Output to Panel transform 
needs to be a separate task--the Control Panel Output 
Handler. 

The Validate Panel Input transform and the Process 
Panel Input transform are grouped together into one 
task, the Control Panel Processor (CPP), in accordance 
with the temporal cohesion task-structuring criterion. 
Thus, control panel input is processed immediately 
after validation. 

The transforms Interpret Program Statement, Process 
Motion Command, and Process I /O Command repre- 
sent the program Interpreter. As these transforms rep- 
resent a group of closely related functions, they are 
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grouped together according to the functional cohesion 
task-structuring criterion. They logically form one task, 
which may be running concurrently with the CPP. 

The Output Axis Data and Receive Acknowledge 
transforms are grouped together into one task, the Axis 
Manager, in line with the temporal cohesion task- 
structuring criterion. Each time Output Axis Data out- 
puts an axis block to the Axis Controller, Receive Ac- 
knowledge has to wait for an acknowledgment before 
Output Axis Data can output the next block. Thus, 
there is no advantage in having the two transforms 
execute concurrently. In addition, the speed of these 
two transforms is dictated by the speed of the axes. 
Thus, no other transforms can be combined with them 
into the Axis Manager task. 

The Axis Controller is structured as a separate time- 
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critical task. It runs on a separate processor as it inter- 
acts closely with the axes. 

Sensory I /O  requests from the Interpreter are proc- 
essed by two tasks. The Output to Sensors transform is 
activated on demand whenever an output is required 
and so is structured as a separate I /O-dependent  task, 
Sensory Output. The Read Sensors transform periodi- 
cally scans the input sensors and so is structured as a 
separate periodic task, Sensory Input. 

Defining the Task Interfaces 
Once the tasks have been identified (Figure 8), the next 
step is to define the interfaces between them. 

Panel inputs are queued up for the CPP by the Con- 
trol Panel Input Handler. Thus, the interface between 
the two tasks consists of a message queue. Similarly, 
panel outputs are queued for the Control Panel Output 

Handler by the CPP. An MCM is used for handling 
message queues. 

The CPP sends a Start Program message to the Inter- 
preter identifying the program to be executed. The In- 
terpreter generates motion blocks and places them in 
the motion block queue. Since some motion blocks im- 
ply a long move while others are short, the queue be- 
tween the Interpreter and the Axis Manager acts as a 
buffer. 

When the Interpreter reads a nonmotion statement 
(e.g., a sensory I /O  command), it needs to wait until 
axis motion has reached the desired point before exe- 
cuting the statement. The Interpreter waits for a Motion 
Acknowledge signal from the Axis Manager indicating 
that all axis blocks have been executed. The Interpreter 
also waits for an End event signal indicating that the 
program should be terminated. It is awakened when 
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either of these conditions is set. 
The main routine of the Interpreter consists of a TSM 

in which the Interpreter handles all synchronization 
conditions. Initially, the Interpreter waits for a Start 
Program message from the CPP. During program inter- 
preting, it periodically checks to see if an End event has 
been signaled. When interpreting has been suspended, 
the Interpreter waits for either an End event or a Mo- 
tion Acknowledge event. 

The Axis Manager receives motion blocks from the 
Interpreter in its message queue, as well as Stop and 
Resume event signals from the CPP. The main routine 
of the Axis Manager is a TSM that handles all synchro- 
nization conditions. Every time the Axis Manager waits 
for a motion block from the Interpreter, it is suspended 
if one is not available. When the Axis Manager receives 
the block, it tests to see if a Stop event has been sig- 
naled. If so, it waits for a Resume signal. If there is no 
Stop condition or if Resume was signaled, the Axis 
Manager sends the axis block to the Axis Controller 
and waits for an axis acknowledgment of block comple- 
tion. The communication between the Axis Manager 
and Axis Controller is an example of closely coupled 
message communication. An MCM is used to provide 
the closely coupled communication mechanism. 

A sensory I/O data store is used to store the current 
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values of the sensory I /O data. If the Interpreter proc- 
esses an output command, it updates the sensory I/O 
data store (SIODS) and signals the Sensory Output task 
that an output is available. The Sensory Input task pe- 
riodically scans the input sensors and updates the 
SIODS when a change takes place. If the Interpreter 
processes an input command, it reads the SIODS for the 
current value of the sensor. Since access is made to the 
SIODS by three tasks, access to the SIODS has to be 
synchronized by the access routines. Together, the 
SIODS and the access routines constitute an IHM. 

Structuring Tasks into Modules 
After the interfaces between tasks have been defined, 
the next step is to establish the structure of the individ- 
ual tasks, each of which represents a sequential pro- 
gram. For each task, the data flow diagram is drawn, 
and from this the structure chart is derived, using the 
Structured Design method [15]. 

To illustrate, we will look at one particular task, 
namely, the CPP. The CPP is an example of Transac- 
tion Centered Design supplemented by a STM. 

The CPP task shown in Figure 8 was formed by-com- 
bining the Validate Panel Input and Process Panel Input 
transforms given in Figure 7. Thus, the data flow dia- 
gram for the CPP task (Figure 9) is an expanded form of 

St~ t p~og ~eSs~ge 

Panel Input 

Panel 

End Signal 

Stop Signal 

FIGURE 9. Data Flow Diagram for Control Panel Processor 
Resume Signal 
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FIGURE 10. Structure Chart for Control Panel Processor 

these two transforms. 
In Figure 9, Get Panel Input receives input messages 

from the Panel Inputs message queue. The inputs are 
passed on to Validate Panel Input, which checks that 
they are valid for the current state of the system. As- 
suming the input is valid, the valid input is passed to 
the appropriate action transform, which performs the 
action. For example, the Stop Program action transform 
signals a Stop event, switches off the control panel Run 
light, and switches on the Stop light. Control panel out- 
puts are passed to the Put Panel Output transform, 
which queues up panel output messages for the CP 
Output Handler. 

The structure chart for the CPP is given in Figure 10. 
The main routine, also called the CPP, is a controlling 
module. It calls Get Panel Input to read a message; if a 
message is not available, the task will be suspended 
pending its arrival. When the input message is re- 
ceived, Validate Panel Input is called. The Validate 
Panel Input module is actually the STM, which is 
called with the panel input as a parameter. STM re- 
turns a Valid/Invalid status. 

If the action is not valid for the current state (e.g., 
STOP is pressed while the system is in Manual state}, 
an invalid status is returned by STM. STM also returns 
an Action, which is particularly essential where an in- 
put may have two or more interpretations depending 
on the state of the system. Thus, a RUN input identifies 

a Start Program action if the system is in Manual state 
and a Resume Program action if the system is in Sus- 
pended state. 

The control module Process Transaction is now 
called with the Action as a parameter. Process Transac- 
tion calls the appropriate action module to perform the 
action. 

The STM is called by more than one task. Since it is 
also called by the Interpreter to indicate that program 
execution has terminated, it is designed as a TCM of 
type IHM. As with all TCMs, it conceptually runs in the 
task that invokes it. 

EXPERIENCE WITH DARTS 
An application of an early version of the design 
method, before the task structuring concepts had been 
formalized, is described in [7]. The DARTS design 
method has so far been used on two projects, a robot 
controller and a vision system. The robot controller 
project is now in the system integration phase, whereas 
the design of the vision system was completed only 
recently. 

There was much discussion initially as to whether 
DARTS should consider control flow at the start of the 
design. DARTS, like Structured Analysis, makes no dis- 
tinction between data and control flow on the data flow 
diagrams. However, some users of methods like SADT 
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[13], which  do dist inguish from the start b e t w e e n  data 
and control  flow, often find it difficult  to separate  data 
from control  early in the  design process. 

In DARTS, the decis ion as to wh ich  data flows are 
actual ly  data and which  are used for control  purposes 
is postponed to the task s t ruc tur ing  stage. That  is, con- 
trol flow is considered at the t ime that  task interfaces 
are def ined and the STM designed. For example ,  in the  
case study, the Stop and Resume  data flows in Figure 6 
become  event  signals in Figure 8. 

In practice,  start ing the design wi th  data f low dia- 
grams was not found to be a problem,  and early con- 
cerns about  the me thod  were  al layed w h e n  it was 
found to work  satisfactorily. As in the S t ruc tu red  Anal-  
ysis method,  it was found most useful  to postpone con- 
siderations of system ini t ia l izat ion and error  handl ing  
to a later stage. In DARTS, this is done at the task 
s t ructur ing stage. 

When  using DARTS, there  is somet imes  a t empta t ion  
to make  each t ransform on the system data f low dia- 
gram a task. This usual ly  leads to too m a n y  tasks and to 
unnecessary  complex i ty  in deal ing wi th  the accom-  
panying c o m m u n i c a t i o n  and synchron iza t ion  issues. 
The  Task St ruc tur ing  stage is a crucia l  phase of DARTS, 
at wh ich  point  designers should  just ify the exis tence  of 
each task. 

While  applying DARTS to the robot contro l ler  proj- 
ect, a n u m b e r  of significant  changes were  made  to the 
Requ i rements  Specif icat ion after the design had been  
completed.  Al though these changes necessi ta ted corre-  
sponding changes to the System Design, no major  
change in the system s t ructure  or task interfaces was 
required.  This  is a t t r ibutable  to the fact that  DARTS 
leads to a system that is h ighly modu la r  wi th  r educed  
coupl ing be tween  tasks. 

At the m o m e n t  of designing the MCM to handle  task 
communica t ion ,  a choice  exis ted be tween  using the  
message c o m m u n i c a t i o n  m e c h a n i s m  provided  by the 
operat ing system or developing  an MCM. The  lat ter  
approach was chosen for two reasons. First, using an 
MCM mean t  that  a bound  could  be set on the  size of 
each message queue  in the system. In addit ion,  this 
made  it possible to associate an even t  condi t ion  wi th  
each queue.  A task could  then  wai t  in a TSM for any 
one of several  events  to be s i gna l ed - - a  ve ry  va luable  
feature, it tu rned  out, in designing the robot control ler .  

During the system integrat ion phase, tasks are gradu- 
ally grouped together  and tested. The  integrat ion of the 
robot control ler  is progressing well ,  and, up to the  t ime 
of writing, no major  design problems have  been  en- 
countered.  Use of the DARTS design me thod  is consid- 
ered a significant factor in this smooth  integrat ion.  

S U M M A R Y  A N D  CONCLUSIONS 
The DARTS design approach descr ibed here  ex tends  
the S t ruc tured  A n a l y s i s / S t r u c t u r e d  Design me thod  to 
address the needs of rea l - t ime systems by provid ing  an 
approach for s t ruc tur ing  the system into concur ren t  

tasks and for def ining the  interfaces b e t w e e n  tasks. The  
me thod  leads to a h ighly  s t ruc tured  modu la r  sys tem 
wi th  wel l -def ined  interfaces and reduced  coupl ing be- 
tween  tasks. 

A c k n o w l e d g m e n t s .  The au thor  grateful ly  acknowl-  
edges the m a n y  s t imula t ing  design discussions wi th  J. 
Lawrence ,  F. Sherwood,  and J. Taylor.  The  au thor  also 
wishes  to acknowledge  the cons t ruc t ive  c o m m e n t s  
made  by E. H. Sibley and the referees.  

REFERENCES 
1. Beech, G. Software Engineering with Ada. Benjamin/Cummings, 

Menlo Park. Calif., 1983. 
2. Brinch Hansen, P. Concurrent programming concepts. Comput. Surv. 

5, 4 (Dec. 1973), 223-245. 
3. De Marco, T. Structured Analysis and System Specification.Yourdon 

Press, New York, 1978. 
4. Dijkstra, E.W. Co-operating sequential processes. In Programming 

Languages, F. Genuys, Ed. Academic Press, New York, 1968. 
5. Gane, C., and Sarson, T. Structured Systems Analysis: Tools and Tech- 

niques. Prentice-Hall, Englewood Cliffs, N.J., 1979. 
6. Gomaa, H. A comparison of software design methods. In Proceedings 

of the National Electronics Conference {Chicago, IlL Oct.), vol. 33, 1979. 
7. Gomaa, H., Lot, J., and Woo, P. The software engineering of a micro- 

computer application. Soflw. Pract. Exper. 12, {1982}, 309-321. 
g. Hamilton, M.. and Zeldin, S. Higher order software--A methodology 

for defining software. IEEE Trans. Softw. Eng. (Mar. 1976). 
9. Jackson. M.A. Principles of Program Design. Academic Press, New 

York, 1975. 
10. Myers. G.J. Composite/Structured Design. Van Nostrand Reinhold, 

1976. 
11. Orr, K.T. Structured Systems Development. Yourdon Press, New York, 

1977. 
12. Parnas. D.L. On the criteria to be used in decomposing systems into 

modules. Commun. ACM 15, 12 (Dec. 1972), 1053-1058. 
13. Ross, D.T., and Schoman, K.E. Structured analysis for requirements 

definition. IEEE Trans. Softzo. Eng. (Jan. 1977). 
14. Simpson, H.R., and Jackson, K.L, Process synchronization in Mascot. 

Comput. J. 22, 4 (1979J. 
15. Yourdon. E., and Constantine, L. Structured Design. 2nd ed. Yourdon 

Press, New York, 1978. 

CR Categories and Subject Descriptors: C.3 [Special-purpose and 
Application-based Systems]: microprocessor/microcomputer applications, 
real-time systems; D.2.1 [Software Engineering]: Requirements/Specifi- 
cations-methodologies, tools; D.2.2 [Software Engineering]: Tools and 
Techniques--modules and interfaces, top-down programming; D.4.1 [Oper- 
ating Systems]: Process Management--concurrency, mutual exclusion, syn- 
chronization'~ D.4.7 [Operating Systems]: Organization and Design--hier- 
archical design, real-time systems; 1.2.9 [Artificial Intelligence]: Robot- 
ics--manipulators, sensors; K.6.1 [Management of Computing and Infor- 
mation Systems]: Project and People Management--systems analysis and 
design; K.6.3 [Management of Computing and Information Systems]: 
Software Management--software development 

General Terms: Design, Documentation, Management, Standardiza- 
tion 

Additional Key Words and Phrases: software engineering, software 
design, concurrent processes, task communication, task synchronization 

Received 12/83; accepted 3/84; revised 5/84 

Author's Present Address: H. Gomaa, General Electric, Industrial Elec- 
tronics Development Laboratory, P.O. Box 8106, Charlottesville, VA 
22906. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

September 1984 Volume 27 Number 9 Communications of the ACM 049 


