
COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

DARTS--a design method for real-time systems--leads to a highly
structured modular system with well-defined interfaces and reduced
coupling between tasks.

A SOFTWARE DESIGN METHOD
FOR REAL-TIME SYSTEMS

H. GOMAA

Real-time systems typically consist of several concur-
rent processes or tasks. Each task is sequential, and
concurrency is obtained by having asynchronous tasks
running at different speeds. From time to time, the
tasks need to communicate and synchronize with each
other.

This paper surveys briefly several existing software
design methods and considers how suitable they are for
real-time systems. It outlines the requirements of real-
time systems design and describes a real-time design
method known as DARTS (Design Approach for Real-
Time Systems). An example, the design of a robot con-
troller, is given to illustrate the use of the DARTS
method.

SURVEY OF SOFTWARE DESIGN METHODS
The software design methods surveyed in this section
are the Jackson and Warnier methods, Structured De-
sign, and the Higher Order Software, Mascot, and Infor-
mation Hiding methods. A more detailed review is
given in [6].

The Jackson [9] (also known as Jackson Structured
Programming) and Warnier [11] design methods are
data-structure-oriented design methods primarily appli-
cable to program design. Neither method handles the
problem of decomposing a system into modules or
tasks, and consequently neither is appropriate for real-
time systems design.

Structured Design [10, 15] is a systems design method
that deals with decomposing a system into modules. It

© 1984 ACM 0001-0782/84/0900-0938 75¢

can lead to highly functional modular designs but pro-
vides no help with structuring a system into tasks. Nor
does it address the issue of internal module design.
Structured Design is often used in conjunction with
Structured Analysis [3, 5], which makes use of data
flow diagrams and functional decomposition.

The Higher Order Software design method [8] also
uses functional decomposition for decomposing a sys-
tem into modules, but it, too, fails to address the issue
of decomposing a system into concurrent tasks.

The Mascot method [14] is well suited for real-time
systems since it deals specifically with structuring a
system into tasks and defining the interfaces between
them. However, it starts with a network diagram of
tasks and addresses neither the issue of how to struc-
ture a system into tasks nor the structure of the indi-
vidual tasks themselves.

Parnas' Information Hiding method [12] is a powerful
design concept that leads to highly modular systems
with low module coupling. The technique has been
adopted by other design methods such as Structured
Design, Mascot, and Object Oriented Design [1].

REQUIREMENTS OF A REAL-TIME
SYSTEMS DESIGN METHOD
The above survey of design methods shows that each
method has some limitations in terms of real-time sys-
tems design. The two methods that come closest to sat-
isfying the needs of real-time systems design are Struc-
tured Design and Mascot. This section identifies the
essential requirements of an adequate real-time sys-

038 Communications of the ACM September 1984 Volume 27 Number 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358234.358262&domain=pdf&date_stamp=1984-09-01

Computing Practices

terns design method and points out to what degree
these requirements are satisfied in existing design
methods.

Data-Flow-Oriented Design
The data flow approach to software design is particu-
larly appropriate for the design of real-time systems
because the data in these systems may be considered to
flow from input to output and in between to be trans-
formed by software tasks.

The data-flow-oriented methods are best exemplified
by Structured Analysis and Structured Design, which
are frequently used together. With Structured Analysis,
data flow diagrams are used to show the functions
(transforms) of a system as well as the data flows be-
tween the transforms and the data stores accessed by
them. Other features are the use of a data dictionary
and the hierarchical decomposition of transforms.

Structured Design [15], also known as Composite De-
sign [10], consists of two main components: (1) two sets
of criteria, cohesion and coupling, which are used for
evaluating the quality of a design; and (2} a design
method for guiding designers in a top-down decomposi-
tion of a system into modules. The objective of Struc-
tured Design is to produce a design in which modules
have high cohesion and low coupling.

The Structured Design method consists of two design
approaches, Transform Centered Design and Transac-
tion Centered Design. With Transform Centered Design,
the major streams of data are identified as they flow
and are transformed from external input to external
output. The system is then structured so that each ma-
jor abstract input stream, each major abstract output
stream, and each major transformation has a corre-
sponding branch in the structure chart. Transaction
Centered Design is applicable where the data flow con-
sists of data or control information that is passed to a
transform initiating some action or sequence of actions
based on the incoming data.

Because real-time systems are usually data flow ori-
ented, the DARTS method starts with a data flow anal-
ysis of the system.

Task Communication and Synchronization
Because it is essential in real-time systems for tasks to
communicate and synchronize their operations, most
real-time operating systems support some mechanism
for task communication and/or synchronization. The
most common of these mechanisms are discussed be-
low.

Task Synchronization. Two kinds of task synchroni-
zation found in real-time systems are mutual exclusion
and cross stimulation. Mutual exclusion is typically re-
quired when shared data can be accessed concurrently
by two or more tasks [4]. It is enforced by means of
binary semaphores. Cross stimulation occurs when one
task is awaiting a signal from another task before it can
proceed. Binary semaphores and event synchronization
can be used to effect cross stimulation. Both mutual

exclusion and cross stimulation are used for task syn-
chronization in DARTS.

Task Communication. Task communication occurs
when a producer task needs to pass information to a
consumer task. The most common form of task commu-
nication is Message Communication [2]. The communi-
cation may be closely coupled (i.e., each time the pro-
ducer sends a message, it waits for a response from the
consumer), or it may be loosely coupled (i.e., the pro-
ducer and consumer proceed at their own rates and a
queue of messages builds up between the producer and
consumer). In either case, if the consumer requests a
message from the producer and the queue is empty, the
consumer has to wait until a message becomes avail-
able.

The message communication mechanism is provided
in one of three ways: by the operating system; by pro-
viding multitasking with a task communication capabil-
ity in the implementation language (e.g., Ada [1]); or by
means of a module that handles message communica-
tion, using the synchronizing primitives provided by
the operating system. This is the approach used in Mas-
cot where tasks communicate with each other via
channels. Channels are used for passing data, such as
messages, between tasks.

Both loosely and closely coupled message communi-
cation are supported in DARTS.

Information Hiding
The concept of Information Hiding (also known as data
abstraction) was introduced by Parnas [12] as a criter-
ion for decomposing a system into modules. The objec-
tive is to hide key design decisions; that is, each key
design decision should be known to only one module.
With Information Hiding, information sharing between
modules is kept to a minimum.

The advantage of this method is that modules are
more self-contained and the system more modifiable
and thus more maintainable. The disadvantage is the
overhead consumed by accessing a data structure via a
function rather than directly.

Mascot uses the Information Hiding concept to the
extent that access to data in channels (which may be
used for message communication) and pools (used for
shared data) is provided only by means of access proce-
dures. In this way, both the details of the data structure
and the synchronization of access to the data structure
are hidden from the calling task.

In DARTS, as in Mascot, Information Hiding is used
to define task interfaces. Two classes of task interface
modules are supported--Task Synchronization Mod-
ules (TSM) and Task Communication Modules (TCM),
which minimize coupling between tasks.

State Dependency in Transaction Processing
Many real-time systems are transaction oriented or in-
corporate some degree of transaction processing (i.e.,
the action or sequence of actions to be carried out de-
pends on the nature of the incoming data). Transaction

September 1984 Volume 27 Number 9 Communications of the ACM O3O

Computing Practices

Centered Design, a component of the Structured Design
method [15], addresses this issue although it has a seri-
ous limitation in that it does not deal with state de-
pendency in transaction processing. DARTS overcomes
this limitation.

DARTS
The DARTS design method starts with the Require-
ments Specification, which defines what features the
system will provide with no consideration as to how
they will be provided. As a given specification can be
designed and implemented in many different ways, the
development of data flow diagrams is considered the
first phase of the design process. At this stage, the sys-
tem is decomposed into subsystems and the subsystem
interfaces identified.

The DARTS design method can be thought of as ex-
tending the Structured Analysis/Structured Design
method by providing an approach for structuring the
system into tasks as well as a mechanism for defining
the interfaces between tasks. In this sense, it draws on
the experience gained in concurrent processing. As
with other design methods, DARTS is intended to be
iterative. The steps in the DARTS design method are
described below.

Data Flow Analysis
Data flow diagrams are used as an analysis tool. Start-
ing with the functional requirements of the system, the
data flow through the system is analyzed and the major
functions determined. The data flow diagrams are de-
veloped and decomposed to sufficient depth to identify
the major subsystems and the major components of
each subsystem.

Each data flow diagram contains transform bubbles
representing functions carried out by the system, ar-
rows representing data flows between transforms, and
data stores representing data repositories.

A data dictionary defines the data items contained in
the data flows and data stores.

Decomposition into Tasks
Having identified all the functions in the system and
the data flows between them, we are now in a position
to identify concurrency. The next stage of the DARTS
method therefore involves determining how concurrent
tasks will be identified on the data flow diagram.

The main consideration in decomposing a software
system into concurrent tasks is the asynchronous na-
ture of the functions within the system. The transforms
in the data flow diagrams are analyzed to identify
which may run concurrently and which are sequential
in nature. By this means, tasks are identified: One
transform may correspond to one task, or one task may
encompass several transforms.

The data flow diagrams are now redrawn showing
the tasks and their interfaces. In so doing, a box is
drawn around each transform or set of transforms that
logically form a task. Each box then becomes a task.

The criteria for deciding whether a transform should

be a separate task or grouped with other transforms
into one task are the following.

Dependency on I /0 . Depending on input or output, a
transform is often constrained to run at a speed dictated
by the speed of the I /O device with which it is inter-
acting. In this case, the transform needs to be a separate
task.

Time-critical functions. A time-critical function needs
to run as a high priority and therefore needs to be a
separate task.

Computational requirements. A computationally inten-
sive function (or set of functions) can run as a lower
priority task consuming spare CPU cycles.

Functional cohesion. Transforms that perform a set of
closely related functions can be grouped together into a
task. Since the data traffic between these functions may
be high, having them as separate tasks will increase
system overhead, whereas implementing each function
as a separate module within the same task ensures
functional cohesion both at the module and task levels.

Temporal cohesion. Certain transforms perform func-
tions that are carried out at the same time. These func-
tions may be grouped into a task so that they are exe-
cuted each time the task receives a stimulus.

Although temporal cohesion is not considered a good
module decomposition criterion in Structured Design, it
is considered in DARTS to be acceptable at the task
level. Each function should be implemented as a sepa-
rate module to achieve functional cohesion at the mod-
ule level. These modules in turn are grouped into the
task thereby achieving temporal cohesion at the task
level.

Periodic execution. A transform that needs to be exe-
cuted periodically can be structured as a separate task
that is activated at regular intervals.

When a system is structured into tasks, the tasks may
all run on the same processor or may be split among
two or more processors. The design decisions to be
made at this stage are based on various factors such as
system performance.

Definition of Task Interfaces
It is now time to consider the interfaces between tasks.
On the data flow diagrams, the interfaces are in the
form of data flows or data stores. The next stage in-
volves formalizing the task interfaces.

In DARTS, task interfaces are handled by defining
two classes of task interface modules, Task Communi-
cation Modules (TCM) and Task Synchronization Mod-
ules (TSM).

Task Communication Modules. A TCM handles all
cases of communication among tasks. Typically, a TCM
contains a data structure and defines the access proce-
dures to it.

Conceptually, a TCM always runs in the task that
invokes it. Thus, it is possible for a TCM to execute

940 Communications of the ACM September 1984 Volume 27 Number 9

Computing Practices

Loosely Coupled
(Message Communication Module)

PRODUCER P:
Send Message (C,M)

CONSUMER C:
Receive Message (P, M)

Message Queue

Closely Coupled
(Message Communication Module)

PRODUCER P:
Send Message (C,M)
Wait Reply (C,R)

Messaae (M)

CONSUMER C:
Receive Message (P, M)
Send Reply (P, R)

.,_~.,,3)

FIGURE 1. Message Communication

concurrently within two tasks. It is therefore essential
that access procedures provide the synchronization and
mutual exclusion conditions necessary to ensure con-
sistent and correct access to the data.

A TCM makes use of the synchronizing primitives
provided by the operating system. Thus, the implemen-
tation of a TCM will vary from system to system, but
conceptually its function will be similar.

Two different types of TCMs are supported in
DARTS:

Message Communication Module. Message communica-
tion is handled by a TCM called the Message Commu-
nication Module (MCM). MCMs support both loosely
coupled and closely coupled message communication.

In loosely coupled message communication, the mes-
sage queue includes binary semaphores for controlling
mutual exclusion. Event synchronization is used for
suspending the producer when the queue becomes full
and suspending the consumer when the queue is

empty. Access routines are provided for sending and
receiving messages as well as getting and releasing mes-
sage blocks. Furthermore, a maximum size is imposed
on each message queue.

In the case of closely coupled message communica-
tion, the maximum size of the queue is reduced to one
element. Sending and receiving of replies are supported
by having a one-element message queue in each direc-
t ion-one for messages and one for replies.

In addition, chiefly in loosely coupled communica-
tion, a task may wait for a message or reply to arrive at
any one of several message queues. The task is acti-
vated when a message or reply arrives. This is achieved
by having each message queue associated with an
event occurrence. Adding a message to an empty queue
results in an event's being signaled and the task acti-
vated.

The message communication mechanisms supported
in DARTS and the graphical notation for loosely cou-
pled and closely coupled message communication are
shown in Figure 1.

Information Hiding Module. The concept of a pool or
data store is required for data used for reference pur-
poses. The shared data are accessible to two or more
tasks either for read only or read/write purposes. A
TCM called the Information Hiding Module (IHM) is
used for this purpose. The IHM defines the data store as
well as the access procedures to it.

Figure 2 shows the graphical notation used in DARTS
for an IHM. The data store is shown as a box, and the
access procedures are conceptually executed in tasks A
and B. The arrows indicate the data flows between task
and data store.

Task Synchronization Module. Events are used for
synchronization purposes between tasks where no ac-
tual information transfer is needed. A destination task
may wait for an event occurrence, or a source task may
signal an event that activates the destination task. The
graphical notation used for task synchronization in
DARTS is given in Figure 3.

In DARTS, the synchronization mechanism is ex-
tended to allow one task to wait for any one of several
events to be signaled. If any one event is signaled, the
task is activated. A task may wait for events used only
for synchronization purposes as well as events associ-
ated with message queues.

The primitives for signaling an event and waiting for
an event are provided by the operating system. Waiting

Data Written

Data Read

FIGURE 2. Information Hiding Module

September 1984 Volume 27 Number 9 Communications of the ACM 941

Computing Practices

Source S: Signal Event (E) Destination D: Wait Event (E)

J
Event E

FIGURE 3. Task Synchronization

for a number of events can be a more complicated syn-
chronization situation, and, for this reason, the concept
of a TSM is introduced.

A TSM is typical ly the main or supervisory module
of a task. There is usually only one TSM per task, and it
is required only for tasks that do a significant amount
of task synchronization. In this module, the task waits
for one or more events to occur; these may be synchro-
nizing events or message queuing events. Depending on
the circumstances, the task may wait for different
events at different times.

Task Interfaces. In DARTS, task interfaces are for-
malized according to the following guidelines.

A data flow between two tasks is treated as one of
the following:

1. A loosely coupled message queue if one task needs
to pass information to the other and the two tasks
may proceed at different speeds. This message
queue is handled by an MCM.

2. A closely coupled message / rep ly if information is
passed from one task to another, but the first task
cannot proceed until it has received a reply from
the second. This is also handled by an MCM.

3. An event signal if only a notification of an event
occurrence and no data transfer are required.

A data store that needs to be accessed by two or more
tasks is handled as an IHM in which the data structure
is defined as well as the access routines to the data
structure.

In addition, each task that waits for one or more
events may need a TSM.

Task Design

Structured Design. The next stage of the DARTS
method involves designing each individual task, where
each task represents a sequential program. In develop-
ing data flow diagrams in the first step of the design
process, it may have already been de termined that
within a task ~ are several transforms connected by data
flows and data stores.

If the decomposit ion was not taken to this level of
detail, a data flow diagram should be drawn for the
task. The task is now structured using the Structured
Design method. (Depending on the nature of the task,
either Transform Centered or Transaction Centered de-
sign is used [15].) The structure chart developed for

each task identifies the modules in that task and the
interfaces between them.

State Dependency in Transaction Processing. A ma-
jor l imitation of Transaction Centered Design is that the
action to be taken on the incoming transaction depends
only on the input data. In s ta te-dependent real- t ime
systems, the action to be taken depends not only on the
incoming data but also on the current state of the sys-
tem (i.e., on what has happened before).

Yourdon [15] notes that the "difficulty with state-
dependent decision procedures is a fundamental defect
in the transaction centered structure." The approach
proposed by Yourdon consists of distr ibuting transac-
tion processing so that state dependencies are localized.
However, in many cases where decision making needs
to be centralized, this is not a satisfactory solution.

An alternative is to have one module, a State Transi-
tion Manager (STM), maintain both the current state of
the system and a state transit ion table defining all legal
and illegal state transitions. A task that needs to process
a transaction calls the STM with the desired action as
an input parameter.

The STM then checks the state transit ion tables to
determine whether the desired action is legal, given the
current state of the system. If the transaction is legal,
the STM changes the state of the system, if necessary,
and then returns a positive response to the calling task.
Otherwise, it returns a negative response. In some de-
signs, it may be necessary for the STM to re turn a valid
action in addit ion to a positive response (e.g., when the
valid action to be taken also depends on the current
state of the system).

In DARTS, the STM is designed as a TCM of the IHM
type. It maintains a data structure, namely the State
Transition Table, which is hidden from the calling
tasks. The module also contains the access procedures
that check the val idi ty of task requests and perform the
state transitions. As with other TCMs, the STM runs in
the task that invokes it.

To ensure that state transitions are processed sequen-
tially, they must be mutual ly exclusive. A good way to
ensure mutual exclusion as well as fast state transit ions
is to increase the priori ty of the task when the STM is
entered and restore the old task priori ty when the STM
is exited.

EXAMPLE OF USING THE
DARTS DESIGN METHOD
The DARTS real-t ime systems design method has been
successfully applied to the design of a robot controller
system at General Electric's Industrial Electronics De-

942 Communications of the ACM September 1984 Volume 27 Number 9

Computing Practices

FIGURE 4. Control Panel

velopment Laboratory. The case study presented here
consists of a robot controller that controls up to six axes
of motion and interacts with digital I /O sensors. Al-
though substantially simplified from the actual design
for the purposes of this paper, the case study does serve
to illustrate the main concepts of the design method.

Control of axes and I /O is effected by a program
initiated from a Control Panel. The Control Panel con-
sists of a number of push buttons and a selector switch
for program selection (Figure 4). The state transition
diagram for the controller is shown in Figure 5. For
reasons of simplicity, error conditions have been ig-
nored.

When the POWER ON button is pressed, the system

enters the Powering Up state. On successful completion
of the power up sequence, the system enters Manual
state. The operator may now select a program using the
Program Select rotary switch, which can be set to indi-
cate the desired program number. Pressing RUN initi-
ates execution of the program currently selected, and
the system transitions into Running state. Execution of
the program may be suspended by pressing STOP, at
which time the system enters the Suspended state. The
operator may then resume program execution by press-
ing RUN, returning the system to Running state, or
terminate the program by pressing END. Program END
having been pressed, the system enters Terminating
state; when the program finally terminates execution,
the system returns to the Manual state.

Data Flow Analysis
The overall data flow diagram for the robot controller is
given in Figure 6. Control panel inputs are read in and
validated. Each time a push button is pressed, the input
is read and converted to the internal system format by
Read Panel Input. Panel inputs are then passed to Vali-
date Panel Input. Since the validity of the inputs de-
pends on the current state of the system, the controller
state transition table has to be checked. To keep the
example simple, it is assumed that invalid user inputs
are ignored.

Valid panel inputs are passed on to Process Panel
Input, where they are processed and then passed to the
appropriate transform, either Interpret Program State-
ment or Output Axis Data. In addition, Process Panel
Input passes panel outputs (corresponding to control

Power On

~:~:i~:~ii~i~;i~i~ii: ~i ~ ~

r

Program
Select

FIGURE 5. State Transition Diagram

Successful ~, Power Up

Program T Termination S

TERMINATING

September 1984 Volume 27 Number 9 Communications of the ACM 943

Computing Practices

PROGRAM

1
Push READ INTERPRET - d ~ , ~ ns°r Value
Buttons, PANEL PROGRAM
Swit%~h INPUT STATEMENT

i N ~ InpuTs INPUT / ~ COMMAND

oo,,,>,/" \ \
Lights ~ . .~:~,~e. ~ - ~ "~0,. OUTPUT ~ k°9'~o~ k PROCESS ~ , ~6c~e OUTPUT Output

TO ~ MOTION ~ .r~oo~ TO PANEL ~ COMMAND ~o~O0~' SENSORS

~] M°tion Block

FIGURE 6. System Data Flow Diagram

OUTPUT RECEIVE
AXIS ACKNOWLEDGE
DATA

~- o+,
AXis %.
CONTROLLER "oo'~o

"%~ ~o #~
" "%,. @~ %,

panel status lights} to Output to Panel.
When the setting on the Program Select switch is

changed, the new switch setting is passed to Process
Panel Input, which updates the selected program id.
When RUN is pressed, Validate Panel Input recognizes,
by checking with the State Transition Table, that this is
a Run Start. Process Panel Input passes the Run Start
request to Interpret Program Statement, which then
starts interpreting the program. It executes arithmetic
and logical statements directly, but motion and I/O
statements require further processing. A motion com-
mand is passed to Process Motion Command, which
does some mathematical transformations on the data
and then passes a motion block to Output Axis Data.
Output Axis Data converts the data to the required
format for the Axis Controller and passes an axis block
to the Axis Controller.

When STOP is pressed, Output Axis Data stops feed-
ing axis blocks to the Axis Controller; when RUN is
pressed, it resumes. When the axis motion associated
with an axis block has been completed, an Axis Ac-

knowledgment is sent to Receive Acknowledge by the
Axis Controller. This acknowledgment is processed and
then passed back as a Motion Acknowledgment to In-
terpret Program Statement.

In the case of a sensory I/O statement, Interpret Pro-
gram Statement sends an I/O command to Process I /O
Command. Process I /O Command receives sensor input
data from Read Sensors and passes sensor output data
to Output to Sensors.

Structuring the System into Tasks
Having drawn the data flow diagram (Figure 6), we
need to consider how the system can be structured into
concurrent tasks. Figure 7 shows a box drawn around
each transform or group of transforms that logically
form a task, whereas Figure 8 shows the system struc-
tured into tasks.

As a first task-structuring criterion, typically any
function that interacts directly with an I /O device
needs to be a separate task since its effective speed is
governed by the speed of the device with which it is

944 Communications of the ACM September 1984 Volume 27 Number 9

interacting. Consequently, the Read Panel Input trans-
form needs to be a separate task, the Control Panel
Input Handler, since it has to receive inputs from the
control panel. Similarly, the Output to Panel transform
needs to be a separate task--the Control Panel Output
Handler.

The Validate Panel Input transform and the Process
Panel Input transform are grouped together into one
task, the Control Panel Processor (CPP), in accordance
with the temporal cohesion task-structuring criterion.
Thus, control panel input is processed immediately
after validation.

The transforms Interpret Program Statement, Process
Motion Command, and Process I /O Command repre-
sent the program Interpreter. As these transforms rep-
resent a group of closely related functions, they are

Computing Practices

grouped together according to the functional cohesion
task-structuring criterion. They logically form one task,
which may be running concurrently with the CPP.

The Output Axis Data and Receive Acknowledge
transforms are grouped together into one task, the Axis
Manager, in line with the temporal cohesion task-
structuring criterion. Each time Output Axis Data out-
puts an axis block to the Axis Controller, Receive Ac-
knowledge has to wait for an acknowledgment before
Output Axis Data can output the next block. Thus,
there is no advantage in having the two transforms
execute concurrently. In addition, the speed of these
two transforms is dictated by the speed of the axes.
Thus, no other transforms can be combined with them
into the Axis Manager task.

The Axis Controller is structured as a separate time-

Push
But tons ,

S w i t c h

!i: !!i ii ii il :i~::,,:~:i:ii,:ii , i ~ i , ~i~ il,ii~ii~,i~i~j,?il, ~!~il/i~J ~!!/:~ ~iii~i?~ii~:i~:i ~I~

~r~:~:~ i i~ ~ i ~ ~ ~i~ii! ii II~

Input

: ~ii;~ii~!~i~ ~ i

Outpu t

i

Mot ion
Block

~\o~ ~ ~,~

~ G E

FIGURE 7. Task Identification

~i~!i! :,!i~/:~i~i/ii:il ~,
: : : : : : :C ¸ i

September 1984 Volume 27 Number 9 Communications of the ACM 045

Computing Practices

PN:

S~

is
knowledgment

Output

I
Axis I/0

FIGURE 8. Task Structure Chart

critical task. It runs on a separate processor as it inter-
acts closely with the axes.

Sensory I /O requests from the Interpreter are proc-
essed by two tasks. The Output to Sensors transform is
activated on demand whenever an output is required
and so is structured as a separate I /O-dependent task,
Sensory Output. The Read Sensors transform periodi-
cally scans the input sensors and so is structured as a
separate periodic task, Sensory Input.

Defining the Task Interfaces
Once the tasks have been identified (Figure 8), the next
step is to define the interfaces between them.

Panel inputs are queued up for the CPP by the Con-
trol Panel Input Handler. Thus, the interface between
the two tasks consists of a message queue. Similarly,
panel outputs are queued for the Control Panel Output

Handler by the CPP. An MCM is used for handling
message queues.

The CPP sends a Start Program message to the Inter-
preter identifying the program to be executed. The In-
terpreter generates motion blocks and places them in
the motion block queue. Since some motion blocks im-
ply a long move while others are short, the queue be-
tween the Interpreter and the Axis Manager acts as a
buffer.

When the Interpreter reads a nonmotion statement
(e.g., a sensory I /O command), it needs to wait until
axis motion has reached the desired point before exe-
cuting the statement. The Interpreter waits for a Motion
Acknowledge signal from the Axis Manager indicating
that all axis blocks have been executed. The Interpreter
also waits for an End event signal indicating that the
program should be terminated. It is awakened when

048 Communications of the ACM September 1984 Volume 27 Number 9

either of these conditions is set.
The main routine of the Interpreter consists of a TSM

in which the Interpreter handles all synchronization
conditions. Initially, the Interpreter waits for a Start
Program message from the CPP. During program inter-
preting, it periodically checks to see if an End event has
been signaled. When interpreting has been suspended,
the Interpreter waits for either an End event or a Mo-
tion Acknowledge event.

The Axis Manager receives motion blocks from the
Interpreter in its message queue, as well as Stop and
Resume event signals from the CPP. The main routine
of the Axis Manager is a TSM that handles all synchro-
nization conditions. Every time the Axis Manager waits
for a motion block from the Interpreter, it is suspended
if one is not available. When the Axis Manager receives
the block, it tests to see if a Stop event has been sig-
naled. If so, it waits for a Resume signal. If there is no
Stop condition or if Resume was signaled, the Axis
Manager sends the axis block to the Axis Controller
and waits for an axis acknowledgment of block comple-
tion. The communication between the Axis Manager
and Axis Controller is an example of closely coupled
message communication. An MCM is used to provide
the closely coupled communication mechanism.

A sensory I/O data store is used to store the current

Computing Practices

values of the sensory I /O data. If the Interpreter proc-
esses an output command, it updates the sensory I/O
data store (SIODS) and signals the Sensory Output task
that an output is available. The Sensory Input task pe-
riodically scans the input sensors and updates the
SIODS when a change takes place. If the Interpreter
processes an input command, it reads the SIODS for the
current value of the sensor. Since access is made to the
SIODS by three tasks, access to the SIODS has to be
synchronized by the access routines. Together, the
SIODS and the access routines constitute an IHM.

Structuring Tasks into Modules
After the interfaces between tasks have been defined,
the next step is to establish the structure of the individ-
ual tasks, each of which represents a sequential pro-
gram. For each task, the data flow diagram is drawn,
and from this the structure chart is derived, using the
Structured Design method [15].

To illustrate, we will look at one particular task,
namely, the CPP. The CPP is an example of Transac-
tion Centered Design supplemented by a STM.

The CPP task shown in Figure 8 was formed by-com-
bining the Validate Panel Input and Process Panel Input
transforms given in Figure 7. Thus, the data flow dia-
gram for the CPP task (Figure 9) is an expanded form of

St~ t p~og ~eSs~ge

Panel Input

Panel

End Signal

Stop Signal

FIGURE 9. Data Flow Diagram for Control Panel Processor
Resume Signal

September 1984 Volume 27 Number 9 Communications of the ACM 947

Computing Practices

iiiiiiiiiiiiiii~!iiii~iii~iiiiii~ii~iii~!~i~iiiiii!t~iii~iii~iii~Ni~ii~iii~i~i~ii ¸

i~iiiii~iiiii!iW!iiiiiiiiiiii!i!!ii~ii!ii~iiWiiii~iii~WiiiiMiiill

p rogram
. ~ . . _ . . - - - ~

iiiiiiitiiiiiitiiiiiiii!iiii ii!i !!i iiii!!iiiitiiiiii!!iii!iiii!i!iiiii! iiiiiiiii i i ii ii!i iii! iii!ii iiiiiii iii !i i ii ! i ii! !ii !i!!iiii ii i ii iiii i iiiiiiiiiiiiiiiiiiiiii iiiii ii i iiiiiii ii ii!-!iii!iiiiJ! i ii ii !! i Ji ! !iiii ! i

P neii outputs
i!iiiiiii! iiiiiiiiii ii ! !iii! ! i ii ii i iiiii !! ii!i iii i iiiii!iiiiiiii iiiiiiii!!i iii
iiiiiii!!iUiiiiiiiii iiii!iiii!iiiiiiiiiii!!iiii!!iii

FIGURE 10. Structure Chart for Control Panel Processor

these two transforms.
In Figure 9, Get Panel Input receives input messages

from the Panel Inputs message queue. The inputs are
passed on to Validate Panel Input, which checks that
they are valid for the current state of the system. As-
suming the input is valid, the valid input is passed to
the appropriate action transform, which performs the
action. For example, the Stop Program action transform
signals a Stop event, switches off the control panel Run
light, and switches on the Stop light. Control panel out-
puts are passed to the Put Panel Output transform,
which queues up panel output messages for the CP
Output Handler.

The structure chart for the CPP is given in Figure 10.
The main routine, also called the CPP, is a controlling
module. It calls Get Panel Input to read a message; if a
message is not available, the task will be suspended
pending its arrival. When the input message is re-
ceived, Validate Panel Input is called. The Validate
Panel Input module is actually the STM, which is
called with the panel input as a parameter. STM re-
turns a Valid/Invalid status.

If the action is not valid for the current state (e.g.,
STOP is pressed while the system is in Manual state},
an invalid status is returned by STM. STM also returns
an Action, which is particularly essential where an in-
put may have two or more interpretations depending
on the state of the system. Thus, a RUN input identifies

a Start Program action if the system is in Manual state
and a Resume Program action if the system is in Sus-
pended state.

The control module Process Transaction is now
called with the Action as a parameter. Process Transac-
tion calls the appropriate action module to perform the
action.

The STM is called by more than one task. Since it is
also called by the Interpreter to indicate that program
execution has terminated, it is designed as a TCM of
type IHM. As with all TCMs, it conceptually runs in the
task that invokes it.

EXPERIENCE WITH DARTS
An application of an early version of the design
method, before the task structuring concepts had been
formalized, is described in [7]. The DARTS design
method has so far been used on two projects, a robot
controller and a vision system. The robot controller
project is now in the system integration phase, whereas
the design of the vision system was completed only
recently.

There was much discussion initially as to whether
DARTS should consider control flow at the start of the
design. DARTS, like Structured Analysis, makes no dis-
tinction between data and control flow on the data flow
diagrams. However, some users of methods like SADT

948 Communications of the ACM September 1984 Volume 27 Number 9

Computing Practices

[13], which do dist inguish from the start b e t w e e n data
and control flow, often find it difficult to separate data
from control early in the design process.

In DARTS, the decis ion as to wh ich data flows are
actual ly data and which are used for control purposes
is postponed to the task s t ruc tur ing stage. That is, con-
trol flow is considered at the t ime that task interfaces
are def ined and the STM designed. For example , in the
case study, the Stop and Resume data flows in Figure 6
become event signals in Figure 8.

In practice, start ing the design wi th data f low dia-
grams was not found to be a problem, and early con-
cerns about the me thod were al layed w h e n it was
found to work satisfactorily. As in the S t ruc tu red Anal-
ysis method, it was found most useful to postpone con-
siderations of system ini t ia l izat ion and error handl ing
to a later stage. In DARTS, this is done at the task
s t ructur ing stage.

When using DARTS, there is somet imes a t empta t ion
to make each t ransform on the system data f low dia-
gram a task. This usual ly leads to too m a n y tasks and to
unnecessary complex i ty in deal ing wi th the accom-
panying c o m m u n i c a t i o n and synchron iza t ion issues.
The Task St ruc tur ing stage is a crucia l phase of DARTS,
at wh ich point designers should just ify the exis tence of
each task.

While applying DARTS to the robot contro l ler proj-
ect, a n u m b e r of significant changes were made to the
Requ i rements Specif icat ion after the design had been
completed. Al though these changes necessi ta ted corre-
sponding changes to the System Design, no major
change in the system s t ructure or task interfaces was
required. This is a t t r ibutable to the fact that DARTS
leads to a system that is h ighly modu la r wi th r educed
coupl ing be tween tasks.

At the m o m e n t of designing the MCM to handle task
communica t ion , a choice exis ted be tween using the
message c o m m u n i c a t i o n m e c h a n i s m provided by the
operat ing system or developing an MCM. The lat ter
approach was chosen for two reasons. First, using an
MCM mean t that a bound could be set on the size of
each message queue in the system. In addit ion, this
made it possible to associate an even t condi t ion wi th
each queue. A task could then wai t in a TSM for any
one of several events to be s i gna l ed - - a ve ry va luable
feature, it tu rned out, in designing the robot control ler .

During the system integrat ion phase, tasks are gradu-
ally grouped together and tested. The integrat ion of the
robot control ler is progressing well , and, up to the t ime
of writing, no major design problems have been en-
countered. Use of the DARTS design me thod is consid-
ered a significant factor in this smooth integrat ion.

S U M M A R Y A N D CONCLUSIONS
The DARTS design approach descr ibed here ex tends
the S t ruc tured A n a l y s i s / S t r u c t u r e d Design me thod to
address the needs of rea l - t ime systems by provid ing an
approach for s t ruc tur ing the system into concur ren t

tasks and for def ining the interfaces b e t w e e n tasks. The
me thod leads to a h ighly s t ruc tured modu la r sys tem
wi th wel l -def ined interfaces and reduced coupl ing be-
tween tasks.

A c k n o w l e d g m e n t s . The au thor grateful ly acknowl-
edges the m a n y s t imula t ing design discussions wi th J.
Lawrence , F. Sherwood, and J. Taylor. The au thor also
wishes to acknowledge the cons t ruc t ive c o m m e n t s
made by E. H. Sibley and the referees.

REFERENCES
1. Beech, G. Software Engineering with Ada. Benjamin/Cummings,

Menlo Park. Calif., 1983.
2. Brinch Hansen, P. Concurrent programming concepts. Comput. Surv.

5, 4 (Dec. 1973), 223-245.
3. De Marco, T. Structured Analysis and System Specification.Yourdon

Press, New York, 1978.
4. Dijkstra, E.W. Co-operating sequential processes. In Programming

Languages, F. Genuys, Ed. Academic Press, New York, 1968.
5. Gane, C., and Sarson, T. Structured Systems Analysis: Tools and Tech-

niques. Prentice-Hall, Englewood Cliffs, N.J., 1979.
6. Gomaa, H. A comparison of software design methods. In Proceedings

of the National Electronics Conference {Chicago, IlL Oct.), vol. 33, 1979.
7. Gomaa, H., Lot, J., and Woo, P. The software engineering of a micro-

computer application. Soflw. Pract. Exper. 12, {1982}, 309-321.
g. Hamilton, M.. and Zeldin, S. Higher order software--A methodology

for defining software. IEEE Trans. Softw. Eng. (Mar. 1976).
9. Jackson. M.A. Principles of Program Design. Academic Press, New

York, 1975.
10. Myers. G.J. Composite/Structured Design. Van Nostrand Reinhold,

1976.
11. Orr, K.T. Structured Systems Development. Yourdon Press, New York,

1977.
12. Parnas. D.L. On the criteria to be used in decomposing systems into

modules. Commun. ACM 15, 12 (Dec. 1972), 1053-1058.
13. Ross, D.T., and Schoman, K.E. Structured analysis for requirements

definition. IEEE Trans. Softzo. Eng. (Jan. 1977).
14. Simpson, H.R., and Jackson, K.L, Process synchronization in Mascot.

Comput. J. 22, 4 (1979J.
15. Yourdon. E., and Constantine, L. Structured Design. 2nd ed. Yourdon

Press, New York, 1978.

CR Categories and Subject Descriptors: C.3 [Special-purpose and
Application-based Systems]: microprocessor/microcomputer applications,
real-time systems; D.2.1 [Software Engineering]: Requirements/Specifi-
cations-methodologies, tools; D.2.2 [Software Engineering]: Tools and
Techniques--modules and interfaces, top-down programming; D.4.1 [Oper-
ating Systems]: Process Management--concurrency, mutual exclusion, syn-
chronization'~ D.4.7 [Operating Systems]: Organization and Design--hier-
archical design, real-time systems; 1.2.9 [Artificial Intelligence]: Robot-
ics--manipulators, sensors; K.6.1 [Management of Computing and Infor-
mation Systems]: Project and People Management--systems analysis and
design; K.6.3 [Management of Computing and Information Systems]:
Software Management--software development

General Terms: Design, Documentation, Management, Standardiza-
tion

Additional Key Words and Phrases: software engineering, software
design, concurrent processes, task communication, task synchronization

Received 12/83; accepted 3/84; revised 5/84

Author's Present Address: H. Gomaa, General Electric, Industrial Elec-
tronics Development Laboratory, P.O. Box 8106, Charlottesville, VA
22906.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

September 1984 Volume 27 Number 9 Communications of the ACM 049

