
A Dense Representation Framework for Lexical and Semantic
Matching

SHENG-CHIEH LIN, University of Waterloo, Canada
JIMMY LIN, University of Waterloo, Canada

Lexical and semantic matching capture different successful approaches to text retrieval and the fusion of their results has
proven to be more effective and robust than either alone. Prior work performs hybrid retrieval by conducting lexical and
semantic matching using different systems (e.g., Lucene and Faiss, respectively) and then fusing their model outputs. In
contrast, our work integrates lexical representations with dense semantic representations by densifying high-dimensional
lexical representations into what we call low-dimensional dense lexical representations (DLRs). Our experiments show that
DLRs can effectively approximate the original lexical representations, preserving effectiveness while improving query latency.
Furthermore, we can combine dense lexical and semantic representations to generate dense hybrid representations (DHRs)
that are more flexible and yield faster retrieval compared to existing hybrid techniques. In addition, we explore jointly training
lexical and semantic representations in a single model and empirically show that the resulting DHRs are able to combine
the advantages of the individual components. Our best DHR model is competitive with state-of-the-art single-vector and
multi-vector dense retrievers in both in-domain and zero-shot evaluation settings. Furthermore, our model is both faster and
requires smaller indexes, making our dense representation framework an attractive approach to text retrieval. Our code is
available at https://github.com/castorini/dhr.

CCS Concepts: • Information systems→ Top-k retrieval in databases; Search engine indexing; Retrieval effective-
ness; Retrieval efficiency.

Additional Key Words and Phrases: Sparse Retrieval; Dense Retrieval; Hybrid Retrieval; Vector Compression

1 INTRODUCTION
Transformer-based bi-encoders have been widely used as first-stage retrievers for text retrieval. Compared to their
multi-vector counterparts [12, 19, 27], single-vector representation learning approaches (with a few representative
techniques listed in Table 1) are attractive due to their good balance between effectiveness and efficiency.
Semantic matching through dense representations [3, 26, 42] form one large successful class of models.1

These dense semantic representations transform the relevance matching problem into nearest neighbor search
in a semantic space, tackling vocabulary and semantic mismatches in ways that traditional lexical matching
approaches (e.g., BM25) cannot. Subsequent work further improves these models through advanced training
techniques [11, 18, 22, 32, 41, 50, 54]. However, as Sciavolino et al. [47] show, dense semantic representations still
fail in some easy cases, and it remains challenging to interpret why they sometimes perform poorly. In addition,
Thakur et al. [48] demonstrate that many existing dense retrievers still fall short in terms of generalization
capability across different domains.
There is evidence [13, 28, 34] that lexical matching compensates for the weaknesses of semantic matching;

these papers further propose hybrid retrieval techniques that fuse lexical and semantic representations. However,
in practice, lexical and semantic matching are executed in very different ways: typically, lexical matching is
conducted using inverted indexes, for example, in Lucene, while semantic matching is treated as nearest neighbor
search using, for example, HNSW indexes in Faiss [24]. This means that a hybrid retrieval system requires two
separate “software stacks”, running completely distinct retrieval operations in parallel before their outputs are
post-processed to generate a final ranking (e.g., through linear combination of scores). Such a design makes
1In the literature, these are often just called dense retrieval models. However, we explicitly refer to these as dense semantic representations
because we show that dense lexical representations exist as a separate class of models.

Authors’ addresses: Sheng-Chieh Lin, University of Waterloo, Waterloo, Canada; Jimmy Lin, University of Waterloo, Waterloo, Canada.

ar
X

iv
:2

20
6.

09
91

2v
2

 [
cs

.I
R

]
 2

5
Fe

b
20

23

https://github.com/castorini/dhr

2 • Sheng-Chieh Lin and Jimmy Lin

Gated inner product:

Max Max Max

3 01

0.8 0.10.5

Slice1 Slice2 Slice3

Index (uint)

Value (!oat)

Query lexical vector

Slicing

Pooling
Max Max Max

0 01

0.3 0.70.5

Slice1 Slice2 Slice3

Passage lexical vector

0 01
3 01

0.5 ⋅ 0.5 + 0 + 0.1 ⋅ 0.7 = 0.32

Gate

Dense lexical representation

Fig. 1. Illustration of densified lexical representations (DLRs) and gated inner product (GIP). Both query and passage lexical
representations are fixed-width vectors where the number of dimensions is equal to the vocabulary size. Our approach first
groups these high-dimensional vectors into𝑀 slices, each with 𝑁 dimensions (e.g.,𝑀 = 3, 𝑁 = 5 here). For each slice, the
maximum value is selected. These values from the original vector (Value) and their positions in each slice (Index) are recorded
separately. When computing the gated inner product between two vectors, only the dimensions with the same index are
considered.

real-world deployments more complicated than necessary, since, for example, the two separate indexes need to
be maintained and be kept in sync.

Recently, another thread of work uses bi-encoders to learn sparse lexical (bag-of-words) representations for text
retrieval. For example, Dai and Callan [7] demonstrate with DeepCT that replacing tf–idf with contextualized term
weights from a transformer-based regression model significantly improves retrieval effectiveness. Subsequent
work further combines term reweighting techniques with term expansion to address vocabulary and semantic
mismatch issues with lexical representations. Some methods [28, 36, 56] leverage another model for expansion,
which incurs additional costs in both training and inference. As an alternative, Formal et al. [9] exploit BERT’s
masked language model (MLM) layer to train a single model for both expansion and term weighting.
Compared to dense semantic models, sparse lexical models appear to be more robust to domain shifts [48].

However, the optimization of sparse lexical retrievers must take into account the efficiency of query evaluation
using inverted indexes. For example, to achieve better effectiveness, term expansion techniques tend tomake sparse
lexical representations more dense, sometimes rendering retrieval with inverted indexes much slower [35]. Further
performance penalties are incurred when integrating sparse lexical and dense semantic representations into hybrid
retrieval systems. Since it is impractical to directly compute dot products between high-dimensional vectors at
scale in latency-sensitive retrieval applications (i.e., via brute-force approaches), using lexical representations with
inverted indexes remains presently the only sensible choice, but this comes with the aforementioned limitations.
Motivated by these tradeoffs, we explore an approach to directly computing dot products between lexical

vectors in a scalable and low-latency manner for retrieval applications. This is accomplished by densifying
lexical representations, which can be applied to any existing lexical model. The approach described in this paper,
which builds on our previous work [31], is comprised of two simple steps: (1) representation slicing (2) sliced
representation pooling. This method can be viewed as compressing high-dimensional lexical representations into
low-dimensional ones, as depicted in Fig. 1. One key feature of our approach is that it does not involve either
unsupervised [24] or supervised training [4, 53, 55]. Any collection of lexical representations (from a “base model”)

A Dense Representation Framework for Lexical and Semantic Matching • 3

can be converted into dense lexical representations (DLRs), and the nearest neighbor search problem between
query and passage vectors can be performed with an operation we call the gated inner product (GIP). Standard
dense representations and inner products can be considered a special case of DLRs and GIP, respectively. Thus,
our representation and scoring function comprise a unified framework for both lexical and semantic matching.
An advantage of our framework is that end-to-end lexical and hybrid retrieval can be performed directly on

GPUs with a single index structure in a unified execution environment. In fact, our implementation uses standard
vector operations directly in the popular PyTorch open-source neural modeling toolkit. Retrieval efficiency,
unlike with inverted indexes, is not sensitive to the sparsity of representations; thus, we can optimize retrieval
effectiveness without any constraints. Building on these features, we propose a new model called Dense Lexical
AnD Expansion (DeLADE) and explore a new matching approach, which we refer to as dense lexical matching
(shown in Table 1).

In addition, we can integrate DLRs with dense semantic representations into what we call dense hybrid
representations (DHRs). This can be accomplished in two ways: First, we can independently combine DLRs with
any “off-the-shelf” dense semantic representations such as ANCE [50], TAS-B [18], etc. Second, we can jointly
train DHRs that combine lexical as well as semantic components. Both DLRs and DHRs exhibit advantageous
features for real-world applications: (1) end-to-end retrieval can be accomplished on GPUs using a single index
and software framework, instead of, for example, using Lucene for lexical matching and Faiss for semantic
matching; (2) vector densification can be applied to meet storage constraints without model retraining.
With our proposed dense representation framework, we explore the following research questions:

RQ1 How well do DLRs approximate the original high-dimensional lexical representations?
We densify lexical representations from two lexical models based on whole word matching (BM25 and Deep-
Impact [36]) and two lexical models based on wordpiece token matching (uniCOIL [28] and SPLADE [9]).
Experimental results show that our approach effectively compresses high-dimensional lexical representations
(30K and even 3.5M dimensions) into 768- and 128-dimensional vectors with less than 1% and 5% retrieval
effectiveness loss, respectively. In addition, this approach can be applied to DeLADE, our proposed dense lexical
representation model, which is a SPLADE variant. More importantly, this compression enables us to perform
lexical matching directly on GPUs, which substantially speeds up retrieval compared to using an inverted index
and does not depend on the sparsity of the lexical representations.
RQ2 How well do DHRs benefit from the independent fusion of DLRs and “off-the-shelf” dense semantic

representations?
Within our framework, we propose hybrid dense representations (DHRs) by combining DLRs and other standard
“off-the-shelf” dense semantic representations for hybrid fusion retrieval. We demonstrate that our method
achieves comparable retrieval effectiveness to other existing hybrid retrieval methods but with lower query
latency.
Next, we propose to jointly train lexical and semantic components within DHRs. Specifically, we combine

lexical representations and the [CLS] embeddings from a transformer to capture lexical and semantic matching,
and then conduct retrieval based on a fusion of these separate components in a single unified framework.
RQ3 Can DHRs benefit from joint training of lexical and semantic components in a single model?
Experiments show that our approach to jointly training DHRs (i.e., single model fusion) outperforms both dense
semantic and sparse lexical retrieval models and is competitive with state-of-the-art multi-vector approaches
such as ColBERT [27] and COIL [12]. We achieve effectiveness on par with the state of the art on an in-domain
benchmark (MS MARCO [2]) and obtain better generalization on an out-of-domain benchmark (BEIR [48]).
In addition, the index size of our model can be tuned by controlling the vector dimensionality of the lexical
component without retraining, making our approach attractive for real-world applications.

4 • Sheng-Chieh Lin and Jimmy Lin

Table 1. Comparison of Single-Vector Representation Learning Approaches

matching type Sparse Dense

Lexical whole words DeepCT [7], DeepImpact [36] DLR (our approach)wordpiece tokens uniCOIL [28], SPLADE [10]

Semantic UHD [23] DPR [26], ANCE [50]
TASB [18], RocketQA [41]

Hybrid - DHR (our approach)

Further analysis identifies that GIP requires more operations compared to the standard inner product for dense
vectors and this is one potential drawback of end-to-end retrieval with DLRs. To address this issue, we propose a
two-stage retrieval approach: in the first stage, retrieval is conducted by approximate GIP, which is faster but
less accurate; then, the retrieved sets are reranked by computing the exact GIP. Thus, we explore the following
research question:
RQ4 How effective is our proposed two-stage retrieval approach?
Our experiments show that approximate GIP is capable of retrieving sufficient relevant passages (i.e., achieves
good recall) for the subsequent exact GIP reranking to achieve high end-to-end effectiveness. Specifically, we
demonstrate that with approximate GIP, our proposed two-stage retrieval approach substantially reduces retrieval
latency without sacrificing any effectiveness compared to end-to-end retrieval using more expensive but exact
GIP.
Our contributions are summarized as follows:
• We propose a simple yet effective approach to densifying high-dimensional lexical representations for text
retrieval, creating what we call dense lexical representations (DLRs).

• Building on DLRs, we introduce dense hybrid representations (DHRs) that combine lexical and semantic
representations.

• While DHRs can combine arbitrary off-the-shelf lexical representations (e.g., BM25 and uniCOIL) and
semantic representations (e.g., ANCE and TAS-B) independently, we demonstrate how to jointly train
effective DHRs with complementary lexical and semantic components.

• We show how to efficiently conduct two-stage retrieval in our dense representation framework, with fast
approximate GIP followed by exact GIP reranking.

Code to reproduce all experiments in this paper is available at https://github.com/castorini/dhr.

2 BACKGROUND AND RELATED WORK
Following Lin et al. [30], let us formulate the task of text (or ad hoc) retrieval as follows: Given a query 𝑞, the
goal is to retrieve a ranked list of documents {𝑑1, 𝑑2, · · ·𝑑𝑘 } ∈ 𝐶 to maximize some ranking metric, such as nDCG,
where 𝐶 is the collection of documents.

Specifically, given a (query, passage) pair, we aim to maximize the following:

sim(𝑞, 𝑑) ≜ 𝜙 (𝜂𝑞 (𝑞), 𝜂𝑑 (𝑑)) = ⟨q, d⟩, (1)

where 𝜂𝑞 (·) and 𝜂𝑑 (·) ∈ Rℎ denote functions mapping the query and the passage into ℎ-dimensional vector
representations, q and d, respectively. The scoring function that quantifies the degree of relevance between the
representations q and d is denoted 𝜙 (·, ·), which can be a simple inner product or a more complex operation [12,
20, 27, 38]. We focus on single-vector representation learning approaches that apply the inner product as the

https://github.com/castorini/dhr

A Dense Representation Framework for Lexical and Semantic Matching • 5

scoring function. We categorize single-vector representation learning approaches through “matching type”, as
shown in Table 1. In the literature, there are two main lines of research: dense representations for semantic
matching and sparse representations for lexical matching.

Dense representations for semantic matching. Pretrained transformers [8, 33] are able to encode sentences or
passages into dense semantic representations, which have been shown to be effective for downstream tasks [3, 42].
In recent years, transformer-based bi-encoders have been widely applied to the task of passage retrieval [26]
and further improved by advanced training techniques such as hard negative mining [50, 54], knowledge
distillation [18, 32], pretraining [11, 22], or their combination [41]. These approaches encode queries and passages
into dense vectors, using the inner product to capture the degree of relevance:

simsemantic (𝑞, 𝑑) ≜ ⟨q[CLS], d[CLS]⟩, (2)

where q[CLS] and d[CLS] are typically 768-dimensional vectors taken from the [CLS] token in the final layer of a
transformer model (or alternatively, pooling over the contextualized representations of the tokens).

Sparse representations for lexical matching. To our knowledge, Zamani et al. [52] was the first to demonstrate
that neural networks can learn lexical representations for text retrieval. Recently, transformer-based bi-encoders
have also been applied to lexical representation learning by replacing heuristic term weighting functions (e.g.,
BM25) with learned term weights. In the literature, these solutions can be classified into two broad classes: (1)
linear layer and (2) MLM projection.

One early technique, DeepCT [7] uses a linear layer to project BERT token embeddings into contextualized term
weights for input tokens. Subsequent work [28, 36, 56] further combines DeepCT and other document expansion
methods [39, 57] to address vocabularymismatch andmissing terms in DeepCT. For example, DeepImpact [36] uses
a trained sequence-to-sequence model [39] to expand the original passages in the corpus and learn contextualized
term weights. Other models [28, 56] follow a similar approach to DeepImpact but term matching is performed
in the space of BERT wordpiece tokens rather than whole words. They generate term weights only for tokens
appearing in each (possibly expanded) query or passage and thus the lexical representations are sparse by design.
However, to achieve competitive effectiveness, these techniques require additional models for term expansion
(see Zhuang and Zuccon [56] for more discussion). In contrast, some researchers [1, 10] use the masked language
model (MLM) layer in transformers such as BERT to learn term weighting and expansions at the same time. For
these approaches, sparsity regularization must be applied during model training to ensure that the generated
lexical representations are amenable to retrieval using inverted indexes.

Generally, these neural approaches to lexical term matching can be viewed as projecting queries and passages
into |𝑉BERT |-dimensional vectors, where |𝑉BERT | = 30522 is the vocabulary size of BERT wordpiece tokens:

simlexical (𝑞, 𝑑) ≜ ⟨qBoW, dBoW⟩, (3)

where qBoW and dBoW ∈ R30522. The value in each dimension is the token’s termweight. As with dense retrieval, the
relevance score between a query and a passage is computed by the inner product of their vector representations.

Bridging the gap between the two worlds. Although the inner product is a common operation for capturing
relevance in the aforementioned two approaches, there are still two major differences between them:
(1) Unlike semantic representations, lexical representations can be considered bags of words (or subwords)

and thus are more interpretable, since dimensions of the representation vectors directly correspond to
vocabulary items.

(2) Text retrieval using lexical representations is usually performed using standard inverted indexes due to
their high dimensionality, while text retrieval using semantic representations is usually performed using
completely different infrastructure, e.g., HNSW indexes.

6 • Sheng-Chieh Lin and Jimmy Lin

Table 2. Comparison of Different Vector Compression Approaches

Approach unsupervised training supervised training

PQ [25], OPQ [15], LSH [21] ✓ ✗

JPQ [53], RepCONC [55] ✓ ✓

SPAR [4] ✗ ✓

Our work ✗ ✗

The advantage of our approach is that it does not require any training.

Previous work [13, 28, 34] has demonstrated that semantic and lexical matching can compensate for each other;
these papers typically implement dense–sparse hybrid retrieval by performing retrieval independently using
different systems and then merging their results (e.g., by interpolating scores). To make such an approach
“production-ready” for deployment in real-world applications, non-trivial software engineering effort is required
to coordinate dense and sparse retrieval in parallel (on inverted and HNSW indexes) and the final fusion. The
need for two entirely separate “software stacks” and the associated operational maintenance costs (e.g., of keeping
indexes in sync) increase the complexity of hybrid retrieval systems.

To bridge the gap between semantic and lexical representations for text retrieval, some researchers extend their
focus beyond the above two research threads. For example, Jang et al. [23] show that semantic matching can be
executed using an inverted index by projecting semantic representations from BERT to sparse representations in
an ultra-high-dimensional space. However, this projection operation requires additional training and the retrieval
effectiveness of this approach still lags behind baseline dense retrieval approaches.
In contrast, another approach to bridging dense and sparse representations is to compress high-dimensional

sparse lexical representations into low-dimensional dense ones. We can accomplish this using existing unsu-
pervised approaches such as product quantization (PQ) [25], optimized product quantization (OPQ) [15], and
locality-sensitive hashing (LSH) [21]. However, such approaches require substantial computational resources
since the entire corpus (or large portions thereof) need to be loaded into CPU/GPU memory to perform the
unsupervised training. These approaches are not practical to compress ultra-high-dimensional lexical vectors,
especially when the corpus is large.2 Supervised compression techniques [53, 55] that are built upon these
unsupervised approaches similarly suffer from high resource requirements.

Closest to our ownwork, Chen et al. [4] distill lexical matching signals from existing sparse retrieval models such
as BM25 and uniCOIL [28] into low-dimensional dense representations in an approach called SPAR. Nevertheless,
SPAR requires massive amounts of training data and computational resources (e.g., 64 V100 GPUs for three days).
In contrast, our approach simply performs max pooling over each ultra-high-dimensional lexical vector. Thus, we
do not require any additional computational resources for unsupervised or supervised training. We summarize
the comparison of different compression techniques in Table 2.
Beyond not needing any training (either supervised or unsupervised), our approach to lexical representation

compression confers the additional advantage of interpretability. Specifically, we densify lexical representations
in a reversible manner (except for some information loss from the max pooling operation). Thus, our dense lexical
vectors still retain characteristics of the original lexical representations with respect to matching terms, as we
will demonstrate.

2As an example, BM25 with a standard English tokenizer in the Lucene search library generates representations with 2.6M dimensions for
the MS MARCO passage corpus (containing 8.8M passages).

A Dense Representation Framework for Lexical and Semantic Matching • 7

3 METHODOLOGY
In this section, we first describe our approach to densifying lexical representations by slicing and pooling. We then
introduce our dense representation framework, under which the densified lexical representations are captured in
compact pairs of vectors. We then propose a new scoring function called gated inner product (GIP) for computing
query–passage similarity. Next, we describe how to combine lexical and semantic representations using our
framework and propose a two-stage approach for end-to-end retrieval. Finally, we introduce our dense lexical
model, DeLADE.

3.1 Dense Lexical Representations
Lexical representations can be considered vectors with |𝑉 | dimensions, i.e., qBoW = (𝑞0, · · ·𝑞 |𝑉 |−1) and dBoW =

(𝑑0, · · ·𝑑 |𝑉 |−1). These representations come from an underlying “base model” such as uniCOIL or SPLADE, and
our focus here is to “densify” such representations.

We first divide each vector into𝑀 slices, each of which is a smaller vector with 𝑁 dimensions (i.e., |𝑉 | = 𝑀 ·𝑁).
In terms of the standard “slice” notation used by Python:

𝑆
𝑞
𝑚 = qBoW [𝑚𝑁 :𝑚𝑁 + 𝑁] ∈ R𝑁 ;
𝑆𝑑𝑚 = dBoW [𝑚𝑁 :𝑚𝑁 + 𝑁] ∈ R𝑁 , (4)

where 𝑚 ∈ {0, 1, · · · , 𝑀 − 1}. Note that the slicing can be performed in different ways; for example, slicing
randomly or with a fixed stride: [𝑚 : 𝑀 (𝑁 − 1) +𝑚 : 𝑁]. For simplicity, we use contiguous slicing as shown in
Eq. (4) in our presentation. Thus, the inner product between qBoW and dBoW can be rewritten as the summation of
all the dot products of their slices:

⟨qBoW, dBoW⟩ =
𝑀−1∑︁
𝑚=0

⟨𝑆𝑞𝑚, 𝑆𝑑𝑚⟩. (5)

Intuitively, if a lexical representation is sparse enough, we can assume that for each slice, there is only one
non-zero entry. Thus, we can approximate 𝑆𝑞𝑚 (𝑆𝑑𝑚) by keeping only the entry with the maximum value in each
slice:

𝑆
𝑞
𝑚 ≈ max (𝑆𝑞𝑚) · û(e

𝑞
𝑚);

𝑆𝑑𝑚 ≈ max (𝑆𝑑𝑚) · û(e𝑑𝑚), (6)

where û(e𝑞𝑚) is a unit vector with the only non-zero entry at the entry e𝑞𝑚 = argmax(𝑆𝑞𝑚). Thus, the inner product
of qBoW and dBoW lexical vectors in Eq. (5) can be approximated as follows:

⟨qBoW, dBoW⟩ ≈
𝑀−1∑︁
𝑚=0

max (𝑆𝑞𝑚) ·max (𝑆𝑑𝑚) · ⟨û(e
𝑞
𝑚), û(e𝑑𝑚)⟩

=

𝑀−1∑︁
𝑚=0

max (𝑆𝑞𝑚) ·max (𝑆𝑑𝑚)1{e𝑞𝑚=e𝑑𝑚 } (7)

8 • Sheng-Chieh Lin and Jimmy Lin

Observing Eq. (7), in order to compute the approximate inner product of lexical vectors, each query (passage) can
be alternatively represented as two𝑀-dimension dense vectors:

qvalDLR =
(
max (𝑆𝑞0), · · · ,max (𝑆𝑞

𝑀−1)
)
∈ R𝑀

qidxDLR =
(
e𝑞0 , · · · , e

𝑞

𝑀−1
)
∈ N𝑀 (8)

dvalDLR =

(
max (𝑆𝑑0), · · · ,max (𝑆𝑑𝑀−1)

)
∈ R𝑀

didxDLR =

(
e𝑑0 , · · · , e𝑑𝑀−1

)
∈ N𝑀 , (9)

where qvalDLR (dvalDLR) is the dense vector storing the𝑀 maximum values from the query (passage) slices, and qidxDLR
(didxDLR) is the integer dense vector storing the entries with the maximum value in the corresponding slices.

Formally, a dense lexical representation (DLR) is a pair of vectors comprising a “value” vector and an “index”
vector, as indicated in Figure 1. For a query, the DLR is (qvalDLR, q

idx
DLR) and for each passage, (dvalDLR, d

idx
DLR). Intuitively,

the “value” vector stores the most important term weight in each slice while the “index” vector stores the position
of the corresponding terms in each slice. Using DLRs, Eq. (7) can be rewritten as:

⟨qBoW, dBoW⟩ ≈
𝑀−1∑︁
𝑚=0

qvalDLR [𝑚] · dvalDLR [𝑚] · 1{qidxDLR [𝑚]=didxDLR [𝑚] }, (10)

where qvalDLR [𝑚] (dvalDLR [𝑚]) and qidxDLR [𝑚] (didxDLR [𝑚]) is the𝑚-th entry of the query (passage) DLR. Note that the query
(passage) DLR represents approximations of the original lexical query (passage) vector, qBoW (dBoW). Thus, the
computation in Eq. (10) using DLRs is an approximation of the original inner product between the lexical vectors.

To simplify Eq. (10), we define a new operation, gated inner product (GIP) as follows:

GIP(q, d, g) ≜
𝑀−1∑︁
𝑚=0

q[𝑚] · d[𝑚] · g[𝑚], (11)

where g is the gate vector with entries either equal to 0 or 1 (i.e., g[𝑚] ∈ {0, 1}). Thus, we can consider Eq. (10) as
a GIP operation between query (qvalDLR, q

idx
DLR) and passage (dvalDLR, d

idx
DLR) DLRs:

⟨qBoW, dBoW⟩ ≈ GIP(qvalDLR, d
val
DLR, gDLR), (12)

where the gate vector gDLR [𝑚] = 1{qidxDLR [𝑚]=didxDLR [𝑚] } can be interpreted as the result of lexical matching between
two DLRs. This is why lexical matching can still be performed in low-dimensional DLRs and is the key difference
between GIP and standard inner product. In summary, DLRs and GIP (representing the original vectors and the
inner product, respectively) capture the representation and scoring function in our framework.

3.2 Independent Model Fusion
In order to perform retrieval based on the fusion of lexical and semantic representations, we can compute their
fusion scores as follows:

simhybrid (𝑞, 𝑑) ≜ ⟨qBoW, dBoW⟩ + 𝜆 · ⟨q[CLS], d[CLS]⟩, (13)

where 𝜆 is a hyperparameter. Here, q[CLS] and d[CLS] can refer to any dense semantic representation, including
“off-the-shelf” ones such as ANCE, DPR, TAS-B, etc. In standard implementations, these inner products are
computed using completely different systems, for example, using Lucene and Faiss for the first and second terms,
respectively. Our work aims to avoid this via a unified framework.

A Dense Representation Framework for Lexical and Semantic Matching • 9

BERT
MLM

[CLS] Who is Albert Einstein

Linear layer

lexical vectorsemantic vector

1 11

2.1 0.3—1

3 01

0.8 0.10.5

Index (uint)

Value (!oat)⊕
⊕

(b) Dense hybrid representation for retrieval

concat

1 11

2.1 0.3—1

3 01

0.8 0.10.5

Index (uint)

Value (!oat)

densi"cation
⊕

concat

(a) Joint training

gradient

d+

d−

d−d−

d−
d−

d−
q

× λ

× λ

Fig. 2. Illustration of single model fusion. (a) During training, we directly concatenate semantic and lexical vectors to compute
the relevance score between a query and a passage. (b) During retrieval, we concatenate the semantic and densified lexical
vectors to form query and passage DHRs for end-to-end retrieval.

We approximate the first term in Eq. (13) using Eq. (12) and rewrite the second term as a special case of GIP
when all the entries in the gate vector are equal to one:

simhybrid (𝑞, 𝑑) ≈ GIP(qvalDLR, d
val
DLR, gDLR) + 𝜆 · GIP(q[CLS], d[CLS], 1)

= GIP(qvalDLR ⊕
√
𝜆 · q[CLS]︸ ︷︷ ︸

qDHR

, dvalDLR ⊕
√
𝜆 · d[CLS]︸ ︷︷ ︸

dDHR

, gDLR ⊕ 1︸ ︷︷ ︸
gDHR

), (14)

where 1 is a vector of all ones with the same dimension as [CLS] and ⊕ is vector concatenation. Observing
Eq. (14), the fusion score can be considered a GIP operation between (qvalDHR,qidxDHR) and (dvalDHR,didxDHR):

qvalDHR = qvalDLR ⊕
√
𝜆 · q[CLS]; qidxDHR = qidxDLR ⊕ 1, (15)

dvalDHR = dvalDLR ⊕
√
𝜆 · d[CLS]; didxDHR = didxDLR ⊕ 1. (16)

We call the pair of vectors, qvalDHR and qidxDHR (dvalDHR and didxDHR), query (passage) dense hybrid representations (DHRs).
Note that DHRs represent a special case of DLRs since they have the same form of representation and scoring
function.

3.3 Single Model Fusion
Note that Eq. (13) is completely general and can be used to combine any arbitrary “off-the-shelf” lexical represen-
tation (e.g., uniCOIL, SPLADE, etc.) and semantic representation (e.g., ANCE, TAS-B, etc.) for hybrid retrieval.
This approach can be described as fusion of independent models. We further study whether our framework can
benefit from a single model; thus, we propose to jointly train lexical and semantic representations within a single
model. Inspired by Gao et al. [13], our intuition is that such learned representations can better complement each
other to perform both lexical and semantic matching.

10 • Sheng-Chieh Lin and Jimmy Lin

3 01

0.2 0.10.6

7 102 1 922

0.8 0.10.4 0.9 0.10.2

7 11

0.8 0.90.6

0.4 00.3

4 21

0.8 0.10.4 0.6 0.20.3

9 233 2 63

0.4 00.3

4 21

0.8 0.10.4 0.6 0.20.3

9 233 2 63

4 21

0.4 0.00.3

9 233 2 63

0.8 0.10.4 0.6 0.20.3

Query DLR Passage DLRs

0.8 0.10.4

9 233

0.8 0.10.4

9 233

9 21

0.8 0.60.3

At !rst-stage retrieval stage, the full-dimension inner product can be
approximated by only computing a few dimensions where the query value vector
shows large values (e.g, >0.5)

Index (uint)

Value ("oat)

Index (uint)

Value ("oat)

Value > 0.5

...

...

Fig. 3. Approximate GIP. DLR retrieval can be approximated by only computing the gated inner product from a few dimensions
where the query value vector has values above a threshold (e.g., greater than 0.5 here). In two-stage retrieval, we can then
precisely rerank the top-𝐾 passages using all the dimensions.

Specifically, given a query 𝑞, its relevant passage 𝑑+ and a set of negative passages {𝑑−1 , 𝑑−2 , · · · , 𝑑−𝑙 }, we train
our model by minimizing negative log likelihood of the positive {𝑞, 𝑑+} pair over all the passages:

NLL = − log
𝑒simhybrid (𝑞,𝑑+)

𝑒simhybrid (𝑞,𝑑+) + ∑𝑙
𝑗=1 𝑒

simhybrid (𝑞𝑖 ,𝑑−
𝑗
) . (17)

Following Karpukhin et al. [26], we also include both negative and positive passages from the other queries in
the same batch as the negatives. Note that, as depicted in Figure 2, we use the exact fusion score simhybrid (·, ·)
in Eq. (13) for training, where the original 30522-dimensional lexical representations are used. However, when
performing retrieval, we use the approximate fusion score in Eq. (14).

3.4 End-to-End Retrieval with DLRs
While it is possible to perform end-to-end retrieval for each query DLR through GIP computations against all
passage DLRs in the corpus, we can identify one weakness. Unlike standard dense representations, GIP requires
4 ·𝑀 operations, which is more than the standard inner product of𝑀-dimensional dense vectors, which only
requires 2 ·𝑀 operations. When conducting brute-force search over corpus 𝐶 , the difference becomes: 4 ·𝑀 · |𝐶 |
> 2 ·𝑀 · |𝐶 |.

To address this issue, we propose a two-stage retrieval approach inspired by previous work [27, 51]. We first
retrieve the top-𝐾 candidates (where 𝐾 ≪ |𝐶 |) using approximate score computations and then rerank the 𝐾
candidates based on the more accurate GIP computations. In this work, we propose approximate GIP for first-stage
approximate retrieval. User queries usually contain only a few key terms, which means that when searching the
entire corpus, we can perform GIP based on only a few dimensions of DLRs:

GIP(qvalDLR, d
val
DLR, gDLR) ≈

∑︁
𝑚∈M

qvalDLR [𝑚] · dvalDLR [𝑚]gDLR [𝑚], (18)

where M = {𝑚 |qvalDLR [𝑚] > 𝜃 } is the set of indices for the GIP computation, and 𝜃 is a hyperparameter. This
first-stage retrieval relies on the dimensions where qvalDLR [𝑚] is above a threshold, as depicted in Figure 3.

Note that this approach can also be applied to DHRs, which inherit all their properties from DLRs (and thus can
be applied to representations that combine lexical and semantic components). In the subsequent main experiments,
we use this retrieve-and-rerank approach with approximate GIP as our first-stage retriever. See Section 5.4 for
further analyses.

A Dense Representation Framework for Lexical and Semantic Matching • 11

3.5 Choice of Lexical Representation Models
Although our approach can be applied to any off-the-shelf model for lexical matching, as described in Section 5.1,
in practice, many of the models discussed in Section 2 still have limitations. For example, uniCOIL [28] and
DeepImpact [36] require another model for passage expansion, which incurs additional costs for training and
inference. Thus, in this paper, we choose SPLADE [10] as the basis of our lexical representation model, which
addresses the above issue by directly learning term expansions and term weights together. However, Formal
et al. [10] demonstrate that additional steps are required for tuning a good efficiency–effectiveness tradeoff using
a sparsity regularization term [40] to enable retrieval with inverted indexes. To address this shortcoming, we
propose a variant: playing off the name of SPLADE, which stands for SParse Lexical AnD Expansion, we call this
variant the Dense Lexical AnD Expansion (DeLADE) model. Instead of regularizing vector sparsity, we increase
vector density—the exact opposite. There are two advantages of this design: (1) hyperparameter tuning is not
required for model training; (2) the dense vectors are more robust to our densification approach, as we show in
Section 5.1.

SPLADE. Following SparTerm [1], SPLADE generates lexical vectors based on the logits of the BERT pretrained
masked language model (MLM). Consider an input (query or passage) wordpiece sequence 𝑆 = (𝑠1, 𝑠2, · · · , 𝑠𝑛)
and its corresponding contexualized token embeddings 𝐻 = (h1, h2, · · · , hn) ∈ R𝑛×768. The logit of each token 𝑠𝑖
is computed as follows:

logit𝑖 = transform(hi)𝑇 · 𝐸MLM + 𝑏MLM ∈ R |𝑉BERT |, (19)

where transform(·) is a linear layer with ReLU activation and LayerNorm, 𝐸MLM ∈ R |𝑉BERT |×768 is the BERT
embedding table, and𝑏MLM is the bias.𝑉BERT is the vocabulary of BERTwordpiece tokens with size |𝑉BERT | = 30522.
SPLADE generates a single-vector embedding spBoW ∈ R |𝑉BERT | by max pooling over sequence token logits.

spBoW [𝑣] = max
𝑖=1,2, · · · ,𝑛

log
(
1 + ReLU(logit𝑖 [𝑣])

)
, (20)

where spBoW [𝑣] is the vector value of the index (or vocabulary ID) 𝑣 ∈ [0, |𝑉BERT |) and ReLU(·) is the activation
function. This design naturally promotes vector sparsity since log (1 + ReLU(·)) becomes zero for all negative
input. Together with FLOP regularization loss within a mini-batch B:

LFLOP =

|𝑉BERT |∑︁
𝑣=1

(
1
B

B∑︁
𝑖=1

spBoW [𝑣]
)2
, (21)

the sparsity of spBoW can be further increased. The overall training loss for SPLADE becomes:

L = NLL + 𝜆𝑞 · L𝑞

FLOP + 𝜆𝑑 · L𝑑
FLOP . (22)

Thus, SPLADE training requires tuning two hyperparameters, 𝜆𝑞 and 𝜆𝑑 , in order to obtain a good effectiveness–
efficiency tradeoff. We refer readers to previous work [10, 40] for more details.

DeLADE. We make a slight revision to Eq. (20) by replacing the activation function ReLU(·) with softmax(·) to
promote vector density.

dsBoW [𝑣] = max
𝑖=1,2, · · · ,𝑛

𝑤𝑖 · softmax(logit𝑖) [𝑣], (23)

where 𝑤𝑖 = h𝑇𝑖𝑊 + 𝑏 is the linear transformation of h𝑖 as the term weight (i.e., capturing term importance) of
token 𝑠𝑖 ; softmax(logit𝑖) can be interpreted as the contextualized representation of token 𝑠𝑖 , as a probability
distribution over 𝑉BERT. The intuition behind this design is that a sequence is represented as the max pooling
of all contextualized representations, while giving more weight to important tokens. Furthermore, in contrast
to ReLU, softmax is the activation function used in BERT MLM pretraining, which also ensures that the output

12 • Sheng-Chieh Lin and Jimmy Lin

vector is dense. Since vector sparsity is not a concern for retrieval latency in our framework, DeLADE can focus
on optimizing negative log likelihood loss without tuning additional hyperparameters to balance efficiency
considerations.

4 EXPERIMENTAL SETUP

4.1 Dataset Descriptions
In-domain IR datasets. We use the MSMARCO passage ranking dataset introduced by Bajaj et al. [2], comprising

a corpus of 8.8M web passages with the following public query sets for evaluation: (a) MS MARCO dev: 6980
queries comprise the development set for the MS MARCO passage leaderboard, with on average one relevant
passage per query. Following established procedure, we report MRR@10 and R@1000 as the evaluation metrics.
(b) TREC DL [5, 6]: the organizers of the 2019 (2020) Deep Learning Track at the Text REtrieval Conference
(TREC) released 43 (53) queries with graded relevance labels, where (query, passage) pairs were annotated by
NIST assessors. We report nDCG@10 for these two evaluation sets.

Out-of-domain IR datasets. We use BEIR, recently introduced by Thakur et al. [48], which contains 18 distinct
IR datasets spanning diverse domains and tasks, including retrieval, question answering, fact checking, question
paraphrasing, and citation prediction. Each individual dataset comprises its own corpus, queries, and relevance
judgements. Following previous work [9, 46], we conduct zero-shot retrieval on 13 of the 18 datasets. Model
retrieval effectiveness is evaluated in terms of nDCG@10 and R@100, except for TREC-COVID, where we follow
Thakur et al. [48] and use “capped” Recall@100 instead of “regular” R@100.

4.2 Models
Lexical retrieval models. To evaluate our approach to densifying lexical representations, we conduct experiments

on four lexical matching models: two models based on whole word matching, with large vocabulary sizes (millions
of distinct terms), and three models that operate on the wordpiece vocabulary of BERT (30522 distinct tokens),
including our proposed DeLADE model.
The whole word matching approaches in more detail:
(1) BM25: We can characterize this classic retrieval model as generating heuristically assigned term weights.
(2) DeepImpact [36]: Term expansion is first applied to each passage in the collection using doc2query–T5 [39].

Then, the encoder (a two-layer MLP with ReLU activation) projects token embeddings from the final layer
of BERT into contextualized term weights for each input token in the query and expanded passage.

For BM25 and DeepImpact, we output term weights for each query and passage using Pyserini [29] and then
randomly assign each unique term to a unique vocabulary ID to form a high-dimensional sparse vector.
We describe the wordpiece token matching approaches in more detail:
(1) uniCOIL [28]: This model is similar to DeepImpact, but one main difference is that uniCOIL performs

lexical matching on BERT wordpiece tokens during both training and retrieval.
(2) SPLADE [9]: To be precise, we refer to the SPLADE-max model, which uses BERT pretrainedMLM to project

query (or passage) tokens into a |𝑉BERT |-dimensional sparse lexical representation, where |𝑉BERT | = 30522
is the vocabulary size of BERT wordpiece tokens.

(3) DeLADE: Our proposed variant of SPLADE encodes queries and passages into |𝑉BERT |-dimensional dense
lexical representations.

For uniCOIL3 and SPLADE,4 we use checkpoints provided by the authors to generate vector representations
for each query and passage. We refer to the DLRs from a base model as modelDLR (dim), where dim denotes the
3https://huggingface.co/castorini/unicoil-msmarco-passage
4https://github.com/naver/splade/tree/main/weights/splade_max

https://huggingface.co/castorini/unicoil-msmarco-passage
https://github.com/naver/splade/tree/main/weights/splade_max

A Dense Representation Framework for Lexical and Semantic Matching • 13

Table 3. Comparison of Vector Densification Settings for the MS MARCO Passage Corpus

Model vocabulary size discarded vocabulary value vector type index vector type

BM25 2,660,824 472 float16 uint16
DeepImpact 3,514,102 502 float16 uint16
uniCOIL/SPLADE/DeLADE 30,522 570 float16 uint8
Dense [CLS] - - float16 ★

★ Note that we do not have to store the index vector for [CLS] since it is a vector of all ones.

dimensionality of the DLR. For example, uniCOILDLR (768) refers to DLRs of 768 dimensions using uniCOIL as the
base model.

Densification. We densify high-dimensional representations by first removing some dimensions to make the
dimensionality a multiple of 768; then, we further divide each vector into 768 slices. For example, the 30522-
dimensional representations are densified into 768-dimensional vectors by (1) discarding the first 570 unused
tokens in the BERT vocabulary; (2) dividing the remaining 29952 tokens into 768 slices. Each of the slices contains
39 distinct vocabulary items; that is, 𝑀 = 768 and 𝑁 = 39. In our main experiments, we use the stride slicing
strategy, although in Section 5.1 we examine the effects of alternatives. In addition, we conduct experiments
to densify into 256 and 128 dimensions, where there are 117 and 234 tokens in each slice, respectively. The
“value” and “index” dense vectors (see Figure 1) are stored as float16 and uint8, respectively. Note that since we
randomly assign a vocabulary ID to each word for BM25 and DeepImpact, the discarded words are also randomly
chosen. In addition, uint8 is sufficient to represent the index vectors for the lexical models that rely on wordpiece
token matching, while uint16 is required for BM25 and DeepImpact. The detailed settings for densifying the
vectors from different models are shown in Table 3. In addition, we also list the standard dense [CLS] vector
storage setting under our framework for comparison.

Single model fusion. In practice, we can jointly train the [CLS] representation with any of the above lexical
retrieval models using a single BERT model. However, as discussed in Section 3.5, DeepImpact and uniCOIL
require an additional model for passage expansion, and thus they are not ideal base models. For SPLADE, FLOP
regularization and hyperparameter tuning are required to achieve a good effectiveness–efficiency balance, also
making it not an ideal base model. Instead, we choose our proposed DeLADE model as the base lexical model and
refer to the single fusion model as DeLADE+[CLS]. The corresponding DHR is called (DeLADE+[CLS])DHR (dim),
where dim denotes the dimensionality of the lexical component, DLR. We project the [CLS] vectors into 128
dimensions with a linear layer.

Training and inference details. Our proposed models, DeLADE and (DeLADE+[CLS]), are implemented us-
ing Tevatron [14] and trained on a single Tesla V100 GPU with 32 GB memory. We train our models using
distilbert-base-uncased [44] for 6 epochs (around 100k steps) with learning rate 7e-6. Each batch includes 24
samples, and for each query, we randomly sample one positive and seven negative passages. All the negatives are
sampled from theMSMARCO “small” triples training set, which is created using BM25.We set the maximum input
length for the query and the passage to 32 and 150 (including the special tokens [CLS] and [SEP]), respectively, at
both training and inference stages, except for the BEIR dataset, where we set the maximum input length to 512
for both the query and the passage at inference time. For (DeLADE+[CLS]), we set 𝜆 to one during training and
inference.

Advanced training techniques. To further compare with other state-of-the-art retrievers, we also train our model
with knowledge distillation (KD) [16] and hard negative mining (HNM), denoted (DeLADE+[CLS])+. Specifically,
we use (DeLADE+[CLS])DHR (128) to retrieve the top-200 passages using the 8M queries in the training set and

14 • Sheng-Chieh Lin and Jimmy Lin

then retrain (DeLADE+[CLS]) using ColBERT as the teacher model. Note that our ColBERT model (initialized
from distilbert-base-uncased) is trained with the soft labels provided by Hofstätter et al. [17].5 Following
Lin et al. [32], we use KL divergence as the listwise KD loss, which considers all the in-batch negatives. For each
batch, we include 288 triples (i.e., a query with positive and negative examples) by randomly sampling negatives
from the top-200 hard negatives. We train (DeLADE+[CLS])+ on three Tesla V100 GPUs.

4.3 Retrieval Implementation and Settings
Operations in our dense representation framework can be implemented by existing packages that support
common array operations, which makes our approach easy to implement and to deploy in real-world settings.
Specifically, our DLR and DHR retrieval experiments are performed using a custom PyTorch implementation,
which means that training and retrieval experiments can be conducted within the same execution environment
(on GPUs). Our experiments can be performed without an additional toolkit for nearest neighbor search such as
Faiss [24].
For experimental results reported in Section 5.1, we use two-stage retrieval with the following settings,

𝜃 = {1, 1, 1, 1, 0.1}, for the corresponding lexical models, {BM25, DeepImpact, uniCOIL, SPLADE, DeLADE}.
For experimental results reported in Section 5.2 and Section 5.3, we use two-stage retrieval with 𝜃 = 0.3 for
the independent fusion models, i.e., (BM25+ANCE)DHR and (uniCOIL+ANCE)DHR, and single model fusion, i.e.,
(DeLADE+[CLS])DHR and (DeLADE+[CLS])+DHR. We set 𝐾 = 10000 in all experiments.

As already noted, our DLR and DHR retrieval experiments are conducted in PyTorch directly. For the other
dense retrieval models, we use Faiss FlatIP GPU indexes as points of comparison. We perform all retrieval
experiments using a single NVIDIA RTX A6000 with batch size one. For retrieval using inverted indexes, we use
Pyserini (which is built on Lucene) and measure retrieval latency using a single thread on a Linux machine with
two 2.1 GHz Intel Xeon Platinum 8160 CPUs and 944G of RAM. Note that in our main experiments, we primarily
compare retrieval latency between different types of text representations (i.e., sparse lexical, dense semantic,
and DLR/DHR). Thus, we exclude the encoding time of the query text from the neural models for simplicity.
Query encoding latency on a GPU is around 10–20 ms per query for the backbones (bert-base-uncased or
distilbert-base-uncased) used by the compared neural models (except for GTRXXL [37]); thus, this does not
have much impact on the latency comparison between neural models. We refer readers to Table 12 for detailed
online retrieval latency measurements of our models on the CPU and GPU.

5 RESULTS
In this section, we present our experimental results and discuss each research question in turn.

5.1 Quality of DLR Approximations
To begin, we densify lexical representations into DLRs of different dimensions to investigate our first research
question:
RQ1 How well do DLRs approximate the original high-dimensional lexical representations?

Table 4 shows the results of densifying different lexical representations. In these experiments, we use stride slicing,
but examine the impact of different slicing strategies below. The first row in each block reports the retrieval
effectiveness of the original lexical representations using inverted indexes, which can be considered an upper
bound. We also report the effectiveness difference (shown as a percentage) between each method and the upper
bound using inverted indexes. Note that since DeLADE is trained without any sparsity constraints, the output
query and passage representations are quite dense and hence impractical for retrieval using inverted indexes. For

5https://github.com/sebastian-hofstaetter/neural-ranking-kd

https://github.com/sebastian-hofstaetter/neural-ranking-kd

A Dense Representation Framework for Lexical and Semantic Matching • 15

Table 4. Effectiveness/Efficiency Comparisons of DLRs with Different Base Models on MS MARCO (Dev)

Base model Method Dim # tokens/doc Quality Storage Latency

number (diff.) MRR@10 (diff.) R@1K (diff.) GB ms/q

w
ho

le
w
or
d BM25

Inv. index 2.6M 30.11 0.188 0.858 0.7 40
SPAR [4] 768 - 0.173 (−8.0%) 0.831 (−3.1%) 26.0 64

DLR
768 29.18 (−3.1%) 0.180 (−4.3%) 0.845 (−1.5%) 26.0 26
256 28.41 (−5.7%) 0.177 (−5.9%) 0.834 (−2.8%) 8.6 23
128 26.62 (−11.6%) 0.169 (−10.1%) 0.816 (−4.9%) 4.3 22

DeepImpact

Inv. index 3.5M 71.61 0.327 0.948 1.4 285

DLR
768 65.28 (−8.9%) 0.324 (−0.9%) 0.942 (−0.6%) 26.0 26
256 59.90 (−16.4%) 0.316 (−3.4%) 0.933 (−1.6%) 8.6 24
128 52.74 (−26.4%) 0.304 (−7.0%) 0.923 (−2.6%) 4.3 22

w
or
dp

ie
ce

to
ke
n

uniCOIL

Inv. index 30K 67.96 0.351 0.958 1.3 291
SPAR [4] 768 - 0.341 (−2.8%) 0.970 (+1.2%) 26.0 64

DLR
768 64.15 (−5.6%) 0.349 (−0.6%) 0.957 (−0.1%) 20.0 25
256 58.62 (−13.7%) 0.344 (−2.0%) 0.952 (−0.6%) 6.4 22
128 52.48 (−22.8%) 0.335 (−4.6%) 0.944 (−1.5%) 3.3 22

SPLADE

Inv. index 30K 91.50 0.340 0.965 2.6 475

DLR
768 86.33 (−5.7%) 0.336 (−1.2%) 0.963 (−0.2%) 20.0 28
256 76.45 (−16.5%) 0.326 (−4.2%) 0.959 (−0.6%) 6.4 25
128 64.35 (−29.7%) 0.318 (−6.5%) 0.951 (−1.5%) 3.3 24

DeLADE

FlatIP★ 30K 30522 0.347 0.957 1033.3 -

DLR
768 768 (−97.5%) 0.345 (−0.6%) 0.953 (−0.4%) 20.0 25
256 256 (−99.2%) 0.341 (−1.7%) 0.951 (−0.6%) 6.4 22
128 128 (−99.6%) 0.335 (−3.5%) 0.945 (−1.3%) 3.3 21

★ Index size with faiss.FlatIP is provided only as a reference; query latency is not comparable to retrieval
with inverted indexes and hence omitted.

Table 5. Effectiveness Comparisons of DLRs with Different Unsupervised Compression Techniques on FiQA-2018 (Test).

Base model Method Dim Qualtiy Storage

nDCG@10 (diff.) R@100 (diff.) GB

DeLADE

FlatIP 30K 0.301 0.576 6.54
LSH - 0.210 (−30.2%) 0.545 (−5.4%) 0.75
PQ768 - 0.281 (−6.6%) 0.557 (−3.3%) 0.07
PQ256 - 0.253 (−15.9%) 0.535 (−7.1%) 0.04
PQ128 - 0.221 (−26.6%) 0.496 (−13.9%) 0.03

DLR
768 0.294 (−2.3%) 0.567 (−1.6%) 0.13
256 0.287 (−4.7%) 0.558 (−3.1%) 0.04
128 0.274 (−9.0%) 0.552 (−4.2%) 0.02

this condition, we use faiss.FlatIP brute-force search instead. Index size is provided only as a reference, and
we omit query latency since it is not comparable to retrieval with inverted indexes. We also report the number of
tokens per passage (i.e., vector indices with non-zero weights) for each vector densification condition.

Our method is able to densify high-dimensional lexical vectors into 768-dimensional vectors with only a small
retrieval effectiveness drop. As the vectors are further densified into smaller dimensions, retrieval effectiveness
drops more, which can be explained by information loss since the number of tokens are reduced through max
pooling in each slice; i.e., collision between tokens appearing in the same slice. Compared to models that use
whole word matching, BM25 and DeepImpact, wordpiece matching models appear to be more robust to vector

16 • Sheng-Chieh Lin and Jimmy Lin

densification. For example, with 128-dimensional DLRs, uniCOIL sees only 4.6% and 1.5% degradation in MRR@10
and R@1K, respectively, while BM25 sees 10% and 4.9% degradation in MRR@10 and R@1K, respectively. In
contrast to whole word matching models, wordpiece matching models represent many terms with multiple
wordpiece tokens; thus, effectiveness is less sensitive to vector densification since there is more redundancy
in the representation. In addition, BM25 is the only model that does not benefit from passage expansion; thus,
reducing the token space causes greater effectiveness loss.

Among wordpiece matching models, uniCOIL sees only modest retrieval effectiveness degradation for 256 and
128 dimensions while SPLADE sees larger effectiveness drops. This is likely because SPLADE represents each
passage with more wordpiece tokens than uniCOIL does; thus, there are more collisions as the vectors are densified
into smaller dimensions. In contrast to SPLADE, although there are more collisions from vector densification with
DeLADEDLR, our model sees less retrieval effectiveness degradation. We attribute this robustness to collisions to
DeLADE’s full expansion over the entire wordpiece vocabulary space without any sparsity regularization; that
is, there appears to be more “redundancy” in the representations. This result indicates that DeLADE is a better
alternative to SPLADE for dense lexical matching.

Finally, a comparison of DLR and SPAR [4] shows the advantages of our approach. Without any training, our
256-dimensional DLRs applied to BM25 and uniCOIL are able to compete with SPAR. Furthermore, our approach
consumes less space and exhibits lower retrieval latency. Note that the index vectors for the whole word matching
models (BM25 and DeepImpact) are stored in unit16 due to larger vocabulary sizes; thus, they consume more
storage compared to the wordpiece matching models.
In addition, we observe that retrieval latency using inverted indexes is sensitive to the average number of

tokens per passage (i.e., vector sparsity). For example, a 35% increase from 68 to 92 (uniCOIL vs. SPLADE) leads to
more than 60% latency increase. In contrast, DLRs see lower retrieval latency, which appears to be insensitive to
the average number of tokens per passage; for example, uniCOILDLR and DeLADEDLR exhibit large differences in
vector sparsity but have comparable latency when using vectors with the same dimensions. Even with different
dimensions, our approach does not exhibit much variability in retrieval latency. We attribute this advantage to
our two-stage retrieval approach, where computationally expensive end-to-end retrieval only relies on a few
dimensions (see Section 5.4 for more details).

To compare our approach to the unsupervised vector compression techniques shown in Table 2, we use the FiQA-
2018 test collection in BEIR [48], which is based on a medium-size corpus with 57K passages. Compared to MS
MARCO (8.8M passages), it is less computationally demanding to perform unsupervised training for the various
vector compression techniques. We use DeLADE as the base model and report results (nDCG@10 and R@100
as quality metrics and storage as the efficiency metric) in Table 5. Our experiments follow Faiss instructions6
for applying the unsupervised vector compression techniques. The FlatIP index (without any compression)
provides the performance upper bound. For locality-sensitivity hashing (LSH), we use faiss.IndexLSH with
nbits = 8 · 768; for product quantization (PQ), we use faiss.IndexPQ with nbits = 8 and𝑀 = 768, 256, 128.7
We observe that PQ768 can retain most of the information from the original high-dimensional vectors (less than
10% retrieval effectiveness drop) while LSH cannot effectively compress even a 30K-dimensional vector into
binary codes. When we further compress the original vectors with PQ256 and PQ128, retrieval effectiveness drops
more than 10% (and even more for PQ128). In contrast, DLR shows retrieval effectiveness drops less than 10% and
performs consistently better than product quantization with the same storage size. Furthermore, our approach
does not require any supervised or unsupervised training.

6https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
7We also tried OPQ [15] training before performing PQ; however, the effectiveness is much worse.

https://github.com/facebookresearch/faiss/wiki/Faiss-indexes

A Dense Representation Framework for Lexical and Semantic Matching • 17

Table 6. Comparison of Different DLR Slicing Strategies on MS MARCO (Dev).

uniCOILDLR (768) SPLADEDLR (768) DeLADEDLR (768)
Strategy # tokens/doc MRR@10 R@1K # tokens/doc MRR@10 R@1K # tokens/doc MRR@10 R@1K

Contiguous 39.27 0.334 0.947 68.49 0.326 0.952 768 0.332 0.949
Stride 64.15 0.349 0.957 86.33 0.336 0.963 768 0.345 0.953
Random 64.32 0.349 0.957 87.91 0.336 0.963 768 0.345 0.953

Finally, we examine three different slicing strategies on the wordpiece matching models.8 We densify lexical
representations with 768 dimensions (i.e.,𝑀 = 768). Table 6 reports results for the three lexical retrieval models,
along with the number of tokens per passage for each condition. We notice that stride slicing has the same
effectiveness as randomized slicing (only minor differences observed beyond four digits). However, surprisingly,
the contiguous slicing strategy shows degradation in ranking effectiveness and the number of tokens per passage
for this condition is smaller than the other slicing strategies. This indicates that BERT wordpiece tokens with
adjacent token IDs may co-occur with higher probability than any two randomly chosen tokens. Thus, max
pooling over contiguous slices of BERT wordpiece token IDs leads to more collisions compared to the other
strategies. Based on this analysis, we use stride slicing as our default setting in the rest of our experiments.

5.2 Evaluation of Independent Model Fusion
In this section, we describe experiments on fusing different “off-the-shelf” lexical and semantic retrieval models
and compare their effectiveness and efficiency to other hybrid retrieval methods to answer the following research
question:
RQ2 How well do DHRs benefit from the independent fusion of DLRs and “off-the-shelf” dense semantic

representations?

Following Chen et al. [4], we conduct experiments on BM25–ANCE and uniCOIL–ANCE fusion on the MS
MARCO dev set, reported in rows (1)–(3) and rows (4)–(6), respectively, in Table 7. The first entry in each main
block, rows (1) and (4), represents the linear combination approach used in previous work [26, 28, 32], which
requires two separate indexes and additional post-processing of the ranked lists. For these experiments, we
measure latency in Pyserini and report a theoretically optimized system as the maximum latency between Lucene
and Faiss retrieval plus 3 ms of post-processing time. We leave aside the engineering challenge of synchronizing
CPU and GPU search necessary to achieve this performance under real-world conditions. For SPAR [4], rows
(2) and (5), we directly report the ranking effectiveness from the paper and measure the retrieval latency of the
Faiss FlatIP index in our environment. Note that their approach distills uniCOIL’s lexical representations into
semantic representations and then concatenates them to ANCE for dense retrieval. Thus, dimensionality of the
representation vectors is reported as 2 × 768. For DHRs, rows (3) and (6), we tune 𝜆 on MRR@10 using a subset
of 100 queries in the training set and set 𝜃 = 0.3 for two-stage retrieval.
Overall, all three systems yield similar retrieval effectiveness but our DHRs achieve lower retrieval latency.

Note that our model variant with 768-dimensional lexical and semantic vectors is faster than SPAR using Faiss
GPU. We attribute this improvement to our two-stage retrieval approach (see Section 5.4 for more details). It is
worth noting that with a negligible effectiveness drop we can further compress the lexical representations to
128 dimensions. Furthermore, we can convert lexical representations into DHRs of any width according to user
design requirements without any model retraining. This flexibility is one major advantage of our approach.

8Recall that the vocabulary IDs for the whole word matching models are randomly assigned; thus, the slicing strategy is considered random.

18 • Sheng-Chieh Lin and Jimmy Lin

Table 7. Effectiveness/Efficiency Comparisons of Independent Fusion of DLRs with “Off-the-Shelf” Dense Semantic Repre-
sentations on MS MARCO (Dev)

Approach Lexical Semantic qualtiy storage latency

Software Dim Software Dim MRR@10 (diff.) R@1K (diff.) (GB) (ms/q)

(1) Linear combination (BM25, ANCE) Lucene 30K Faiss FlatIP 768 0.347 0.969 26 64

(2) SPAR [4] (lexical conversion to semantic) n/a n/a Faiss FlatIP 2× 768 0.344 (−0.9%) 0.971 (+0.2%) 52 81

PyTorch 768 PyTorch 768 0.349 (−0.6%) 0.967 (−0.2%) 39 56
(3) (BM25+ANCE)DHR PyTorch 256 PyTorch 768 0.348 (+0.3%) 0.967 (−0.2%) 21 56

PyTorch 128 PyTorch 768 0.347 (−0.0%) 0.967 (−0.2%) 17 53

(4) Linear combination (uniCOIL, ANCE) Lucene 30K Faiss FlatIP 768 0.375 0.976 27 291

(5) SPAR [4] (lexical conversion to semantic) n/a n/a Faiss FlatIP 2× 768 0.369 (−1.6%) 0.981 (+0.5%) 52 81

PyTorch 768 PyTorch 768 0.378 (+0.8%) 0.975 (−0.1%) 32 60
(6) (uniCOIL+ANCE)DHR PyTorch 256 PyTorch 768 0.375 (−0.0%) 0.973 (−0.3%) 19 58

PyTorch 128 PyTorch 768 0.369 (−1.6%) 0.971 (−0.5%) 16 57

Retrieval with DHRs uses our custom PyTorch implementation running on GPUs.

5.3 Evaluation of Single Model Fusion
With our framework and proposed DeLADE model, fusing lexical and semantic representations becomes easier.
This motivates us to investigate:
RQ3 Can DHRs benefit from joint training of lexical and semantic components in a single model?

Table 8 compares model performance in terms of retrieval effectiveness and efficiency. For efficiency, index size
and retrieval latency are measured on the MS MARCO dev set as the point of reference. The comparison models
across the columns are categorized as: (1) sparse lexical retrievers, including BM25, docT5q [39], and SPLADE [9];
(2) dense semantic retrievers, including our trained baseline dense retriever (denoted Dense with 768-dimensional
[CLS] vectors) and ANCE [50]; (3) multi-vector retrievers, including ColBERT [27] and COIL [12].

For the MS MARCO datasets, we conduct experiments using Pyserini [29] for all models except for ColBERT9

and COIL.10 For the BEIR datasets, we directly copy numbers from Izacard et al. [22], except for SPLADE11 and
COIL.10 To determine the statistical significance of our results, we perform paired 𝑡-tests (𝑝 < 0.05) comparing all
models except for ColBERT on the MS MARCO datasets. For a fair comparison, Table 8 only includes models that
use the same baseline training strategy as ours. Thus, we exclude approaches that depend on other models for
expansion [28, 36, 56], costly training techniques such as knowledge distillation [9, 18, 19, 41, 46, 49], or special
pretraining [11, 22, 37], although see Table 11 for additional comparisons.
In terms of our proposed models, we report results on three (DeLADE+[CLS])DHR variants by densifying

the lexical components into 128, 256, and 768 dimensions. The (DeLADE+[CLS])DHR 128- and 256-dimensional
variants can be considered “small vectors”, to compare with single-vector (sparse lexical and dense semantic)
retrievers, while the (DeLADE+[CLS])DHR 768-dimensional variant can be considered “large vectors”, to compare
with multi-vector retrievers. Note that all three variants are derived from the same model. Finally, we report the
performance of DeLADEDLR (768), i.e., without the incorporation of the [CLS] vector.

DHRs vs DLRs. We first compare (DeLADE+[CLS])DHR (768) with DeLADEDLR (768), columns (8) and (b), to
examine the effectiveness of single model fusion. From the results, we see that (DeLADE+[CLS])DHR (768), which
9We copy numbers from Mallia et al. [36].
10We run COIL using the inference code from the authors’ repo at https://github.com/luyug/COIL.
11We run SPLADE-max using the inference code from the authors’ repo at https://github.com/naver/splade.

https://github.com/luyug/COIL
https://github.com/naver/splade

A Dense Representation Framework for Lexical and Semantic Matching • 19

Table 8. Effectiveness/Efficiency Comparisons of DHRs Using Single Model Fusion

sparse lexical dense semantic multi-vector DeLADEDLR (DeLADE+[CLS])DHR
(1) BM25 (2) docT5q (3) SPLADE (4) Dense (5) ANCE (6) COIL (7) ColBERT (8) 768 dim (9) 128 dim (a) 256 dim (b) 768 dim

Efficiency∗

storage (GB) 0.67 0.98 2.6 26 26 60 154 20 5.4 8.6 22
latency (ms/q) 40 64 475 64 64 40★ 458★ 30 28 31 33

MS MARCO

Dev MRR@10 0.188 0.2771 0.3401245 0.30712 0.330124 0.3541−58 0.360△ 0.3451245 0.3511−58 0.3551−589 0.3571−58−a
R@1K 0.858 0.9471 0.96512458 0.9441 0.959124 0.96412458 0.968△ 0.953124 0.9621248 0.965124589 0.96712458−a

DL 19
nDCG@10

0.506 0.6421 0.68314 0.6311 0.6461 0.7141245 0.694△ 0.69114 0.691145 0.696145 0.693145
DL 20 0.475 0.6191 0.6711 0.6481 0.6461 0.688125 0.676△ 0.66812 0.68312 0.68612 0.68812

BEIR nDCG@10

TREC-COVID 0.656 0.713 0.661 0.604 0.654 0.668 0.677 0.681 0.695 0.701 0.727
NFCorpus 0.325 0.328 0.322 0.244 0.237 0.331 0.305 0.331 0.319 0.324 0.329
NQ 0.329 0.399 0.469 0.410 0.446 0.519 0.524 0.471 0.476 0.487 0.497
HotpotQA 0.603 0.580 0.640 0.441 0.456 0.713 0.593 0.666 0.664 0.679 0.689
FiQA-2018 0.236 0.291 0.289 0.224 0.295 0.313 0.317 0.294 0.292 0.304 0.312
ArguAna 0.315 0.349 0.445 0.323 0.415 0.295 0.233 0.360 0.423 0.405 0.360
Tóuche-2020 (v2) 0.367 0.347 0.201 0.185 0.240 0.281 0.202 0.266 0.248 0.259 0.280
Quora 0.789 0.802 0.834 0.750 0.852 0.838 0.854 0.755 0.829 0.830 0.831
DBPedia 0.313 0.331 0.370 0.295 0.281 0.398 0.392 0.376 0.397 0.402 0.404
Scidocs 0.158 0.162 0.149 0.103 0.122 0.155 0.165 0.148 0.146 0.148 0.150
Fever 0.753 0.714 0.740 0.651 0.669 0.840 0.771 0.787 0.750 0.781 0.810
Climate-Fever 0.213 0.201 0.187 0.167 0.198 0.216 0.184 0.202 0.215 0.220 0.229
SciFact 0.665 0.675 0.633 0.479 0.507 0.707 0.671 0.674 0.651 0.670 0.685

Avg. nDCG@10 0.440 0.453 0.458 0.375 0.413 0.483 0.453 0.462 0.470 0.478 0.485
Avg. rank 7.00 6.07 7.00 10.46 8.15 3.15 5.54 5.39 5.92 4.46 2.85

BEIR R@100

TREC-COVID 0.498 0.541 0.502 0.386 0.457 0.531 0.464 0.502 0.489 0.512 0.541
NFCorpus 0.250 0.253 0.266 0.228 0.232 0.277 0.254 0.260 0.268 0.272 0.273
NQ 0.760 0.832 0.883 0.817 0.836 0.917 0.912 0.876 0.894 0.901 0.909
HotpotQA 0.740 0.709 0.793 0.586 0.578 0.837 0.748 0.801 0.797 0.808 0.818
FiQA-2018 0.539 0.598 0.576 0.500 0.581 0.596 0.603 0.567 0.584 0.592 0.591
ArguAna 0.942 0.972 0.954 0.873 0.937 0.777 0.914 0.893 0.957 0.943 0.900
Touché-2020 (v2) 0.538 0.557 0.450 0.409 0.458 0.512 0.439 0.499 0.462 0.480 0.500
Quora 0.973 0.982 0.984 0.963 0.987 0.998 0.989 0.972 0.984 0.984 0.985
DBPedia 0.398 0.365 0.493 0.353 0.319 0.522 0.461 0.495 0.491 0.506 0.510
SCIDOCS 0.356 0.360 0.351 0.247 0.269 0.354 0.344 0.343 0.338 0.342 0.346
FEVER 0.931 0.916 0.934 0.886 0.900 0.959 0.934 0.948 0.948 0.953 0.956
Climate-FEVER 0.436 0.427 0.452 0.401 0.445 0.508 0.444 0.464 0.490 0.506 0.525
SciFact 0.908 0.914 0.899 0.829 0.816 0.931 0.878 0.920 0.898 0.904 0.910

Avg. R@100 0.636 0.648 0.657 0.575 0.601 0.671 0.645 0.657 0.661 0.669 0.674
Avg. rank 7.15 5.54 6.08 10.62 8.62 2.46 6.23 5.92 5.77 4.31 3.31
∗ We report efficiency figures on the MS MARCO passage corpus for comparison.
★ These numbers are copied from the original papers, which are measured on multi-GPU systems; thus, they cannot be reproduced in our setup.
△ We do not have these run files; thus, no significance testing is performed against ColBERT.

This table compares against a selection of retrieval models trained with comparable baseline strategies. Bold (underline)
denotes the best (second best) effectiveness for each row. For the MS MARCO datasets, superscripts denote significant
improvements over the labeled model with paired 𝑡-test (𝑝 < 0.05).

incorporates an additional 128-dimensional [CLS] vector, demonstrates significantly better retrieval effectiveness
than DeLADEDLR (768) for both in-domain and out-of-domain datasets. Furthermore, (DeLADE+[CLS])DHR (256)

20 • Sheng-Chieh Lin and Jimmy Lin

Table 9. Component Retrieval Effectiveness of (DeLADE+[CLS])DHR (768)

MS MARCO dev TREC-COVID FiQA-2018 SciFact

Component★ MRR@10 R@1K NDCG@10 CapR@100 NDCG@10 R@100 NDCG@10 R@100

(1) DeLADE + [CLS] 0.357 0.967 0.727 0.541 0.312 0.591 0.685 0.910
(2) DeLADE 0.294 0.930 0.658 0.501 0.193 0.441 0.684 0.920
(3) [CLS] 0.045 0.494 0.125 0.091 0.037 0.185 0.118 0.454
★ Row (1) corresponds to (DeLADE+[CLS])DHR (768) in Table 8. Note that rows (2) and (3) are different from the Dense
and (DeLADE+[CLS])DHR (768) conditions in Table 8, where the separate models are trained independently.

Table 10. Ablation of (DeLADE+[CLS])DHR (768) Varying the Semantic Component

MS MARCO dev TREC-COVID FiQA-2018 SciFact

[CLS] dimension MRR@10 R@1K NDCG@10 CapR@100 NDCG@10 R@100 NDCG@10 R@100

(1) 0★ 0.345 0.953 0.681 0.502 0.294 0.567 0.674 0.920
(2) 128★ 0.3571 0.9671 0.7271 0.5411 0.3121 0.5911 0.685 0.910
(3) 256 0.3581 0.9691 0.7221 0.5301 0.3131 0.5901 0.683 0.917
(4) 768 0.3581 0.9691 0.717 0.5401 0.3181 0.6011 0.680 0.918
★ The 0 and 128 variants correspond to DeLADEDLR (768) and (DeLADE+[CLS])DHR (768) in Table 8, respectively.

Bold denotes the best effectiveness for each column. Superscript denotes significant improvement over the labeled model
based on paired 𝑡-tests (𝑝 < 0.05).

outperforms DeLADEDLR (768) for all metrics, which suggests that incorporating the [CLS] vector can mitigate
information loss from our densification approach.

To further understand how joint training works for (DeLADE+[CLS])DHR (768), we conduct retrieval using the
densified 768-dimensional lexical vectors from DeLADE and 128-dimensional [CLS] semantic vectors separately.
Retrieval effectiveness on the MS MARCO dev set and three BEIR datasets (TREC-COVID, FiQA-2018, and
SciFact) is reported in Table 9. We see that each component is far less effective individually than their hybrid
fusion. Specifically, the DeLADE and [CLS] components in (DeLADE+[CLS])DHR (768) are less effective than the
independently trained DeLADEDLR (768) and Dense models, respectively; see columns (4) and (8) in Table 8. This
result indicates that joint training yields components that are highly complementary, as designed.
To further explore this complementarity of representation, we vary the dimensionality of the semantic

component of (DeLADE+[CLS])DHR (768). We jointly train DeLADEDLR (768) with 0, 128, 256, and 768-dimensional
[CLS] vectors separately. Retrieval effectiveness on theMSMARCO dev set and three BEIR datasets (TREC-COVID,
FiQA-2018, and SciFact) is reported in Table 10. We see that fusing a small [CLS] vector (e.g., 128 dimensions)
in training improves retrieval effectiveness, indicating that joint training yields complementary lexical and
semantic representations within a single model. This is consistent with the component analysis above. However,
further increasing the dimensionality of the [CLS] vector does not appear to yield obvious advantages. This result
indicates that a relatively small [CLS] vector is sufficient to complement the lexical component.

DHRs vs single-vector models. First, a comparison of single-vector retrievers shows that sparse lexical repre-
sentations have better storage efficiency than dense semantic representations. For example, docT5q, column (2),
with an index less than 1 GB, exhibits better out-of-domain retrieval effectiveness than dense semantic retrievers,
columns (4) and (5). Similarly, SPLADE, column (3), outperforms the dense retrievers for both in-domain and
out-of-domain conditions with an index of only 2.6 GB. However, SPLADE requires over 7 times the retrieval
latency of docT5q and other dense retrievers. As lexical–semantic hybrid representations, DHRs exhibit better

A Dense Representation Framework for Lexical and Semantic Matching • 21

retrieval effectiveness with modest retrieval latency and index storage consumption. We see that the 128- and
256-dimensional variants of (DeLADE+[CLS])DHR, columns (9) and (a), outperform the single-vector retrievers,
columns (1) to (5), for both in-domain and out-of-domain datasets in terms of retrieval effectiveness, and further-
more achieves lower query latency. In addition, the two (DeLADE+[CLS])DHR variants have modest index sizes;
for example, the Dense model, column (4), requires 26 GB to store the MS MARCO passage corpus (using a Faiss
FlatIP index) while (DeLADE+[CLS])DHR (128) only consumes 5.4 GB.

DHRs vs multi-vector models. We compare retrieval models with large vectors, (DeLADE+[CLS])DHR (768) and
multi-vector retrieval models, shown in columns (b), (6), and (7). Although their in-domain retrieval effectiveness
does not appear to be very different, ColBERT falls behind COIL and (DeLADE+[CLS])DHR (768) in out-of-domain
evaluation. This result suggests that lexical matching remains a key component for generalization. Compared to
COIL, (DeLADE+[CLS])DHR (768) exhibits comparable retrieval effectiveness but has a much smaller index (60
GB vs 22 GB).
It is worth mentioning that COIL has other variants with smaller indexes; for example, the configuration

with 8-dimensional tokens plus 128-dimensional [CLS] embeddings consumes 14 GB and yields 0.347 (0.956)
MRR@10 (R@1K) on the MS MARCO dev queries.12 This variant is still slightly less effective than our models,
(DeLADE+[CLS])DHR (256) and (DeLADE+[CLS])DHR (128), with index sizes of 8.6 GB and 5.4 GB, respectively.
Furthermore, all our variants are derived from the same model without retraining. This comparison demonstrates
the advantages of single model fusion under our proposed dense representation framework.

Summary. We observe that dense retrievers generally perform well in domain, while sparse retrievers appear
to yield stronger generalization capabilities. Our results demonstrate that DHRs inherit advantages of both lexical
and semantic matching. Specifically, our (DeLADE+[CLS])DHR model achieves competitive retrieval effectiveness
in both evaluation settings with low retrieval latency and modest index storage consumption. This advantageous
effectiveness–efficiency tradeoff makes the design of single model fusion with DHRs attractive. It is also worth
noting that DeLADEDLR (768) outperforms SPLADE slightly,13 especially in term of nDCG. This result shows that
DeLADE is a good alternative under our framework compared to SPLADE using inverted indexes in the scenario
where lower retrieval latency is more important than index size.

DHRs vs more advanced retrieval models. Finally, we compare (DeLADE+[CLS])+DHR, which uses advanced
training strategies, to the effectiveness and efficiency of existing state-of-the-art retrievers in Table 11. For sparse
lexical retrieval models, we report results from SPLADEv2 [9], which uses two rounds (i.e., training with BM25
and hard negatives) of knowledge distillation from a cross-encoder teacher.
For dense semantic retrieval models, we include three representative models for comparison: (1) TAS-B [18]

distills knowledge from multiple teachers using a topic-aware negative sampling strategy. (2) RocketQAv2 [43]
leverages a student–teacher joint training approach to make the dense retriever better mimic a cross-encoder
teacher. (3) Contriever [22] leverages pretraining by combining advanced contrastive learning techniques with
an Inverse Cloze Task (ICT) variant. We also include dense retrievers trained with much larger backbone models
(i.e., more model parameters): (1) GPL [49] trains an expert model for each target dataset in BEIR. (2) GTR [37]
trains even larger encoder models; the authors’ T5-3B and T5-11B models correspond to GTRXL and GTRXXL,
which also combine pretraining, knowledge distillation (KD), and hard negative mining (HNM).14 Finally, for
multi-vector retrieval models, we report ColBERTv2 [46], which also combines KD and HNM, and at the same
time compresses the multi-vectors into a smaller index.

12We refer readers to Gao et al. [12] for more details.
13Our reproduced numbers are slightly better than Formal et al. [9] except for Tóuche-2020, where we use v2 instead of v1.
14GTR is fine-tuned on MS MARCO training queries with hard negatives denoised by a cross-encoder.

22 • Sheng-Chieh Lin and Jimmy Lin

Table 11. Effectiveness/Efficiency Comparisons with Existing State-of-the-Art Models Using Advanced Training Techniques

sparse lexical dense semantic multi-vector (DeLADE+[CLS])+DHR
(c) SPLADEv2 (d) TAS-B (e) Contriever (f) RocketQAv2 (g) GPL (h) GTRXL (i) GTRXXL (j) ColBERTv2 (k) 128 dim (l) 256 dim (m) 768 dim

model size 66M 66M 110M 110M 66M×13★ 1.24B 4.8B 110M 66M

IR pretrain ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗

KD ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

HNM ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

batch size >1K ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗

Efficiency∗

storage (GBs) 5.0 26 26 26 26 26 26 29 5.4 8.6 22
latency (ms/q) 2864 64 64 64 64 64 64 260 28 31 33

MS MARCO

Dev MRR@10 0.368 0.347 0.341 0.381 - 0.385 0.388 0.397 0.366 0.370 0.371
R@1K 0.979 0.978 0.979 0.981 - 0.989 0.990 0.984 0.973 0.975 0.977

DL 19 nDCG@10 0.729 0.717 0.678 - - - - - 0.703 0.711 0.708
DL 20 0.710 0.686 0.661 - - - - - 0.684 0.696 0.700

BEIR nDCG@10

TREC-COVID 0.710 0.481 0.596 0.675 0.700 0.584 0.501 0.738 0.686 0.702 0.735
NFCorpus 0.334 0.319 0.328 0.293 0.345 0.343 0.342 0.338 0.327 0.332 0.337
NQ 0.521 0.463 0.498 0.505 0.483 0.559 0.568 0.562 0.497 0.512 0.523
HotpotQA 0.684 0.584 0.638 0.533 0.582 0.591 0.599 0.667 0.659 0.673 0.684
FiQA-2018 0.336 0.300 0.329 0.302 0.344 0.444 0.467 0.356 0.320 0.326 0.335
ArguAna 0.479 0.429 0.446 0.451 0.557 0.531 0.540 0.463 0.475 0.458 0.436
Tóuche-2020 (v2) 0.272 0.162 0.230 0.247 0.255 0.230 0.256 0.263 0.226 0.237 0.254
Quora 0.838 0.835 0.865 0.749 0.836 0.890 0.892 0.852 0.846 0.848 0.849
DBPedia 0.435 0.384 0.413 0.356 0.384 0.396 0.408 0.446 0.402 0.409 0.413
Scidocs 0.158 0.149 0.165 0.131 0.169 0.159 0.161 0.154 0.156 0.158 0.158
Fever 0.786 0.700 0.758 0.676 0.759 0.717 0.740 0.785 0.764 0.794 0.815
Climate-Fever 0.235 0.228 0.237 0.180 0.235 0.270 0.267 0.176 0.222 0.232 0.239
SciFact 0.693 0.643 0.677 0.568 0.674 0.635 0.662 0.693 0.674 0.694 0.699

Avg.nDCG@10 0.499 0.437 0.475 0.436 0.486 0.488 0.493 0.499 0.481 0.490 0.498
Avg. rank 4.15 10.00 6.00 9.62 5.46 5.31 4.23 4.15 7.31 5.38 4.00
★ Wang et al. [49] trained one expert model for each BEIR dataset using pseudo-relevant labels from a cross-encoder model.
∗ We report efficiency figures on the MS MARCO passage corpus for comparison. As detailed in Mackenzie et al. [35], SPLADEv2 is much slower than the other
models with Lucene; even with PISA, a much faster query evaluation implementation, latency is still 220 ms/q. As for ColBERTv2, the number is copied from
Vanilla ColBERTv2 (p=4, c=216) measured by Santhanam et al. [45].

Bold (underline) denotes the best (second best) effectiveness for each row.

We point out that it is not easy to fairly compare models with more advanced and costly training techniques
since, as shown in Table 11, there are many substantive differences that cannot be captured by general descriptive
labels. Even considering a general method such as knowledge distillation, there are many different implementa-
tions. For example, we use a lightweight ColBERT teacher, while GPL, ColBERTv2, and SPLADEv2 use a more
expensive cross-encoder teacher. While end-to-end results are comparable since the evaluations use the same
test collections, it is difficult to attribute effectiveness differences to specific components.
Nevertheless, it is possible to draw some conclusions from these experiments. We first observe that dense

semantic vectors from smaller models, in columns (d)–(f), do not appear to perform well in both in-domain and
out-of-domain evaluations. For example, Contriever performs well on BEIR but lags behind most models on
in-domain evaluation and the reverse trend can be observed for RocketQAv2. To improve the generalization
capability of dense retrieval models, existing work either leverages multiple expert models for multi-domain
datasets as GPL, column (g), or larger pre-trained models as GTR, columns (h)–(i).

A Dense Representation Framework for Lexical and Semantic Matching • 23

On the other hand, SPLADEv2 and ColBERTv2, columns (c) and (j), leverage representations with more
expressive capacity than dense semantic vectors and appear to show equally good generalization capability
without adding model parameters. However, these models sacrifice retrieval efficiency to gain this generalization
capability. For example, both SPLADEv2 and ColBERTv2 are slower than dense semantic models. GTR also
sacrifices query encoding latency, which is excluded in our latency measurement.15
In contrast, (DeLADE+[CLS])+DHR (768) not only yields competitive zero-shot retrieval effectiveness on BEIR

compared to GTRXXL, ColBERTv2, and SPLADEv2, but also maintains low retrieval latency. In addition, our
(DeLADE+[CLS])+DHR (256), column (l), still yields better overall performance (i.e., effectiveness and efficiency)
compared to the single-vector dense retrievers, TAS-B, GPL, and Contriever. We notice that GTR performs
particularly well in some QA datasets (e.g., NQ and FiQA-2018), likely because GTR includes more training data
such as QA pairs mined from the web and the NaturalQuestions dataset. We also note that (DeLADE+[CLS])DHR
cannot compete with RocketQAv2, GTR, and ColBERTv2 on in-domain evaluation since the first two exploit
additional QA training pairs and all of them use more expensive cross-encoder teachers, which is orthogonal to
our work. It is likely that we can further boost (DeLADE+[CLS])DHR effectiveness by leveraging more data and
more expensive teachers; however, we leave these explorations for future work.

5.4 Performance of Two-Stage Retrieval
In this section, we further study our approach to end-to-end retrieval with DLRs/DHRs proposed in Section 3.4
to investigate our final research question:
RQ4 How effective is our proposed two-stage retrieval approach?

To illustrate how well our proposed approximate GIP operation compares to the more expensive exact GIP
operation between DLRs (or DHRs), we use DeLADEDLR (768) and (DeLADE+[CLS])DHR (768) to conduct end-to-
end retrieval experiments on the MS MARCO dev queries.
Figure 4 illustrates recall at different cutoffs using approximate GIP with various settings of the parameter 𝜃 .

Exact GIP, which is equivalent to 𝜃 = 0, is shown as the black dashed line and represents the upper bound; as
𝜃 increases, recall drops, as expected. However, the results show that the top-10000 candidates retrieved using
approximate GIP include more relevant passages (i.e., has higher recall) than GIP at cutoff 1000. That is, the
effectiveness drop from approximate (first-stage) retrieval can be remedied by reranking the top-10000 candidates
with GIP. In addition, we note that (DeLADE+[CLS])DHR (768) suffers a smaller recall drop at the approximate
retrieval stage. This suggests that [CLS] vectors can help capture relevance and compensate for lower recall
from the lexical component with larger values of 𝜃 . To be clear, 𝜃 is also applied to the [CLS] vector to guide
the approximate computations in (DeLADE+[CLS])DHR. In addition, we also perform retrieval by computing the
standard inner product (IP) between two DLRs’ or DHRs’ value vectors (without considering their index vectors)
for comparison. We observe that IP, surprisingly, also retrieves more relevant passages at cutoff 10000 than GIP
at cutoff 1000, especially for DHRs. This indicates that standard inner product between two DLRs’ (or DHRs’)
value vectors can be an alternative to approximate GIP. We show below that using IP as first-stage retrieval can
benefit DLRs (or DHRs) in end-to-end retrieval on the CPU.

We further examine effectiveness–efficiency tradeoffs after reranking the top-10000 candidates with exact GIP.
The red lines in Figures 5(a) and 5(b) plot the DeLADEDLR (768) performance tradeoff curve (ranking effectiveness
vs retrieval latency) of approximate GIP and reranking with different values of 𝜃 , while the blue dashed line
depicts the performance curve of approximate GIP without reranking for comparison. Retrieval effectiveness
with exact GIP (the black triangle) can be considered the upper bound. From the blue dashed lines, we observe
that approximate GIP substantially reduces retrieval latency but sacrifices effectiveness. However, reranking the

15GTRXL and GTRXXL query encoding consume 96 and 349 ms, respectively, as opposed to 10 ms for TAS-B, reported by Ni et al. [37]

24 • Sheng-Chieh Lin and Jimmy Lin

(a) DeLADEDLR (768)

0.880

0.900

0.920

0.940

0.960

0.980

10 100 1000 10000

R
ec
al
l

cutoff

GIP
Approx. GIP
Approx. GIP
Approx. GIP
Approx. GIP
Inner product

(θ = 0)
(θ = 0.05)
(θ = 0.1)
(θ = 0.2)
(θ = 0.3)

(b) (DeLADE+[CLS])DHR (768)

0.880

0.900

0.920

0.940

0.960

0.980

10 100 1000 10000

R
ec
al
l

cutoff

GIP
Approx. GIP
Approx. GIP
Approx. GIP
Approx. GIP
Inner product

(θ = 0)
(θ = 0.05)
(θ = 0.1)
(θ = 0.2)
(θ = 0.3)

Fig. 4. Recall comparison of approximate retrieval approaches at different cutoffs. Approx. GIP refers to approximate gated
inner product with threshold 𝜃 . Inner product refers to standard inner product between query and passage value vectors
without involving the index vectors.

Table 12. End-to-End Retrieval Latency for (DeLADE+[CLS])DHR (768) on MS MARCO (Dev)

Two-stage retrieval CPU latency (ms/q) GPU latency (ms/q) Quality

1st 2nd Q Enc. 1st 2nd Total Q Enc. 1st 2nd Total MRR@10 R@1K

(1) GIP - 164 72560 0 72724 12 670 0 682 0.357 0.967
(2) Approx. GIP GIP 164 9013 102 9279 12 23 10 45 0.357 0.967
(3) Inner Product GIP 164 3428 102 3694 12 37 10 59 0.357 0.967
(4) Inner Product (w/ PQ128) GIP 164 562 102 828 12 -∗ 10 -∗ 0.357 0.965
(5) Inner Product (w/ PQ64) GIP 164 284 102 650 12 -∗ 10 -∗ 0.357 0.961
∗ Faiss.IndexPQ does not support GPU search.

Retrieval latency is measured in terms of ms/q with a single thread and batch size 1. With the exception of row (1), for each
query, we retrieve the top-10000 passages at the first stage and then rerank the candidates using the second stage. Approx.
GIP refers to approximate gated inner product with threshold 𝜃 = 0.3. Inner product refers to standard inner product between
query and passage value vectors without involving the index vectors.

top-10000 candidates with GIP mostly recovers the effectiveness loss (except for 𝜃 = 0.3) and requires only an
additional 5–10 ms.

By incorporating the [CLS] vector, the performance tradeoff curves appear to be even better, as shown in Fig-
ures 5(c) and 5(d), which are organized in the same manner as Figures 5(a) and 5(b). For (DeLADE+[CLS])DHR (768),
we see no obvious retrieval effectiveness drop, even at 𝜃 = 0.3. This result is consistent with our observation in
Figure 4 that DeLADEDLR (768) and (DeLADE+[CLS])DHR (768) retrieve enough relevant passages in the top-10000
candidates using approximate GIP with 𝜃 ≤ 0.3. Finally, we observe that IP only shows a minor R@1K degradation
after GIP reranking, indicating that the standard inner product can provide an alternative to approximate GIP.
This means that end-to-end retrieval with DLRs or DHRs can also be implemented with first-stage IP followed by
GIP reranking.
Next, we measure the end-to-end retrieval latency of (DeLADE+[CLS])DHR, including both query encoding

(including vector densification) and retrieval components, using the same GPU and CPU environments described
in Section 4.3. We report the query latency averaged over the 6980 MS MARCO dev queries in Table 12. With

A Dense Representation Framework for Lexical and Semantic Matching • 25

(a) DeLADEDLR (768) R@1K

0.250

0.270

0.290

0.310

0.330

0.350

10 100

M
R

R
@

10

Latency (ms/q)

Approx. GIP retrieval
After GIP reranking
Inner product
After GIP reranking

θ = 0 (GIP)0.1
0.050.2

0.3

0.1 0.05

0.2

0.3

4020 60 80 200 400 600

(b) DeLADEDLR (768) MRR@10

0.880

0.900

0.920

0.940

0.960

0.980

10 100

R
@

1K

Latency (ms/q)

Approx. GIP retrieval
After GIP reranking
Inner product
After GIP reranking

θ = 0 (GIP)

0.1

0.05

0.2

0.3

0.1
0.05

0.2

0.3

4020 60 80 200 400 600

(c) (DeLADE+[CLS])DHR (768) R@1K

0.950

0.955

0.960

0.965

0.970

0.975

10 100

R
@

1K

Latency (ms/q)

Approx. GIP retrieval
After GIP reranking
Inner product
After GIP reranking

θ = 0 (GIP)0.1
0.050.2

0.3

0.1
0.050.2

0.3

4020 60 80 200 400 600

(d) (DeLADE+[CLS])DHR (768) MRR@10

0.320

0.330

0.340

0.350

0.360

0.370

10 100

M
R

R
@

10

Latency (ms/q)

Approx. GIP retrieval
After GIP reranking
Inner product
After GIP reranking

θ = 0 (GIP)0.1
0.050.2

0.3

0.1 0.05
0.2
0.3

4020 60 80 200 400 600

Fig. 5. Two-stage retrieval performance comparisons. We compare retrieval latency and effectiveness between approximate
gated inner product (Approx. GIP) and standard inner product retrieval (between query and passage value vectors without
involving the index vectors) and their performance after GIP reranking the top-10000 retrieved candidates. The labeled
numbers denote the threshold 𝜃 for Approx. GIP retrieval. Note that approx. GIP with 𝜃 = 0 is equal to GIP retrieval without
any approximation.

the exception of row (1), for each query, we retrieve the top-10000 passages at the first stage and rerank the
candidates using the second stage.
On the GPU, query encoding consumes 12 ms per query. With approximate GIP retrieval and GIP reranking,

row (2), our lowest end-to-end retrieval latency on the GPU is 45 ms per query. With inner product retrieval
and GIP reranking, query latency rises slightly to 59 ms per query, row (3). End-to-end retrieval latency on the
CPU can be reduced to less than one second per query by performing inner product first-stage retrieval on the
quantized query and passage value vectors, shown in rows (4) and (5). Although approximate GIP can improve
the latency of first-stage retrieval over 80× compared to GIP on the CPU, row (2) vs row (1), approximate GIP is
still over 2× slower than inner product, row (2) vs row (3). This stands in contrast to the GPU, where approximate
GIP is faster than inner product. We note that approximate GIP requires selection of certain dimensions, i.e.,M
in Eq. (18), from the passage value and index vectors across the entire corpus, and this operation appears to be
the latency bottleneck in our implementation using PyTorch on the CPU with a single thread. Thus, on the CPU,
using the inner product between query and passage vectors is a better choice for first-stage retrieval, which can
be further accelerated with approximate nearest neighbor (ANN) search algorithms.
In our final analysis, we demonstrate the interpretability of DLRs, which contrasts with dense semantic

representations, where it is often difficult to understand why certain query–passage pairs obtain high scores.
Since the “index” vector stores the position of the most important term in each slice, a DLR can be “reverted”

26 • Sheng-Chieh Lin and Jimmy Lin

Table 13. Effects of 𝜃 on Approximate GIP with the Reconstructed ExpandedQuery from DeLADEDLR (768)

Original query: where was the bauhaus built

𝜃 rank Reconstructed (expanded) query terms

0.00 2
location, built, ##uh, ##aus, ba, was, house, build, building, site, were, school, home, church, the,
store, originally, place, construction, studio, founded, headquarters, structure, later, city, is, orig-
in, be, theater, college, first, hotel, villa, manufacture . . . (omit)

0.05 3 location, built, ##uh, ##aus, ba, was, house, build, building, site, were, school

0.10 6 location, built, ##uh, ##aus, ba, was, house, build, building, site

0.20 16 location, built, ##uh, ##aus, ba, was, house, build

0.30 19 location, built, ##uh, ##aus, ba, was, house

Original passage (relevant)

So the built output of Bauhaus architecture in these years is the output of Gropius: the Sommerfeld house
in Berlin, the Otte house in Berlin, the Auerbach house in Jena, and the competition design for the Chica-
go Tribune Tower, which brought the school much attention.taatliches Bauhaus, commonly known simply
as Bauhaus, was an art school in Germany that combined crafts and the fine arts, and was famous for the
approach to design that it publicised and taught. It operated from 1919 to 1933.

Reconstructed relevant (expanded) passage terms
ba, ##uh, ##aus, ta, output, house, was, berlin, year, 1933, school, help, ##liche, germany, tribune, architect-
ure, jena, chicago, ##at, design, 1919, ##ius, tower, competition, ot, somme, known, ##op, info, art, ##bach
attention, an, ##s, ##rf, location, commonly, ##a, simply, is, for, au, combined, ##te, built, operated, ##er, as,
famous, ##ised, brought, and, approach, period, public, build, in, fine, building, be, reason, crafts, taught, b-
ring, greatest, much, were, that, combine, skyscraper, architectural, fact, most, production, largest, are, orig-
in, definition, arts, term, so, during, german, name, institution, called, abbreviation, it, type, ##t, which, hig-
hest, widely, history, of, important, work, operate, war, the, include, state, difference, organization, its, desi-
gned, ##st, company, great, century, 1920, recent, purpose, sculpture, acronym, meaning, studio, produced,
last, lot, notable, run, literally, concept, 1934, college, place, created, record, historical, 1918, clock, major, s-
ee, time, decorative, produce, say, being, biggest, villa, fifty, many, founded, structure, culture . . . (omit)

The matching terms between the queries and the original (expanded) passage are colored with blue (red). The “rank” column
denotes the rank of the relevant passage under different 𝜃 settings. The reconstructed query and passage terms are ordered by
their term weights in descending order.

back into a bag of words with term weights. We showcase how 𝜃 impacts approximate GIP in Table 13, where we
reconstruct expanded query terms from DeLADEDLR (768), shown in the top portion of the table. In addition, we
reconstruct the passage judged as relevant to the query in the bottom portion of the table. For simplicity, we do
not show term weights.
We observe that when 𝜃 = 0, there are more than 10 matching terms (colored terms) between the query and

the passage. As 𝜃 increases, terms with lower weights are filtered out; see Eq. (18). Thus, the relevance score
between the query and the passage decreases. For example, from 𝜃 = 0 to 0.05, terms with weights lower than
0.05 are removed for retrieval and the rank of the passage degrades slightly. At 𝜃 = 0.3, four important terms
(e.g., ‘build’, ‘building’, ‘were’, ‘school’) are removed, and the passage is retrieved much lower in the ranked list
(at rank to 19).16 This example illustrates that tuning 𝜃 determines how many query terms (dimensions) are used
for approximate GIP.

16We notice some “wacky” terms from the reconstructed passage with high term weights, originally observed by Mackenzie et al. [35].

A Dense Representation Framework for Lexical and Semantic Matching • 27

6 CONCLUSIONS AND FUTURE WORK
We present a simple yet effective approach to densifying lexical representations for passage retrieval. This work
introduces a dense representation framework and proposes a new scoring function to compute relevance scores
between dense lexical representations (DLRs) derived from queries and passages. Using our framework, we can
combine lexical and semantic representations into dense hybrid representations (DHRs) for hybrid retrieval.
Our experiments show that DLRs can accurately approximate any “off-the-shelf” lexical model. Furthermore,
when combined with other semantic representations (as DHRs), the resulting models can achieve comparable
effectiveness to existing state-of-the-art hybrid retrieval methods.

The main advantage of our framework is that we can execute end-to-end retrieval using DLRs/DHRs on GPUs
with a single index structure in a uniform execution environment. In our implementation, retrieval latency is
insensitive to the sparsity of the vectors, unlike lexical representations that use inverted indexes. This feature
makes our approach both fast and easy to deploy, especially for modern lexical retrieval models, which generate
representations that are quite dense and require additional tuning (e.g., by introducing a sparsity constraint) to
enable practical deployment using inverted indexes. Furthermore, we propose to better model content using
a single model by jointly training semantic and lexical representations, which are then combined into hybrid
representations for retrieval. We demonstrate that this combination, (DeLADE+[CLS])DHR, outperforms most
models (e.g., ANCE, ColBERT, COIL, etc.) in both in-domain and out-of-domain evaluations while requiring smaller
indexes and achieving lower query latency. Finally, we examine our two-stage retrieval approach, uncovering
how the proposed design achieves low query latency without sacrificing accuracy.
One future research direction is to combine various supervised techniques [51, 53, 55] for further vector

compression. In addition, since our proposed single model fusion approach can combine both lexical and semantic
matching capabilities, it would be interesting to further explore methods that can integrate the strengths of each
in a complementary manner. Finally, we believe that joint self training of semantic and lexical components is a
promising future direction, especially in domain transfer scenarios.

ACKNOWLEDGEMENTS
This research was supported in part by the Canada First Research Excellence Fund and the Natural Sciences and
Engineering Research Council (NSERC) of Canada. We acknowledge Cloud TPU support from Google’s TPU
Research Cloud (TRC). We thank the anonymous referees who provided useful feedback to improve this work.

REFERENCES
[1] Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun Xu, Zhaowei Wang, Fangshan Wang, and Qun Liu. 2020.

SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval. arXiv:2010.00768 (2020).
[2] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar

Mitra, Tri Nguyen, et al. 2016. MS MARCO: A human generated MAchine Reading COmprehension dataset. arXiv:1611.09268 (2016).
[3] Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar. 2020. Pre-training Tasks for Embedding-based

Large-scale Retrieval. In Proc. ICLR.
[4] Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta, and Wen-tau

Yih. 2021. Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One? arXiv:2110.06918 (2021).
[5] Nick Craswell, Bhaskar Mitra, and Daniel Campos. 2019. Overview of the TREC 2019 Deep Learning Track. In Proc. TREC.
[6] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2020. Overview of the TREC 2020 Deep Learning Track. In Proc.

TREC.
[7] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Term Weighting For First Stage Passage Retrieval. In Proc. SIGIR. 1533–1536.
[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. In Proc. NAACL. 4171–4186.
[9] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE v2: Sparse Lexical and Expansion

Model for Information Retrieval. arXiv:2109.10086 (2021).

28 • Sheng-Chieh Lin and Jimmy Lin

[10] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE: Sparse Lexical and Expansion Model for First Stage
Ranking. In Proc. SIGIR. 2288–2292.

[11] Luyu Gao and Jamie Callan. 2021. Condenser: a Pre-training Architecture for Dense Retrieval. In Proc. EMNLP. 981–993.
[12] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted

List. In Proc. NAACL. 3030–3042.
[13] Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Benjamin Van Durme, and Jamie Callan. 2021. Complement Lexical Retrieval Model

with Semantic Residual Embeddings. In Proc. ECIR. 146–160.
[14] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2022. Tevatron: An Efficient and Flexible Toolkit for Dense Retrieval.

arxiv.2203.05765.
[15] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product Quantization. IEEE Transactions on Pattern Analysis and

Machine Intelligence (2014), 744–755.
[16] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowledge in a Neural Network. In Proc. NeurIPS: Deep Learning

and Representation Learning Workshop.
[17] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and Allan Hanbury. 2020. Improving Efficient Neural Ranking

Models with Cross-Architecture Knowledge Distillation. arXiv:2010.02666 (2020).
[18] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan Hanbury. 2021. Efficiently Teaching an Effective Dense

Retriever with Balanced Topic Aware Sampling. In Proc. SIGIR. 113–122.
[19] Sebastian Hofstätter, Omar Khattab, Sophia Althammer, Mete Sertkan, and Allan Hanbury. 2022. Introducing Neural Bag of Whole-Words

with ColBERTer: Contextualized Late Interactions using Enhanced Reduction. arXiv:2203.13088 (2022).
[20] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. 2020. Poly-encoders: Architectures and Pre-training Strategies

for Fast and Accurate Multi-sentence Scoring. In Proc. ICLR.
[21] Piotr Indyk and Rajeev Motwani. 2000. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. Proc. STOC.
[22] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and Edouard Grave. 2021. Towards

Unsupervised Dense Information Retrieval with Contrastive Learning. arXiv:2112.09118 (2021).
[23] Kyoung-Rok Jang, Junmo Kang, Giwon Hong, Sung-Hyon Myaeng, Joohee Park, Taewon Yoon, and Heecheol Seo. 2021. Ultra-High

Dimensional Sparse Representations with Binarization for Efficient Text Retrieval. In Proc. EMNLP. 1016–1029.
[24] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity Search with GPUs. IEEE Transactions on Big Data (2021),

535–547.
[25] Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization for Nearest Neighbor Search. IEEE Transactions on

Pattern Analysis and Machine Intelligence (2011), 117–128.
[26] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense

Passage Retrieval for Open-Domain Question Answering. In Proc. EMNLP. 6769–6781.
[27] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT.

In Proc. SIGIR. 39–48.
[28] Jimmy Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval

Techniques. arXiv:2106.14807 (2021).
[29] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit

for Reproducible Information Retrieval Research with Sparse and Dense Representations. In Proc. SIGIR. 2356–2362.
[30] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained Transformers for Text Ranking: BERT and Beyond. Morgan & Claypool.
[31] Sheng-Chieh Lin and Jimmy Lin. 2021. Densifying Sparse Representations for Passage Retrieval by Representational Slicing.

arXiv:2112.04666 (2021).
[32] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-Batch Negatives for Knowledge Distillation with Tightly-Coupled Teachers

for Dense Retrieval. In Proc. RepL4NLP. 163–173.
[33] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin

Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 (2019).
[34] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2021. Sparse, Dense, and Attentional Representations for Text

Retrieval. Trans. Assoc. Comput. Linguistics (2021), 329–345.
[35] Joel Mackenzie, Andrew Trotman, and Jimmy Lin. 2021. Wacky Weights in Learned Sparse Representations and the Revenge of

Score-at-a-Time Query Evaluation. arXiv:2110.11540 (2021).
[36] Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021. Learning Passage Impacts for Inverted Indexes. In Proc. SIGIR.

1723–1727.
[37] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao, Yi Luan, Keith B. Hall, Ming-Wei Chang,

and Yinfei Yang. 2021. Large Dual Encoders Are Generalizable Retrievers. arXiv:2112.07899 (2021).
[38] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT. arXiv:1901.04085 (2019).
[39] Rodrigo Nogueira and Jimmy Lin. 2019. From doc2query to docTTTTTquery.

A Dense Representation Framework for Lexical and Semantic Matching • 29

[40] Biswajit Paria, Chih-Kuan Yeh, Ian E.H. Yen, Ning Xu, Pradeep Ravikumar, and Barnabás Póczos. 2020. Minimizing FLOPs to Learn
Efficient Sparse Representations. In Proc. ICLR.

[41] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA:
An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering. In Proc. NAACL. 5835–5847.

[42] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proc. EMNLP.
3982–3992.

[43] Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, QiaoQiao She, Hua Wu, Haifeng Wang, and Ji-Rong Wen. 2021. RocketQAv2: A
Joint Training Method for Dense Passage Retrieval and Passage Re-ranking. In Proc. EMNLP. 2825–2835.

[44] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv:1910.01108 (2019).

[45] Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. 2022. PLAID: An Efficient Engine for Late Interaction Retrieval.
arXiv:2205.09707 (2022).

[46] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. 2021. ColBERTv2: Effective and Efficient
Retrieval via Lightweight Late Interaction. arXiv:2112.01488 (2021).

[47] Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee, and Danqi Chen. 2021. Simple Entity-Centric Questions Challenge Dense Retrievers.
In Proc. EMNLP. 6138–6148.

[48] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. 2021. BEIR: A Heterogeneous Benchmark for
Zero-shot Evaluation of Information Retrieval Models. In Proc. NIPS.

[49] Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. 2021. GPL: Generative Pseudo Labeling for Unsupervised Domain
Adaptation of Dense Retrieval. arXiv:2112.07577 (2021).

[50] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed, and Arnold Overwijk. 2021. Approximate
Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval. In Proc. ICLR.

[51] Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient Passage Retrieval with Hashing for Open-domain Question
Answering. In Proc, ACL. 979–986.

[52] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller, and Jaap Kamps. 2018. From Neural Re-Ranking to Neural
Ranking: Learning a Sparse Representation for Inverted Indexing. In Proc. CIKM. 497–506.

[53] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. 2021. Jointly Optimizing Query Encoder and Product
Quantization to Improve Retrieval Performance. In Proc. CIKM. 2487–2496.

[54] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. 2021. Optimizing Dense Retrieval Model Training with
Hard Negatives. In Proc. SIGIR. 1503–1512.

[55] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. 2022. Learning Discrete Representations via Constrained
Clustering for Effective and Efficient Dense Retrieval. In Proc. WSDM. 1328–1336.

[56] Shengyao Zhuang and Guido Zuccon. 2021. Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage
Expansion. arXiv:2108.08513 (2021).

[57] Shengyao Zhuang and Guido Zuccon. 2021. TILDE: Term Independent Likelihood MoDEl for Passage Re-Ranking. In Proc. SIGIR.
1483–1492.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Dense Lexical Representations
	3.2 Independent Model Fusion
	3.3 Single Model Fusion
	3.4 End-to-End Retrieval with DLRs
	3.5 Choice of Lexical Representation Models

	4 Experimental Setup
	4.1 Dataset Descriptions
	4.2 Models
	4.3 Retrieval Implementation and Settings

	5 Results
	5.1 Quality of DLR Approximations
	5.2 Evaluation of Independent Model Fusion
	5.3 Evaluation of Single Model Fusion
	5.4 Performance of Two-Stage Retrieval

	6 Conclusions and Future Work
	References

