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ABSTRACT
Procedural Content Generation via Machine Learning (PCGML) has
been studied to generate terrain maps, but many studies focus on
height maps and lack human control. We propose a method based
on Generative Adversarial Networks (GANs) to generate multilayer
maps of terrain with statistical attributes as inputs to introduce
more human control. Since the discriminators used in GANs are
difficult to evaluate and lack transparency, we propose attribute
loss functions, which work as a supervised approach to evaluate
the statistical attributes of generated maps directly using differen-
tiable functions for backpropagation. We tested combinations of
two model architectures and different conditional normalisation
methods and analysed their characteristics. We found that CGAN
architecture with batch normalisation worked well in general, while
SPADE block introduced more fragments, and channel-wise nor-
malisation satisfied input conditions better but lost distribution
diversity and inter-layer relationships.
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1 INTRODUCTION
Many recent video games include increasingly realistic terrain.
However, creating realistic terrain or maps can be time-consuming.
Modifying real-world maps, such as street or satellite maps, can
present a time-saving approach. However, previous work in map
generation often focuses on generating height maps only, while
also lacking in human control [2, 12, 17]. In this work, we use real-
world multilayer maps for our dataset to train a neural network
to generate customised multilayer maps, including a height layer
indicating the relative altitude and a segmentation layer indicating
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the ground categories, such as water and grassland. The generated
maps maintain a rational relationship between layers, for example,
water occurring in lower areas. We used Generative Adversarial
Networks (GANs) [5] with conditions to generate maps. Introduc-
ing conditions can provide the game developer with more control
over the generated maps. For the conditions, we used a vector of
statistical attributes of the multilayer map.

The method by which a GAN discriminator measures the quality
of an image is not explicit for humans to evaluate. In this work, we
propose attribute loss functions that extract statistical attributes
from the generated multilayer maps directly to evaluate whether
they match the input conditions, such as average height in the
height layer. The attribute loss functions work in a similar way to
supervised learning: the statistical attributes are the labels and our
attribute loss functions are customised differentiable loss functions.

We tested our attribute loss functions in combinations of model
architectures and conditional normalisation methods. We found
that CGANwith batch normalisation performedwell in general. The
element-wise normalisation method introduced more fragments
because it focused more on each element, while the channel-wise
normalisation method satisfied the conditions better but lost distri-
bution diversity. We used the Normalized Relative Discriminative
Score (NRDS) [20] to analyse the generated maps quantitatively
and found that NRDS actually measures abnormal patterns rather
than high-level structures or relationships between layers.

The primary contributions of our work are (1) using attribute
loss functions to support GAN training explicitly and (2) generat-
ing multilayer maps controlled by input conditions. Our approach
can also be extended to other tasks to support training. Further
Procedural Content Generation (PCG) approaches can be used after
generation to paint the texture and decorate the terrain with the
generated map as a draft or guidance.

2 RELATEDWORK
Procedural Content Generation (PCG) in video games is the algo-
rithmic generation of game content [8]. PCG methods to generate
maps include Perlin noise [15] and diamond square [4]. However,
the generated maps can appear somewhat unnatural and unappeal-
ing [12]. In PCG via machine learning (PCGML), previous research
on terrain generation uses real-world resources [2, 12, 17], such
as height maps from NASA. Beckham and Pal [2] first generated
height maps using GANs and then inferred the terrain texture of
the generated height map. Spick et al. [17] produced a model that
generates height maps that have similar patterns to the input re-
gions, with details that vary extensively. Nunes et al. [12] compared
several variants of GAN-based networks to generate height maps.
To generate content with human control, Conditional GAN (CGAN)
[11] simply concatenate initial noise and the conditions as the input
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Figure 1: Overall workflow: preprocess the dataset, extract attributes, then train the model with the attribute loss functions.

to the GAN. GauGAN [14] inputs the condition at each normalisa-
tion layer (SPADE block) to prevent the deep model from forgetting
the condition. In this work, our model generates multilayer maps,
with rational inter-layer relationships and conditions that humans
can control.

3 APPROACH
Our work aimed to generate multilayer maps with statistical at-
tributes as input conditions so that the generation is under human
control. The generated map contains a height map showing the
relative height in an area and a segmentation map indicating the
terrain category in different colours for each pixel. The overall
workflow is shown in Figure 1.

3.1 Dataset
We used the dataset created by Pappas [13], in which each of the
5000 samples contains a height map and a segmentation map. The
resolution of each map is 512 × 512 pixels and was resized to 128 ×
128 in this work. Each pixel covers about 400𝑚 × 400𝑚 of land.
Height maps are single-channel images that encode the altitude
information with 0 being sea level. Segmentation maps are coloured
maps that indicate the terrain category for each pixel, where there
are 7 categories in total represented by different colours. The range
of most of the height maps only covers about half the range of
0 to 1. Therefore, min-max scaling is applied to map the altitude
range in each height map from 0 to 1. The information loss of the
altitude is recovered by using the weight and bias of height map
min-max scaling as the attributes in training. We use smoothed
one-hot encoding [7, 18, 19] on the segmentation maps.

3.2 Attribute Loss Function
For each sample, we chose 11 attributes to extract. Four attributes
are for the height map: the weight and bias when applying min-max
scaling and the mean and variance of height after min-max scaling.
Seven attributes are for the segmentation map: the percentage of
the area taken by each of the 7 ground labels.

The attribute loss functions first extract the attributes from the
generated image and then calculate mean square error (MSE) for
backpropagation. In our attribute loss function, we only consider
the last 9 attributes, as the weight and bias when applying min-max

scaling cannot be evaluated explicitly. For the other 2 attributes of
the height map, the calculation of mean and variance is differen-
tiable. For the attributes of the segmentation map, the percentage
of the area taken by each ground label should be calculated in a
differentiable way. Since the size of the image is fixed, calculating
the proportion of each ground label is essentially counting pixels.
We used smoothed one-hot encoding, so that before summation an
amplified sigmoid function 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝛼 (𝑥 − 0.5)) is applied, where
𝑥 ∈ [0, 1]128×128 is a one-hot encoded category of the segmentation
map. Amplification factor 𝛼 is used to polarise the value in the map,
which is a hyperparameter. We chose 𝛼 = 20.

3.3 Models
We tested three approaches to providing conditions to the model:
conditional GAN (CGAN), element-wise normalisation (SPADE
block), and channel-wise normalisation (CWN). In CGAN, the con-
ditions are only input at the beginning, while the SPADE block and
CWN repeat the condition in the normalisation layers to the model
multiple times.
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Figure 2: Original SPADE block (left) and our modified ver-
sion (right).

In CGAN [11], the conditions are concatenated with the noise
as the input to the model, which is suitable for models that are not
too deep, otherwise the model may forget the conditions quickly.
To solve the problem of forgetting the conditions, GauGAN [14]
used SPADE blocks, an element-wise normalisation, to repeat the
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conditions to the network. An element here means a value of a pixel
in a channel. The original SPADE block takes the segmentation
map as input and informs each pixel to which object it belongs, as
Figure 2 shows. However, in our work, the condition is a vector
(attributes) rather than a matrix (segmentation map). Since the idea
of SPADE is to generate independent weight and bias of normalisa-
tion based on the input for each element, we applied a modification.
As Figure 2 shows, we used a linear layer followed by reshaping to
replace the resize operation in the original SPADE block. The linear
layer and reshape were used to generate a map that has the same
shape as the input image, as did the resize operation in the original
SPADE block. In our work, attributes correspond with map layers,
therefore, we tested a channel-wise normalisation, which calculates
weight and bias for normalising each channel with attributes as
input.

4 EVALUATION
We tested different combinations of model architectures, CGAN
[11] and GauGAN [14], while the number of parameters is reduced,
with different normalisation methods: batch normalisation (BN)
[10], modified SPADE block, and CWN. We also tested different
GAN loss functions, including the original version [5], the logD
alternative [1], and WGAN-GP [6]. In this section, we report on
our performance evaluation by comparing the results via NRDS
and observation.
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Figure 3: NRDS for each combination of models, normalisa-
tion methods, and loss functions.

4.1 Quantitative Analysis (NRDS)
Most of the evaluation metrics for image generation [3] rely on
a label-specific pre-trained classifier, such as Inception score [16]
and Fréchet Inception Distance (FID) [9]. In this work, we used the
Normalised Relative Discriminative Score (NRDS) [20]. NRDS is the
area under the epoch-label curve of a randomly initialised classifier
trained to classify whether the input image is real or generated.
The closer a generated map is to the real one, the more epochs
the classifier will take to learn to distinguish between them and

the larger the area under the epoch-label curve. Therefore, higher
NRDS means the generated content is more similar to the real
content according to the classifier.

CGAN_BN_logDCGAN_BN_origin GauGAN_SPADE_WGP GauGAN_CWN_WGP
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Figure 4: Samples generated by the twomodels with the high-
est NRDS (left), and two lowest (right). The grayscale images
are height maps and the coloured images are segmentation
maps. Each row contains samples with the same attributes.

As shown in Figure 3, the CGAN architecture with BN achieved
the highest score. Generally, models with the SPADE block achieved
a lower score than others. As the underlying principle of NRDS
depends on the features the classifier learned, we combine NRDS
with qualitative analysis (Figure 4) to discuss what the score is
measuring. Comparing these samples visually, we can infer that,
rather than high-level features, such as the relationship between
map layers or the distribution of ground categories, the NRDS
evaluates obvious artefacts, such as fragments and white ellipses.

4.2 Qualitative Analysis
To visualise the generated maps, we divided the generated maps
into three types by their appearance, as shown in Figure 5. For the
height maps, both Type 1 and 2 are too smooth compared with
the real one, and Type 3 height maps are too fragmented. For the
segmentation map, Type 1 maps have few details and labels; Type 2
maps have more details and stronger label diversity but are still too
smooth and lack erosion patterns; Type 3 maps are too fragmented.
Among all three types of maps, only Type 2 has obvious inter-layer
relationships: water occurs in low-lying places and is blocked by
hills or mountains in higher places. Type 1 maps were generated
by CGAN architecture with CWN, which suggests that the CWN
worked, but over-emphasised the attribute and loses the richness
of ground categories and the relationship between the height map
and segmentation map. Type 2 maps were generated by the CGAN
model with BN and GauGAN model with CWN. We can infer that
the complexity of GauGAN cancelled out the tendency of CWN
to simplify maps. All models that use SPADE blocks generated
maps of Type 3. We also found that CGAN with SPADE blocks
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Figure 5: Three main types of the generated maps and the
corresponding real maps. The grayscale images are height
maps and the coloured maps are segmentation maps. Each
row contains samples with the same attributes.

tended to generate fewer fragments than the GauGAN model with
SPADE blocks, as the original GauGAN model is more complex
and designed to use the SPADE block. The reason why the SPADE
block causes fragments is that the element-wise operation pays
more attention to each element itself rather than the relationship
between neighbouring elements.

5 DISCUSSION AND CONCLUSION
Together with attribute loss functions, we trained multiple models,
each of them with a combination of basic architecture, normalisa-
tion methods, and loss functions of GAN. We evaluated the gener-
ated maps by both observings and using NRDS. We found that the
CGAN architecture can generate relatively good maps compared
with GauGAN. Compared with CGAN, GauGAN has a far more
complex architecture and more parameters to train, and takes fewer
epochs to achieve its best result. Therefore, we can conclude that
in this work, GauGAN learned faster but also exhibited more over-
fitting since the dataset with 5000 samples is too small. Therefore,
data-augmentation techniques will be considered in future work.
Through qualitative analysis, we found that element-wise normali-
sation (SPADE blocks) introduced more fragments that may suit
some special map regions, such as a marsh. As the original task that
the SPADE block was proposed for was generating real images, the
value change of neighbour pixels in real images is larger than the
maps in this work. Channel-wise normalisation should be suitable
for this task because there are attributes that correspond to each
channel. However, in practice, it loses the distribution richness of
categories and the inter-layer relationship.

This work aimed to generate multilayer maps preserving mean-
ingful relationships between layers with statistical attributes as
input conditions to introduce more human control. Similar to su-
pervised learning, we proposed attribute loss functions to work
directly on the output of the generator of the GAN to evaluate the
degree to which the generated map satisfied the input attributes ex-
plicitly for humans to understand while differentiable for the model

to backpropagate. Our idea of using attribute loss functions to ap-
ply a differentiable supervised learning technique directly to the
generated content could be a powerful way to enhance the quality
of the generated content given specific conditions. We categorised
the generated maps into three types and analysed their charac-
teristics: element-wise normalisation (SPADE block) introduces
more fragments; maps generated by models using CWN satisfy the
input attributes better than others but lost distribution diversity
of ground categories; CGAN architecture with batch normalisa-
tion generated maps well in general. In quantitative analysis, we
found that NRDS actually measured the abnormal patterns in the
generated maps rather than high-level features. For future works,
data-augmentation techniques should be considered and how the
model works on abnormal attributes should be examined.
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