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Figure 1. Lode Enhancer user interface with an example of an up-scaled level. The system is always running whenever a user
makes a change in any canvas the other two get updated. The persistence bar helps to inform the system on which tiles can be
replaced during scaling.

Abstract
We explore AI-powered upscaling as a design assistance tool
in the context of creating 2D game levels. Deep neural net-
works are used to upscale artificially downscaled patches of
levels from the puzzle platformer game Lode Runner. The
trained networks are incorporated into a web-based editor,
where the user can create and edit levels at three different
levels of resolution: 4x4, 8x8, and 16x16. An edit at any resolu-
tion instantly transfers to the other resolutions. As upscaling
requires inventing features that might not be present at lower
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resolutions, we train neural networks to reproduce these fea-
tures. We introduce a neural network architecture that is
capable of not only learning upscaling but also giving higher
priority to less frequent tiles. To investigate the potential
of this tool and guide further development, we conduct a
qualitative study with 3 designers to understand how they
use it. Designers enjoyed co-designing with the tool, liked
its underlying concept, and provided feedback for further
improvement.
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1 Introduction
Artificial Intelligence (AI)-powered design assistance can
take many forms, thereby, experimenting with the relation
between human user(s) and AI systems is crucial for estab-
lishing human-AI co-creativity. A common trope is that of
the human designing something relatively small or lacking
detail (i.e. downscaled design), and the AI system producing a
larger and more detailed (i.e. upscaled) version of the human
design [21]. This entails that the AI system has some way of
making up for the missing information.
In this paper, we explore the idea of using AI-powered

upscaling (and, to a lesser extent, downscaling) for design
assistance. The core idea is that a designer can design at
any level or resolution (i.e. scale) and the AI system will
intelligently up- and downscale it as necessary. In particular,
a designer can draw a game-level sketch at a small scale
and have it upscaled to a complete level, and then edit the
upscaled level which gets automatically scaled down so it
reflects the complete level.

The prototype system we describe in this paper, Lode En-
hancer, uses a neural architecture to scale up level sketches
from 4x4 to 8x8 tiles, and again from 8x8 to 16x16 tiles (fig-
ure 1). The neural networks are trained to upscale down-
scaled versions of existing Lode Runner level segments, mean-
ing they have learned common Lode Runner level design pat-
terns. The complete system, including trained networks, runs
in the browser and produces near-instant results on mod-
ern computers. To understand the potential of AI-powered
upscaling and downscaling, we did a quantitative analysis
on the generated levels then followed by an informal study
where we let three game designers use Lode Enhancer and
interviewed them about their impressions.

2 Lode Runner
Lode Runner (Broderbund, 1983) is a classic puzzle plat-
former game where the goal of the game is to collect all
gold pieces without being caught by the enemies. The player
can only move left and right and dig through the floor. To go
to higher platforms, the player needs to climb ladders. The
digging mechanic allows the player to travel downward and
it can be used to trap enemies.

Lode Runner comes with 150 levels which makes it a good
candidate for procedural level generation using machine
learning (PCGML) [18]. Also, the spatial dependencies be-
tween different tiles make this game a good test bed for our
experiment. Snodgrass and Ontanón [16] used multidimen-
sional markov chain to generate levels for different games
including Lode Runner. Thakkar et al. [20] used a trained
vanilla and variational autoencoder to generate Lode Runner
levels and used evolution strategies to search for playable
levels. Steckel and Schrum [17] trained a GAN on Lode Run-
ner levels and used the MAP-Elites algorithms to search the
space for diverse playable levels.

3 Mixed-Initiative PCG
There exists various literature on procedural content gener-
ation, in particular on the autonomous generation of levels
where the system produces levels with minimal human in-
put [14]. In many settings, it is more useful to have a system
that can interact with humans, so that a human user and an
AI system can design together [9, 22]. Many of these systems
are based on making suggestions to the user, evaluating the
user’s edits, and/or enforcing constraints of various kinds.
For example, Tanagra [15] uses constraint solving to guar-
antee playability in user designs, and Sentient Sketchbook
evaluates strategy maps for various kinds of balance and uses
evolutionary algorithms to suggest changes to the maps [11].

While most early mixed-initiative game design assistants
relied on search, optimization, and/or constraint solving, a
new generation of these tools build on machine learning. For
example, RL brush [4] gives level editing suggestions to users
generated by reinforcement learning agents, and Lode En-
coder [2] allows users to mix and match between suggested
levels using variational autoencoders and incentivizes users
to create new levels. In Morai Maker [6], the human user and
the AI agent collaborate in a turn-based process to generate
Super Mario Bros (Nintendo, 1985) levels.

4 Multilevel Scale Machine Learning
A staple of sci-fi movies and crime shows, image upscal-
ing [21], is now a commonplace technique that is used both
on its own [5] and as part of image generationworkflows [13].
Neural networks of various types can be trained to upscale
images simply by using datasets where an artificially down-
scaled image is the input and the original image is the target.
As the network learns to upscale, it learns to reproduce the
various aspects of a high-resolution image that is not part of
its low-resolution counterpart.

Upscaling is commonly used in image generation pipelines.
This includes the StyleGAN [8] family of networks, where
original images are generated at a low resolution and then
upscaled by successive networks. Similarly, Stable Diffu-
sion [13] uses trained upscaling diffusion models to generate
high-quality images. Upscaling has not been applied much to
mixed-initiative game-level generation yet. The most closely
related work is Sentient World [10], where the user designs
a low-resolution map, then the system suggests an upscaled
version using neuroevolution through novelty search. In Sen-
tient World, the generated maps are a continuous value for
the height map which makes the problem similar to images
compared to generating levels for tile-based games where
there is no correlation between the tile values.

Game level design poses a significantly different problem
than image generation, because of the functionality criteria;
an image does not need to “work”, but a level needs to be
completable. For levels based on fixed-size assets (such as
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Figure 2. The layer scaling network architecture. The network consists of 6 scale layers (one for each tile type) followed by a
temporary Deconv layer to help train the network. The input for the first scale layer is ignored and only the user input is used.

tiles/voxels), there is also the phenomenon that this func-
tionality constraint might only exist at the full-resolution
version of the level, as the compressed levels are almost not
completable. Another common challenge is the discrete as-
pect of the domain. When you scale up a level it does not
mean that the surrounding tiles/voxels suppose to be similar.
For example, having one enemy in a low-resolution level
does not mean that we need 10 enemies at this position if
the level got enlarged 10 times.

5 Lode Enhancer
Lode Enhancer1 is an AI-powered level design tool that helps
game designers to create “Lode Runner” levels through up-
scaling. Using the system, the user can draw levels on a small
canvas then the system upscales it in an intelligent way and
produces a larger and more detailed level. Figure 1 shows the
full system UI where the user is provided with three different
canvases of different scales (4x4, 8x8, and 16x16). The user
has a toolbar on the left that can be used to pick a certain
tile to draw. Whenever any change happens to any canvas,
the canvas is sent to the scaler module which reflects these
changes to the other two canvases. Finally, the scaler module
uses the persistence module (shown as a slider at the bottom
of the UI) to know which tiles can be replaced and which
ones should be kept the same.

5.1 Scaler Module
The scaler module is responsible for reflecting any changes
that the user makes in any canvas to the other canvases.
This is done using an up-scaler system and a down-scaler
system. The up-scaler system is responsible for doubling the
level size while the down-scaler system is responsible for
halving the level size. For example, if the user changes the
8x8 canvas, the system will use the down-scaler to reflect
1http://www.akhalifa.com/lodeenhancer/

these changes in the 4x4 canvas and the up-scaler to reflect
the changes in the 16x16 canvas.
The up-scaler system is modeled using a neural network

called layer scaling network (explained in section 6), while
the down-scaler uses a traditional nearest neighbor filter to
shrink the level. Originally, both systemsweremodeled using
neural networks but in early experiments, we discovered
that the down-scaler network learns to almost replicate the
nearest neighbor filter.

5.2 Persistence Module
In our early experiments, we found that the user’s edits
in the 16x16 canvas got overwritten by the scaler module
if the user went back and modified the 8x8 or 4x4 canvas.
This problem prevented a lot of early testers from going
back and modifying the 8x8 or 4x4 canvas after making
edits to the 16x16 canvas. To solve this, we introduced the
persistence slider that can be seen at the bottom of figure 1.
The persistence slider tells the AI howmuch it should respect
the user’s edits. For high persistence, the user’s edits get the
highest priority and shouldn’t be replaced. While in low
persistence, the AI can overwrite easily any tile.
The module calculates a confidence value (between 0.5

and 1.0) for each user-drawn tile. To replace a tile, the scaler
module compares the probability of the tile from the neural
network with its confidence value. The tile gets replaced
if the network’s probability is higher than the confidence
value of the same tile. To calculate this confidence value, we
take into account the age of the tile (i.e. how long ago the
tile was drawn) as we want the older tiles to be easier to
replace than newly drawn tiles. Equation 1 shows how the
confidence value (𝐶) is calculated given the age of the tile
(𝑎) where 𝐶𝑚𝑎𝑥 is the maximum confidence value, 𝑎𝑚𝑖𝑛 is
the age at which the tile confidence start decreasing linearly,

http://www.akhalifa.com/lodeenhancer/
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Figure 3. The scale layer used in the new network architec-
ture. The layer takes two inputs (the previous layer output
and the user input) and outputs the scaled output and 16-
channel output for network connectivity.

and 𝑎𝑚𝑎𝑥 is the age at which the tile can be replaced.

𝐶 (𝑎) =


𝐶𝑚𝑎𝑥 𝑎 ≤ 𝑎𝑚𝑖𝑛

𝐶𝑚𝑎𝑥−0.5
𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛

· (𝑎𝑚𝑎𝑥 − 𝑎) + 0.5 𝑎𝑚𝑖𝑛 > 𝑎 ≤ 𝑎𝑚𝑎𝑥

0.5 𝑎 > 𝑎𝑚𝑎𝑥

(1)
Moving the persistence bar changes the 𝑎𝑚𝑖𝑛 , the 𝑎𝑚𝑎𝑥 , and
the𝐶𝑚𝑎𝑥 values. For the lowest persistence 𝑎𝑚𝑖𝑛 is 0, 𝑎𝑚𝑎𝑥 is
1, and𝐶𝑚𝑎𝑥 is 0.5, while for the highest persistence 𝑎𝑚𝑖𝑛 is 20,
𝑎𝑚𝑎𝑥 is 100, and𝐶𝑚𝑎𝑥 is 1. The slider just linearly interpolates
these values for the in-between ticks.

6 Layer Scaling Network
Layer scaling network is a new network architecture (shown
in figure 2) designed to help with discrete domains with un-
even distribution between the different possible values/tiles.
This new architecture gives different priorities and compu-
tation capacities for the different tiles. For example, in Lode
Runner, we want the gold tiles and enemy tiles to have higher
priority than normal brick tiles.

To achieve this, our network consists of 𝑛 − 1 scale layers
(explained in section 6.1) where 𝑛 is the number of possible
tiles. Each layer takes the main user input and outputs a
probability of a specific tile. The order of the output is picked
based on the rarity of each tile. For example, in Lode Runner,
the enemy tile (rarest) becomes the last layer while the brick
tile (most common) is the first layer. For Lode Runner (see
figure 2), the network consists of six scale layers: one layer for
each tile type except for empty and player tiles. We removed
the player tile as we wanted the user to have control over
the starting location, while the empty tile is the default tile
if nothing overwrites the location.

6.1 Scale Layer
The scale layer (as shown in figure 3) consists of 2 convolu-
tion layers and a deconvolution layer. The layer takes two

inputs: the original input and the processed input and pro-
duces two outputs: the scaled output and the processed out-
put. The original input is the small-scale user-drawn level,
this input is always concatenated to the processed input so
the layer is conditioned by the user’s choices. This is similar
to the skip connections in the ResNet [7]. Both inputs are
of the same size but have a different number of channels.
The scaled output, instead, is twice the size of the input with
one channel where this output reflects the probability of a
certain tile type. The processed output is the normal output
that gets pushed toward the next layer as its processed input.

For Lode Runner, we used two convolutional layers with
ReLu activation function followed by a batch normalization
layer for the processed output. The scaled output uses a
deconvolution layer to scale the input dimension to a bigger
dimension. We did not add more layers as the dataset size
is not big enough and we did not want to give the network
more power to easily overfit.

6.2 Network Feedforward Operation
The user-drawn level (small-scale discrete image with 7 chan-
nels) is fed to the network and we collect the different scaled
outputs from the scale layers (6 different outputs). To inter-
pret the output, we first create a level of twice the size and
set it to empty tiles. We go over the scaled output from the
beginning (brick layer) to the end (enemy layer). For each
scaled output, if the value is greater than 0.5, we change the
tile to the current layer tile, otherwise, we leave it as it is.
For example, if we are checking the ladder scaled output and
the value of the tile at (x=0, y=0) is more than 0.5, we change
the tile in the final output at (x=0, y=0) to the ladder tile. If
later at the gold scaled output that same tile location has a
value of more than 0.5, the tile is changed to gold instead.

6.3 Network Training
To train this architecture, we apply a two-step trainingmethod:
base training and greedy layer training. The base training
adds a deconvolution layer (called training head in figure 2)
after the last scale layer. The deconvolution layer produces
a scaled output with 7 channels using a softmax activation
function (representing all the different tile values). We use
Adam optimizer to train the network using categorical cross-
entropy loss function for 3, 000 epochs.
After the base training mentioned above, we run greedy

layer training to fine-tune each scale layer and train their
deconvolution layer. We start by removing the training head
and go in order of layers from the first scale layer to the last.
We get the corresponding channel from the training data and
fine-tune each layer. We use Adam optimizer to fine-tune
the layer using binary cross-entropy loss function for 1, 000
epochs with early stopping. After a layer is fine-tuned, we
freeze its weights and move to the next layer until all layers
are fine-tuned. For Lode Enhancer, we trained two different
models: scale from 4x4 to 8x8 and scale from 8x8 to 16x16.
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(a) 8x8 starting noise (b) 4x4 starting noise

Figure 4. Examples of scaled levels from different noise sizes.

6.4 Dataset
For our experiment we used 150 Lode Runner levels made of
32x22 tiles from the Video Games Level Corpus (VGLC) [19].
To increase the dataset size, we used smaller segments of
original levels. We settled down for 4x4, 8x8, and 16x16. For
our first network that scales 8x8 levels to 16x16, we applied
a 16x16 sliding window method with a stride of 1 which
produced 17, 850 level segments in total. Since Lode Runner
levels can be reflected across the x-axis, we used that method
to augment our dataset to 35, 700 level segments. We then
scaled down these segments to half of their size (8x8) using
the nearest neighbor filter and paired them together to create
the dataset. We repeated the same process using a sliding
window of 8x8 to create a dataset for our second network
that scales up from 4x4 to 8x8. The dataset for the second
network consists of 112, 500 level segments.

7 Layer Scaling Network Analysis
In this section, we analyze quantitatively our layer scaling
network. We focus on two fronts: a) investigating the effect
of network scaling on the input level and b) investigating
the advantages of using the proposed architecture.

7.1 Scaling Effect
In this subsection, we explore the effect of the network’s
scaling. We started by generating 1, 000 4x4 or 8x8 noise
inputs that follow the same distribution of the training data.
We passed the 8x8 inputs to 3 trained networks to scale the
8x8 to 16x16, giving us 3, 000 16x16 levels. We passed the
1, 000 4x4 inputs through 3 trained networks to scale the
4x4 to 8x8 and then passed the outputs through the other
network to scale it to 16x16, giving us 3, 000 16x16 levels.
Figure 4 shows an example of the final scaled levels. It is

clear that scaling twice (from 4x4 to 8x8 and then to 16x16)
yields better-looking levels compared to scaling once (from
8x8 to 16x16). We believe that having the level iterate more
than once in the network helps to smooth the input noise and
make the levels fall in a similar distribution to the training

Figure 5. Rendering the training levels with different gener-
ated levels from the layer scaling network using t-SNE.

data. This can be shown in the t-SNE visualization of all the
16x16 levels (figure 5).

7.2 Network Architecture
In this subsection, we investigate the effect of the proposed
network architecture and compare it against a convolutional
neural network (i.e. 2 convolutional layers followed by a
deconvolutional layer). We also compare the efficiency of the
greedy layer training (layer-scaling network) with respect
to the training head (scaling network). For this experiment,
we generated 1, 000 levels by scaling up 4x4 noise twice to
reach the size of 16x16. This experiment is repeated 3 times
using 6 different trained networks (i.e. 3 networks that scale
from 4x4 to 8x8 and 3 networks that scale from 8x8 to 16x16)
resulting to 3, 000 16x16 generated levels per experiment.

We compare the generated levels (figure 6) with the orig-
inal 16x16 training levels and calculate the minimum tile-
pattern KL-divergence (TPKLDiv) score [12]. To calculate
the minimum score, we pair every generated level with the
closest level from the training levels (i.e. the one with the
minimum TPKLDiv score), and we compute the average
score and the confidence interval for all the different pairs.
We find that both the convolutional network (3.485 ± 0.084)
and the scaling network (3.633 ± 0.041) yield higher scores
compared to the layer scaling network (2.441 ± 0.031). Having
a lower TPKLDiv score is desired as it means that the local
patterns in the generated levels follow a similar distribution
to the ones from the training levels.
Figure 7 shows the expressive range analysis for the dif-

ferent networks. We used two main metrics: the number of
reachable tiles and the number of empty tiles. The number
of reachable tiles is the maximum number of reached tiles by
a breadth-first search playing agent that is tested from every
single location in the level. Looking at the expressive range,
we notice that both convolutional and scaling networks have
similar ranges. On the other hand, the layer scaling network
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(a) Input Levels (b) Convolutional Network (c) Scaling Network (d) Layer Scaling Network

Figure 6. Example of generated 16x16 levels from scaling twice the same input noise using different network architectures.
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Figure 7. Expressive range analysis from scaling twice the same input noise using different network architectures.

yields a more consistent map with a lot of empty tiles and
average reachable tiles. This result is unsurprising as having
a higher amount of empty tiles reduces the number of reach-
able tiles since the main character cannot jump. This finding
also suggests that many of the generated levels from the
layer scaling network are similar to each other, which can be
seen in figure 6d. We believe that this is an advantage to our
network as it keeps the relationship between the input (fig-
ure 6a) and the output (figure 6d) as close as possible. In turn,
this means that a small change in the input level will not
cause drastic changes in the output level. This characteristic
is particularly important for mixed-initiative tools of higher
trustworthiness value, as the user can better understand the
impact of their actions on the generated level.

8 Qualitative evaluation
To evaluate Lode Enhancer and the ideas behind it, and to
provide directions for future development, we ran a qualita-
tive study with 2 professional and 1 amateur game designers.
All designer participants went through the following pro-
tocol: (1) We first allowed the designers to play the game
to get familiar with its mechanics. (2) We then gave them a
quick tutorial about the tool and how to use it. (3) We asked
designers to use the system to create a playable level. (4)

We asked the designers to communicate their level design
goal and then use the tool to achieve it. (5) We finally asked
the designers to complete a questionnaire related to their
experience using the tool.

8.1 Observing the Designers
All three designers played the first level shown in the online
port of Lode Runner 2 to get familiar with the core game
mechanics. After they were comfortable with the game, we
run them through a quick tutorial of the tool and then asked
them to create their levels (as per our experimental protocol).
Throughout this process, we observed them while using the
tool and recorded all their interactions with Lode Enhancer.
We noticed that all three participants ended up modifying
the 16x16 canvas most of the time. That was expected as the
goal was to end up with a 16x16 playable level.
Figure 8 shows the 3 different playable levels created by

the designers without communicating any intent. In this task,
the first designer (figure 8a) completely ignored the small
and middle canvas and started directly manipulating the
16x16 canvas. Figure 9 shows the 3 different playable levels
that were created after designers communicated a certain
goal. In this task, all three designers started working with a

2https://loderunnerwebgame.com/game/

https://loderunnerwebgame.com/game/
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(a) (b) (c)

Figure 8. Three playable levels designed by 3 different par-
ticipants when asked to design a playable level.

small-scale canvas to get an interesting shape in the bigger
canvas and then completed their levels by modifying the
16x16 canvas. All participants managed to create a level that
they are satisfied with.
Another observation is that the third designer (figure 8c

and 9c) took twice as much time to design their level com-
pared to the others. We assume that the designer was fo-
cusing on having a highly detailed level (a lot of solid and
brick tile mix) on the canvas, they need to clean some of
the up-scaled structures and think about the locations of
each brick tile. For all created levels except figure 9c, the
designers ignored the 4x4 canvas completely. We think due
to the small space of the canvas some designers might have
felt restricted. Finally, we noticed that they all ignored the
persistence function and did not change the default value
for it but since none of them went back and forth between
different-size canvases, they never needed its functionality.

8.2 Questionnaire Results
After participants completed both levels, we asked them a
number of questions and analyzed their responses.

8.2.1 What did you like about the system? Designers
liked how sensible the AI edits are. For example, the first de-
signer tried to design an unreachable space but the upscaler
made sure it would be reachable by adding holes and/or lad-
ders. They also liked how it helped them start new ideas and
distribute the tiles in different areas pretty fast. For example,
when adding a small ladder near some platform, the system
was able to connect the ladder to the platform.

8.2.2 What did you dislike about the system? Design-
ers pointed out that the 4x4 grid was too restrictive for design
and that is why they avoided using it. Going back and forth
between scales was more troublesome than useful especially
later in the design process as the AI was suggesting less pol-
ished sections. They also pointed out that one of the reasons
they avoided the scaler is that they are not familiar with the
tool so they did not completely understand the relationship
between changing a small canvas and the upscaler output.

(a) (b) (c)

Figure 9. Three goal-oriented levels designed by 3 partici-
pants. The goals were set by the participants and commu-
nicated to us. The goals are (a) create a level with one gold
that the enemy will carry and the only way to win is to trap
the enemy to drop the gold, (b) create a level with at least 3
enemies and 5 golds where one of the gold is trapped, and
(c) create a challenging level with multiple possible paths.

8.2.3 How could enhancing/scaling levels improve
level designers’ workflow and fulfilling their own de-
sign goals? For this question, all designers agreed that the
system helped them save a little bit of time and created a
draft version of the level pretty fast. They also think that it
would be more useful if the task was to create a huge level
like 128x128 while controlling a small space like 16x16.

8.2.4 How did you use the persistence function? Since
all designers never went back and forth between different
scales, they completely ignored the persistence function.
When we asked them about it, they acknowledged that they
either forgot about it or did not need it.

8.2.5 What other AI/ML functionality would you like
to see in a tool like this? For future functionality, each
designer had an interesting insight into what might be use-
ful. One of them wanted the AI to be able to validate the
created space and figure out any problems with their design.
Another designer wanted to have more control over the up-
scaled canvas so there is more than one option for up-scaling.
Another suggestion was to provide the user with the ability
to teach the upscaler the meaning behind the small section
so it can upscale it in the same meaningful way. This sug-
gestion is mostly about making the AI able to recognize the
macro-patterns behind a small design and then be able to
produce it on a bigger scale, similar to studies by Baldwin et
al. [1], and Dahlskog and Togelius [3].

9 Discussion
Any machine-learned design assistance tool will rely on and
reproduce patterns in the data it was trained on. For some
domains, this might present ethical issues, but in the rather
abstract domain of Lode Runner, the main concerns are to
which extent it reproduces existing levels and constrains the
user’s creativity. Informal investigations indicate that the
upscaling network does not reproduce any recognizable part
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of existing levels exactly. The ability to edit freely also means
that the editor does not constrain the expression of users,
although it can of course bias the user in various directions.

One reason that the designers did not engage much with
the persistence functionality is apparently that we did not
explain it well enough. This is something that needs to be
improved on, given that the main reason why designers did
not go back and forth between scales while editing is the
worry that edits they had already done would be overwritten
by the AI. This is exactly what the persistence functionality
is supposed to prevent. Clearly, more work is needed on how
to make this smooth and intuitive.

An important takeaway from the qualitative evaluation is
that the labor-saving aspects of upscaling only really come
into play for large or high-resolution levels. For 16x16 tiles,
the effort saved is rather small. Lode Runner might not be
the testbed for this, as most Lode Runner levels are not larger
than those we use here.

For our new proposed architecture, our quantitative anal-
ysis shows promise in the ability of the network to mimic
local patterns compared to traditional architectures. Having
a small canvas and upscaling it multiple times allows the
system to repair its own mistakes and make sure the gen-
erated levels are in distribution. This allows the system to
generate bigger levels, which is the main takeaway of the
qualitative evaluation. We also think that having a different
output for each layer allowed the network to have differ-
ent computation power for different tiles with minimum
domain knowledge (i.e. the order of the tiles). Finally, we
think that the skip connection allowed the system to learn a
good relationship between user input and target output.

While in this study we investigated upscaling as a design
assistance functionality in its own right, it is likely that it
will be most efficient and useful as part of a multifaceted
AI-powered toolset. One functionality that would very likely
work well in tandem with the current upscaling (and down-
scaling) is a repair agent that makes sure that the generated
level is playable. Having a repair function and a larger level
canvas will likely make the tool more usable and accessi-
ble to designers. We believe that the introduced upscaling
method has the potential to be a valuable addition to level
editing tools similar to diffusion models for image editing
tools 3.

10 Conclusion
We presented Lode Enhancer, a mixed-initiative level design
tool based on the concept of upscaling as design assistance.
Upscaling uses deep neural networks which are trained on
artificially downscaled patches of existing Lode Runner level
segments, meaning that they have learned common micro-
and macro-patterns of Lode Runner game design. These
patterns are then exploited when transforming the missing

3https://exchange.adobe.com/apps/cc/114117da/stable-diffusion

information of a downscaled level to a more information-
rich upscaled level. We also proposed a new architecture we
name layer scaling network and compared it to traditional
architectures. We notice that the new architecture manages
to capture the local patterns better than the other networks.
We also noticed that the trained networks do not allow a
small change in the input to cause severe (undesired or un-
predictable) changes in the output level. Finally, we tested
our tool through a preliminary qualitative study involving
3 game designers. All designers agreed that the tool is very
helpful for creating an initial low-res draft which they can
refine at a later stage in a co-creative fashion with the under-
lying AI. They also agreed that this tool will be even more
powerful in complex games or larger-scale maps.
Lode Enhancer is the first mixed-initiative co-creativity

[22] prototype that examined and built on the notion of
upscaling. We argue that upscaling is a very important task
during level design as it can accelerate the drafting process of
large levels. As future research steps, we plan to explore how
a tool like Lode Enhancer can operate inmore complex games
with large levels. Also, we consider adding more control on
the upscaler module such that the user can have a choice
between different versions of the upscaling. Finally, as the
levels created usually require some minor edits from the user
tomake themplayable the next version of Lode Enhancerwill
be equipped with AI agents that can autonomously repair
the upscaled levels and turn them into playable ones.
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