
A geometric multigrid method for space-time
finite element discretizations of the

Navier–Stokes equations and its application to
3d flow simulation

Mathias Anselmann?,1, Markus Bause?

? Helmut Schmidt University, Faculty of Mechanical Engineering, Holstenhofweg 85,

22043 Hamburg, Germany

Abstract. We present a parallelized geometric multigrid (GMG) method, based
on the cell-based Vanka smoother, for higher order space-time finite element meth-
ods (STFEM) to the incompressible Navier–Stokes equations. The STFEM is im-
plemented as a time marching scheme. The GMG solver is applied as a precondi-
tioner for GMRES iterations. Its performance properties are demonstrated for 2d
and 3d benchmarks of flow around a cylinder. The key ingredients of the GMG ap-
proach are the construction of the local Vanka smoother over all degrees of freedom
in time of the respective subinterval and its efficient application. For this, data
structures that store pre-computed cell inverses of the Jacobian for all hierarchical
levels and require only a reasonable amount of memory overhead are generated.
The GMG method is built for the deal.II finite element library. The concepts are
flexible and can be transferred to similar software platforms.

1 Introduction

The accurate numerical simulation of incompressible viscous flow continues to remain a chal-
lenging task, in particular, if three space dimensions are considered due to the sake of physical
realism. Higher order methods offer the potential to achieve accurate results on computation-
ally feasible grids with a minimum of numerical costs. However, constructing higher order
numerical methods maintaining stability and inheriting most of the rich structure of the con-
tinuous problem becomes an important prerequisite. For this, we refer, e.g., to [25, 22] for
stationary problems and to [20, 19, 2] for the nonstationary case. The efficient solution of the
arising algebraic systems of equations with a huge number of unknowns is no less difficult.
Often, the linear solver represents the limiting factor for the level of mesh resolution and its
number of degrees of freedom. If higher order time discretizations are used, this even puts an

1Corresponding author: anselmann@hsu-hh.de

1

ar
X

iv
:2

10
7.

10
56

1v
2 

 [
m

at
h.

N
A

] 
 1

2 
Ju

l 2
02

2



additional facet of complexity on the structure of the resulting linear systems and their numer-
ical solution. Here, a geometric multigrid (GMG) method that is used as a preconditioner for
generalized minimal residual (GMRES) iterations is proposed and analyzed computationally
for higher order space-time finite element discretizations of the Navier–Stokes equations in two
and three space dimensions. Its parallel implementation in the deal.II library [6] is addressed.
The application of multigrid techniques to space-time finite element approximations of the
Navier—Stokes equations and the advanced implementational issues of these algorithms yields
the innovation of this work. To the best of our knowledge, the multigrid efficiency for such
systems has not been studied sufficiently yet and deserves further elucidation.

Discretizing the Navier–Stokes system by inf-sup stable pairs of finite elements that are used
in this work and applying Newton’s method for the linearization leads to linear systems of
equations with saddle point structure. Higher order variational time discretizations, that we
implement as time marching schemes by the choice of a discontinuous in time test basis, lead to
linear block systems within which each block is a saddle point problem itself (cf. (3.10)). Solving
indefinite saddle point problems has been studied intensively in the literature, cf. [9, 15]. Using
a direct solver is a suitable approach for problems of small dimensions. Due to the increase in
computational costs and memory, two-dimensional problems that are of interest in practice or
even three-dimensional simulations are not feasible for direct linear solvers, even if parallelism
is used. In such cases, Krylov subspace methods [40] or multigrid schemes [43] are typically
applied. A classical choice for a Krylov method is the (flexible) generalized minimal residual
(GMRES) method. One drawback of the GMRES solver is that an additional amount of
memory is allocated in each iteration. As a remedy, a restart that typically leads to a lower
rate of convergence can be used; cf. [50]. To improve the convergence of the GMRES method, a
preconditioner is typically applied within the GMRES iterations. If the density and viscosity of
the flow are constant, the ”pressure convection-diffusion” (PCD) block preconditioner results in
a mesh independent convergence behavior; cf. [28, 15, 14]). This holds at least for flow problems
with low to medium Reynolds numbers; [37]. As an alternative, algebraic multigrid (AMG)
methods can be used for preconditioning the GMRES method. For saddle point problems,
the AMG preconditioner can not be applied in a natural way. In [36], its application becomes
feasible by an appropriate transformation of the underlying saddle point problem.

In challenging benchmarks, e.g., for flow around a cylinder [41]), geometric multigrid (GMG)
methods have proven to belong to the most efficient solvers, that are currently available, cf. [26].
Numerical studies showed that the performance, robustness and efficiency of the GMG methods
can be improved further, if they are applied as preconditioners for Krylov iterations; cf. [22].
This combination has shown to work robustly even in challenging three-dimensional simulations
[23]. GMG methods have also been applied successfully in two space dimensions along with
higher order space-time finite element discretizations of convection-diffusion equations [45, 46]
or the Navier–Stokes equations [21, 18, 19]. Applying the GMG method involves several
complexities. Firstly, one needs to store the problem structure on various mesh levels and
transfer information from finer mesh levels to coarser mesh levels by restriction operators and
vice versa by prolongation operators. Secondly, parallel assembly routines add a further layer
of complexity to the previous ones. Finally, the key ingredient of the GMG method is the
choice of the smoother, which damps high frequency errors on successively coarser mesh levels.
The classical Gauss-Seidel smoother is not applicable to the Navier–Stokes equations, due to
the saddle point structure of the discrete system. Two popular choices for this kind of problems

2



are the Vanka type smoothers [47] and the Braess–Sarazin type smoothers [11]. In numerical
studies, Vanka type smoothers have shown to outperform the Braess-Sarazin ones [26].

In this work we propose a GMG approach based on a local (cell-based) Vanka smoother for
higher order discontinuous Galerkin approximations in time. An inf-sup stable pair of finite
element spaces with discontinuous pressure approximation is used for the discretization in
space. This GMG method is built in the state of the art, multi-purpose finite element toolbox
deal.II (cf. [6] and [13, 30]) along with the linear algebra package Trilinos [42]. Efficient
data structures are provided. The deal.II library is enhanced in such a way that a parallel
assembly and application of a cell-based Vanka smoother become feasible. We note that some
geometric multigrid support, that was used in [27] to implement a GMG based preconditioner
using Hdiv-conforming elements for the Stokes problem, was already provided in deal.II. The
robustness and efficiency of our GMG method in terms of a grid-independent convergence of
the preconditioned GMRES iterations is studied computationally for the popular benchmark
problems of flow around a cylinder in two and three space dimensions. For this, we explicitly
note that parallel multigrid iterations for challenging three-dimensional flow problems do by
far not meet a standard nowadays. This is underlined by the fact that the three-dimensional
benchmark problem of flow around a cylinder [41] continues to be an open one. Confirmed
numbers for the goal quantities of the simulation are not available yet.

This work is organized as follows. In Sec. 2, the prototype model problem and the notation are
introduced. In Sec. 3, our space-time finite element approach for simulating the Navier–Stokes
system, as well as the structure of the resulting underlying system matrix, are presented. In
Sec. 4, we briefly recall the geometric multigrid algorithm as well as the local Vanka smoother
used in this work. We address practical aspects of the parallel implementation of the algorithm
by using the deal.II library and the linear algebra package Trilinos. In Sec. 5, we present
numerical results and measure the performance properties of our proposed algorithms for the
2d and 3d DFG benchmark of flow around a cylinder [41].

2 Mathematical problem, notation and discretization

2.1 Model problem

Without loss of generality, we consider the prototype model problem of incompressible viscous
flow around a cylinder in a rectangular two- or three-dimensional domain. The two-dimensional
problem configuration along with the notation of the geometrical setting is sketched in Fig. 2.1.
We evaluate the performance properties of the proposed GMG solver for this benchmark prob-
lem (cf.[41]). We consider solving the Navier–Stokes equations

∂tv + (v · ∇)v − ν∆v +∇p = f in Ω× I , (2.1a)

∇ · v = 0 in Ω× I , (2.1b)

v = g on ΓD × I , (2.1c)

ν∇v · n− np = 0 on Γo × I , (2.1d)

v(0) = v0 in Ω . (2.1e)

3



In (2.1), Ω ⊂ Rd, with d = 2 or d = 3, is the open domain filled with fluid. We put I = (0, T ]
for some final time T > 0. The velocity field v and the pressure p are the unknown variables.
In (2.1a), the parameter ν > 0 denotes the fluid’s viscosity and the right-hand side function f
is a given external force. The union of the Dirichlet boundary segments is denoted by ΓD, such
that ΓD := Γi ∪ Γw. On ΓD we prescribe the fluid velocity by a function g, that prescribes
an inflow profile on Γi and a no slip condition on Γw. Γo represents an outflow boundary that
is modeled by the do-nothing boundary condition (2.1d); cf. [16]. In (2.1d), the field n is the
outer unit normal vector. In (2.1e), the function v0 denotes the prescribed initial velocity. In
our numerical experiments presented in Sec. 5, the (time-independent) rigid domain Ωr is a
sphere in two space-dimensions or a cylinder in three space-dimensions.

Figure 2.1: Problem setting for two space dimensions and corresponding notation.

We assume that a sufficiently regular solution of the system (2.1) exists such that higher order
approaches become feasible. For the existence, uniqueness and regularity of solutions to the
Navier–Stokes system, including the regularity for t→ 0 under realistic assumptions about the
data, we refer to the broad literature in this field; cf. [24, 17] and the references therein.

2.2 Notation

Here, we introduce the function spaces that are used in this work to present our space-time
approach for the Navier–Stokes system (2.1). By L2(Ω) we denote the function space of square
integrable functions on the fluid domain Ω while H1(Ω) is the usual Sobolev space of functions
in L2(Ω) which have first order weak derivatives in L2(Ω). Further, 〈·, ·〉 is the standard inner
product of L2(Ω). We define the subspace of L2(Ω) with mean zero L2

0(Ω) := {v ∈ L2(Ω) |∫
Ω v dx = 0} and the subspace of H1(Ω) of functions with zero boundary values (in the sense

of traces) on the portion ΓD ⊂ ∂Ω of the boundary ∂Ω of Ω as H1
0,ΓD

(Ω). Its dual space is

denoted by H−1(Ω). Finally, by H1/2(ΓD) we denote the space of all traces on Γ ⊂ ∂Ω of
functions in H1(Ω). For vector-valued functions we write those spaces bold.

2.3 Space discretization

Let Th = {T} be a family of shape-regular decompositions of the Ω (cf. Fig. 2.1) into (open)
quadrilaterals K with maximum cell size h. For r ≥ 0, let Q̂r denote the space of polynomials
of degree at most r in each variable and P̂r the space of at most degree r. We put

Qr(T ) :=
{
vh|T = v̂h ◦ F−1

T : v̂h ∈ Q̂r

}
, Pr(T ) :=

{
vh|T = v̂h ◦ F−1

T : v̂h ∈ P̂r
}
,

4



with the reference mapping FT from the reference cell T̂ to element T . In our computations
presented in Sec. 5, only affine linear mappings are used. We define the finite element spaces

Hr
h :=

{
vh ∈ C(Ω) | vh|T ∈ Qr(T ) ∀ T ∈ Th

}
,

Hr
h,disc :=

{
vh ∈ L2(Ω) | vh|T ∈ Pr(T ) ∀ T ∈ Th

}
.

For the construction and effective application of the cell-based Vanka smoother, a local velocity-
pressure coupling is required. To establish such a coupling, a discontinuous in space pressure
approximation is applied. For the spatial approximation of the velocity and pressure variable
we use the conforming, inf-sup stable finite element pair that is given by

V h = Hr
h ×Hr

h , Qh = Hr−1
h,disc (2.2)

for some natural number r ≥ 2, cf. [24, 33]. All the numerical experiments that are presented
in Sec. 5 were done by the choice (2.2) of the discrete function spaces.

The space of weakly divergence free functions is denoted by

V div
h = {vh ∈ V h | 〈∇ · vh, qh〉 = 0 for all qh ∈ Qh} .

Finally, we define the spaces

VI,h := {vh ∈ L2(I;V h) | ∂tv ∈ L2(I;V h)} , L2
0,I,h := L2(I;Qh) .

For the treatment of Dirichlet boundary conditions by Nitsche’s method (cf. [8]) we introduce
the bilinearform BΓD

: H1/2(ΓD)× (V h ×Qh)→ R by

BΓD
(w, (ψh, ξh)) :=− 〈w, ν∇ψh · n+ ξhn〉ΓD

+ γ1ν〈h−1w,ψh〉ΓD
+ γ2〈h−1w · n,ψh · n〉ΓD

(2.3)

for w ∈ H1/2(ΓD) and (ψh, ξh) ∈ V h ×Qh, where γ1 > 0 and γ2 > 0 are numerical (tuning)
parameters for the penalization. In [1, 51], their choice in the range of (10, 100) is recommended.
In our simulations presented in Sec. 5, we put γ1 = γ2 = 35. Next we define the semilinear
form Ah : (V h ×Qh)× (V h ×Qh)→ R by

Ah((vh, ph), (ψh, ξh)) :=〈(vh ·∇)vh,ψh〉+ ν〈∇vh,∇ψh〉 − 〈ph,∇ ·ψh〉+ 〈∇ · vh, ξh〉
− 〈ν∇vh · n− phn,ψh〉ΓD

+BΓD
(vh,φh)

(2.4)

for (vh, ph) ∈ V h × Qh and (ψh, ξh) ∈ V h × Qh. The linear form Lh : (V h × Qh) → R is
defined by

Lh((ψh, ξh);f , g) := L(ψh;f) +BΓD
(g, (ψh, ξh)) (2.5)

for (ψh, ξh) ∈ V h ×Qh.

5



2.4 Time discretization

For the time discretization, we decompose the time interval I = (0, T ] into N subintervals
In = (tn−1, tn], n = 1, . . . , N , where 0 = t0 < t1 < · · · < tN−1 < tN = T such that I =

⋃N
n=1 In

and In ∩ Im = ∅ for n 6= m, m, n = 1, . . . , N . We put τ = maxn=1,...,N τn with τn = tn − tn−1.
Further, the set Mτ := {I1, . . . , IN} of time intervals is called the time mesh. For a Banach
space B of functions defined on the time-independent domain Ω and any k ∈ N0, we let

Pk(In;B) =
{
wτ : In → B | wτ (t) =

k∑
j=0

Wj t
j ∀t ∈ In , Wj ∈ B ∀j

}
. (2.6)

For an integer k ∈ N0, we put

Xk
τ (B) :=

{
wτ ∈ L2(I;B) | wτ |In ∈ Pk(In;B) ∀In ∈Mτ , wτ (0) ∈ B

}
. (2.7)

3 Space-time finite element discretization

For the discretization of the Navier–Stokes system (2.1) by space-time finite element methods,
we follow the lines of [43, 26, 4, 5] and consider the time marching scheme, that consists of
solving the sequence of the following local problems defined on the subinterval In:

Problem 3.1. Let f ∈ L2(I;H−1(Ω)) and v0,h ∈ V div
h be given. For n = 1, . . . , N , and given

vτ,h|In−1
∈ Pk(In−1;V h) for n > 1 and vτ,h|In−1

(t−n−1) := v0,h for n = 1, find (vτ,h, pτ,h) ∈
Pk(In;V h)× Pk(In;Qh), such that∫ tn

tn−1

〈∂tvτ,h,ψτ,h〉+Ah((vτ,h, pτ,h), (ψτ,h, ξτ,h)) dt+ 〈vτ,h(t+n−1),ψτ,h(t+n−1)〉

=

∫ tn

tn−1

Lh(ψτ,h;f , g) dt+ 〈vτ,h(t−n−1),ψτ,h(t+n−1)〉 (3.1)

for all (ψτ,h, ξτ,h) ∈ Pk(I;V h)× Pk(In;Qh).

This discretization features a discontinuous Galerkin in time method, with piecewise polyno-
mials of order k ∈ N0. Using a discontinuous method in the time domain has the advantage,
that no initial value for the pressure is needed. Continuous in time methods require a discrete
initial pressure value for the unique definition of its full trajectory. Such an initial value, that
guarantees the optimal order of convergence of the velocity and pressure variables for all t ∈ I,
is not available. A remedy is the application of extrapolation techniques; cf. [18]. Further,
discontinuous Galerkin methods offer stronger stability properties since they are known to be
strongly A-stable.

For the construction of the GMG method in Subsec. 4.2 we discuss the algebraic counterpart of
Eq. (3.1) more thoroughly. Firstly, we represent the unknown discrete functions (vτ,h, pτ,h) ∈
L2(In;V h)× L2(In;Qh) in a temporal basis {χl}kl=0 of Pk(In;R) by means of

vτ,h,i|In(x, t) =
k∑
l=0

vn,li (x)χn,l(t) , for i ∈ {1, . . . , d} , pτ,h|In(x, t) =
k∑
l=0

pn,l(x)χn,l(t) , (3.2)

6



with coefficient functions vn,l = (vn,l1 , . . . , vn,ld )> ∈ V h and pl,n ∈ Qh, where vτ,h = (vτ,h,1, . . . ,
vτ,h,d)

> for t ∈ In. For the basis {χl}kl=0 we choose the Lagrange interpolants with respect to
the k + 1 Gauss–Radau quadrature nodes of In. Appreciable of the Gauss–Radau quadrature
formula is that the end point of the subinterval In is a quadrature node, which simplifies the
evaluation of the second term on the right-hand side of (3.1). Letting

Hr
h = span{ψ1, . . . , ψR} and Qh = span{ξ1, . . . , ξS} , (3.3)

the coefficient functions vn,l ∈ V h and pn,l ∈ Qh of (3.2) admit the representation

vn,li (x) =

R∑
r=1

vn,li,r ψr(x) and pn,l(x) =

S∑
s=1

pn,ls ξs(x)

with the vectors of unknown coefficients

vn,li = (vn,li,1 , . . . , v
n,l
i,R)> ∈ RR and pn,l = (pn,l1 , . . . , pn,lS )> ∈ RS (3.4)

for all degrees of freedom in time in In with l = 0, . . . , k. Clearly, the vectors vn,li denote

the coefficients of the velocity component functions vn,li , with i = 1, . . . , d, with respect to the
spatial basis {ψr}Rr=1.

Defining now the vector Xn ∈ R(k+1)×(d·R+S) of unknown coefficients for the solution of (3.1)
in the subinterval In by

Xn = (vn,01 , . . . ,vn,0d ,pn,0, . . . ,vn,k1 , . . . ,vn,kd ,pn,k)> ∈ R(k+1)×(d·R+S) , (3.5)

we recover the variational equation (3.1) in an algebraic form as

F n(Xn) = 0 , (3.6)

for a suitably defined nonlinear function F n : R(k+1)×(d·R+S) → R(k+1)×(d·R+S). We refer to
[4] for the explicit derivation of the algebraic system of a related space-time finite element
approximation of the Navier–Stokes system. To solve the nonlinear problem (3.6), we use
Newton’s method such that the linear system

JmnD
m
n = Qm

n , (3.7)

with the Jacobian matrix and right-hand side vector

Jmn =
∂F n

∂Xn
(Xm

n ) and Qm
n = F n(Xm

n ) , (3.8)

has to be solved in each Newton iteration m for the new iterate

Xm+1
n = Xm

n +Dm
n . (3.9)

For brevity, an explicit form of the Jacobian matrix Jmn is not given here. For the sake of
clarity, we restrict ourselves to presenting the block structure of Jmn for the polynomial order

7



in time k = 1 only. This corresponds to the dG(1) method for the time discretization. For
this, we get that

Jmn =


F 1 B>1 F 2 B>2

−B1 0 −B2 0

F 3 B>3 F 4 B>4

−B3 0 −B4 0

 . (3.10)

In (3.10), the partitioning of the vector of unknowns Dm
n of the corresponding system (3.7) is

then given by
Dm
n = (dv

n,0,dp
n,0,dv

n,1,dp
n,1)> ∈ R2(d·R+S) ,

where dv
n,l and dp

n,l, with l ∈ {0, 1}, denote the components of Dm
n related to velocity and

pressure unknowns, respectively. For a more detailed derivation of the system matrix of (3.10)
and the definition of the submatrices Bi and F i we refer to [4] again. Table 3.1 summarizes
the indices, used throughout this section.

Table 3.1: Summary of the indices used to describe the fully discrete problem.

index range explanation

i [1, . . . , d] spatial velocity components, d = spatial dimension
n [1, . . . , N ] time interval In
l [0, . . . , k] local DoFs in time on In
r [1, . . . , R] spatial DoFs for v
s [1, . . . , S] spatial DoFs for p
m ≥ 1 counter for Newton iteration

To enhance the range of convergence of Newton’s method, a damped version using an additional
linesearch technique is applied for solving (3.6). Alternatively, a ”dogleg approach” (cf., e.g.
[38]), that belongs to the class of trust-region methods and offers the advantage that also the
search direction, not just its length, can be adapted to the nonlinear solution process, was
implemented and tested. Both schemes require the computation of the Jacobian matrix of
the algebraic counterpart of Eq. (3.1). In the dogleg method multiple matrix-vector products
with the Jacobian matrix have to be computed. Since the Jacobian matrix is stored as a
sparse matrix, the products can be computed at low computational costs. From the point of
view of convergence, both methods yield a superlinear convergence behavior. In our numerical
examples of Sec. 5, both modifications of Newton’s method lead to comparable results. In
our computational studies, we did not observe any convergence problems for these nonlinear
solvers. To solve the linear systems (3.7) of the Newton iteration, we use a flexible GMRES
Krylov subspace method [40] with a GMG preconditioner based on a local Vanka smoother
[43]. The GMG approach is presented in the next section.

4 A parallel geometric multigrid preconditioner

During the last decades numerous methods for solving the algebraic linear systems resulting
from the discretization of the Navier–Stokes equations have been developed and studied. GMG

8



methods seem to be among the best classes of solvers that are currently available; cf., e.g., [26].
Space-time finite element methods have recently attracted researchers’ interest strongly. Their
application puts an additional complexity to the solution of the linear systems due to their more
complex block structure; cf. e.g., [21, 4, 7]. Here, we use the GMG method as a preconditioner
for Krylov subspace iterations, which is a standard concept for the efficient solution of high-
dimensional linear systems arising from the discretization of partial differential equations. The
core of GMG methods is the smoother. We propose a cell-based Vanka smoother that is
adapted to the space-time finite element approach.

Even though the basic concepts of GMG methods have become standard, their efficient im-
plementation continues to be a challenging task. In particular, this holds if the computational
power of modern parallel computer architectures has to be fully exploited. In this case, the
definition of data structures and the memory usage become of utmost importance. Moreover,
trends like adaptive space-time finite element methods (cf. [29]) further complicate their imple-
mentation. These issues induce an ongoing research about GMG methods; cf., e.g., [13]. For
our simulations we use the deal.II finite element toolbox [6]. Details of our implementation
of the GMG approach in this platform are addressed in the sequel as well. The concepts are
flexible enough and can be transferred to similar software tools.

4.1 Key idea of the geometric multigrid method

To sketch briefly the basic principles of GMG iterations and fix our notation, we consider the
linear system (3.7), that is rewritten in the simpler, index-free form

Jd = r , (4.1)

with the right-hand side vector r and the Jacobian matrix J . The key idea of the GMG method,
that is sketched in Fig. 4.1, is to construct a hierarchical sequence of finite element spaces V g

h ,
with g = 1, . . . , G, that are embedded into each other, such that V 1

h ⊂ V 2
h ⊂ . . . ⊂ V G

h , and
correspond to different grid levels Thg with mesh sizes hg, for g = 1, . . . , G , of decompositions
of the domain Ω. Instead of solving the linear system (4.1) on the finest grid level ThG entirely,
the idea is to smooth only high frequency errors of an initial guess to the solution d = dG
of (4.1) on the finest grid level Thg with g = G. Clearly, on level g = G, the right-hand side

vector r = rG corresponds to the right-hand side vector Qk
n of the Newton system (3.7). Now,

smoothing is done by the application of the local Vanka operator SG. Then, the resulting
residual rG of (4.1) for the computed approximation of dG is restricted to next coarser mesh
level Thg , with g = G−1, which yields the right-hand side vector r = rG−1. On level G−1, the
high frequency errors of an initial guess (given by the null vector 0) to the solution’s correction
dG−1 on Thg , with g = G − 1, is smoothened by the application of the local Vanka operator
again. These operations of restricting the residual to the next coarser grid and smoothing
on this level the error in the solution of the defect equation is recursively repeated until the
coarsest mesh level Thg , with g = 1, is reached. On this level, typically a direct solver is
used to compute the corresponding defect correction d1. Afterwards the computed defect
correction of the coarsest level is prolongated to the next finer grid level Thg , with g = 2,
and used to update the defect correction d2. On this level, the defect correction d2 is then
smoothed again and, finally, prolongated to the next coarser mesh level Thg , with g = 3. These
operations of prolongating successively the coarse grid correction and smoothing the modified

9



defect correction are continued until the finest grid level Thg , with g = G, is reached, where
after the final smoothing an updated solution is obtained. This GMG approach is summarized
in Algorithm 1.

Figure 4.1: Structure of a single multigrid V-cycle for a hierarchy of four grid levels.

Algorithm 1: Recursive algorithm Multigrid(dg, rg, g)

if g == 1 then

d1 = J−1
1 r1 ; // Direct coarse solver

end
else

dg = S(dg, rg) ; // Pre-smooth

rg := Jdg − rg ; // Compute residuum

rg−1 = R(rg) ; // Restrict residuum

Multigrid(0, rg−1, g − 1) ; // Recursively call this function

cg = P (dg) ; // Prolongate correction

dg := dg + cg ; // Correct solution

dg = S(dg, rg) ; // Post-smooth

end

10



For our implementation of the GMG approach and the simulations presented in Sec. 5, we use
the deal.II finite element toolbox [6] along with the direct, parallel SuperLU Dist solver [31].
Our code is based on the contributions of [13] to this open source framework and expands their
work by a parallel, cell-based Vanka smoother. For the restriction and prolongation steps in
parallel computations, the deal.II classes MultiGrid and MGTransferPrebuilt are used. The
latter implements the prolongation between grids by interpolation and applies the transpose
operator for the restriction. The core of our GMG approach is the smoother. This operator
has to be efficient in smoothing high frequency errors. Further, since the smoother is applied
frequently (cf. Fig. 4.1), this demands for its performant and scalable implementation, utilizing
multiple processors, such that the hardware’s potential is fully exploited. Our implementation
of the smoother is presented more in detail below.

4.2 A parallel, cell-based Vanka smoother

The Newton linearized system (4.1) of the fully discrete problem (3.1) has a generalized saddle-
point structure; cf. eq. (3.10). The generalization comes through the application of the higher
order discontinuous Galerkin time discretization with k + 1 temporal degrees of freedom (cf.
(3.2) and (3.5)) in time for the velocity and pressure variable within each subinterval In.
Thereby, blocks of saddle point subsystems arise; cf. eq. (3.10). Standard smoothers, like the
Gauss-Seidel or Jacobi method, that are often used in GMG methods, are not applicable to
such systems; cf. [10]. Vanka smoothers, that can be traced back to [48], offer the potential to to
damp high frequency errors in the approximation of solutions to saddle point problems. In [32]
Vanka-type solvers were analyzed for the steady Stokes problem, using Taylor-Hood elements.
Convergence was also proven for the Navier–Stokes flows in low Reynolds number regimes. In
[26, 35] Vanka-type smoothers have demonstrated excellent performance properties for systems
with weak velocity-pressure couplings. In this work, we adapt the principle of a cell-based,
full Vanka smoother of [26, p. 460] and extend the definition of the Vanka smoother to our
higher-order space-time finite element approximation of the Navier–Stokes system. Since the
numerical results, reported for instance in [44], show that a strong velocity-pressure coupling
leads to a local violation of the continuity constraint, (2.1b) we only use a discontinuous finite
element space for the pressure variable, defined in Subsec. 2.3. This results in the ability to
use local test functions, that are defined on a single cell. Therefore, the mass conservation is
fulfilled locally, cf. [39, 34]. Fig. 4.2 illustrates the position of the underlying degrees of free-
dom for a pair of continuous/discontinuous finite elements for the velocity/pressure variables,
corresponding to the case r = 2 in the definitions of (2.2).

Remark 4.1. In the deal.II finite element library, we use the FE DGP〈 〉 class to form a basis
of Pr. This basis is constructed using a set of polynomials of complete degree r that form a
Legendre basis on the unit square, i. e. they are L2 orthogonal and normalized on the reference
cell. Noteworthy, this element is not a Lagrangian one, so it is not defined by finding shape
functions within the given function space that interpolate a particular set of points. Therefore,
in fig. 4.2 the pressure DoF positions symbolically just stand for the number of basis functions
on each element and not for the corresponding position of nodal interpolation points.

Now, we define the cell-based Vanka smoother for the proposed space-time finite element
approximation. This part generalizes previous work on the local Vanka smoother to the higher

11



: velocity DoF

: pressure DoF

Figure 4.2: Degrees of freedom for the continuous/discontinuous Q2–Pdisc
1 pair of elements, see

[33].

order time discretization. On the mesh level g (cf. Fig. 4.1) and in a single iteration step, the
cell-based Vanka smoother is applied to all In-coefficient subvectors of the spatial degrees of
freedom corresponding to the respective mesh cell T . On grid level g, with g ∈ {2, . . . , G}, we
let the solution vector d of (4.1) be subdivided in terms of velocity and pressure subvectors
according to the structure of the solution vector Xn, defined in (3.5), of the nonlinear system
(3.6), such that

d = (d0
1, . . . ,d

0
d, q

0, . . . ,dk1, . . . ,d
k
d, q

k)> ∈ R(k+1)×(d·Rg+Sg) . (4.2)

Here, Rg and Sg denote the number of (global) degrees of freedom for the velocity and pressure
variable on grid level g, where Xn is defined for the finest mesh level TG. The subvectors
dl1, . . . ,d

l
d for l = 0, . . . , k, correspond to the velocity values (or their corrections, respectively)

and the subvectors ql for l = 0, . . . , k, to the pressure values (or their corrections, respectively)
on the grid level g. With the amount np of the local pressure degrees of freedom on each

element, np =
(
d+r
r

)
, we then denote by dT the subvector of d that is built from the degrees

of freedom in d that are associated with the element T , such that

dT = (d0
1,T , . . . ,d

0
d,T , q

0
T , . . . ,d

k
1,T , . . . ,d

k
d,T , q

k
T )> ∈ R(k+1)×(d·(r+1)d+np) . (4.3)

Here, the subvectors dl1,T , . . . ,d
l
d,T for l = 0, . . . , k, correspond to the velocity values on the

element T and the subvectors qlT for l = 0, . . . , k, to the pressure values. Further, for right-hand
side vector r of (4.1) on grid level g we let

r0 = (r0
1, . . . , r

0
d,0

0, . . . , rk1, . . . , r
k
d,0

k)> ∈ R(k+1)×(d·Rg+Sg) (4.4)

with the partition of r into subvectors induced by (4.2). On a single cell T , the local Jacobian
matrix JT is defined as

JT =
∂F T

∂XT
(XT ) ,

where, in contrast to (3.8), we skipped the index of the time interval n and the Newton step
m for brevity. On such a cell T , the smoothing operator ST (d, r) is then defined by

ST (d, r) := dT + J−1
T (r0 − Jd)T (4.5)

In (4.5), the vector (r0−Jd)T ∈ R(k+1)×(d·(r+1)d+np) denotes the local subvector of (r0−Jd) ∈
R(k+1)×(d·Rl+Sl), that is obtained by condensing (r0−Jd) to its components corresponding to

12



the mesh cell T , similarly to (4.3). The global vector is here computed fully in parallel, utilizing
Trilinos functions. The full application of the smoother S(d, r) then comes through running
over all cells of the corresponding mesh level and applying the local smoother ST (d, r) to each
of the elements by an updating strategy, similar to the Jacobi iteration method. Since the finite
elements for the velocity are continuous, each velocity degree of freedom on interior faces of a
cell is updated at least twice. In our implementation we simply overwrite the corresponding
values of the vector d, that is being smoothed. Thus, a degree of freedom connected with
multiple cells is determined by its last update in the loop over all cells.

The appreciable advantage of the Vanka smoother is that the system, that has to be solved on
each cell, or the inverse of the local Jacobian matrix J−1

T , respectively, is small compared to
the global system with system matrix J . This will be addressed further in the next subsection.
The efficiency of the application of the Vanka smoother in complex simulations with a high
number of mesh cells depends on two ingredients:

1. The efficient application of J−1
T : How are the local systems defined by (4.5) solved?

2. The efficient data exchange in the parallel environment: How are the data for computing
JT or J−1

T , respectively, assembled?

These two issues are discussed in the following.

4.3 Efficient application of J−1
T

The implementation of the operator J−1
T is an important ingredient for the efficiency of the

GMG approach in computations, since the Vanka smoother is applied . We recall that the GMG
method is used as a preconditioner in GMRES iterations for solving the Newton linearized
system of each subinterval In. We also refer to Fig. 4.1 illustrating the usage of smoothing
steps on the grid levels of a GMG V-cycle. In our implementation of the GMG method, inverses
of the element-wise Jacobian matrices J−1

T , for all T ∈ Thl with l = 1, . . . , L, are pre-computed
after each update of the Jacobian matrix J . For this, we use LAPACK routines to pre-compute
the matrices J−1

T and store them in a hashed unordered map. If J−1
T has to be applied on a

cell T according to (4.5), the costs for looking up the corresponding inverse is an operation
with a complexity of order O(1).
The costs in terms of memory for storing each inverse J−1

T is, for instance, 85 · 85 · 64 bit =
57.8 kB or 0.0578 MB for a three-dimensional problem for the spatial approximation by the Q2–
Pdisc

1 pair of finite elements (corresponding to r = 2 in (2.2)) and the dG(0) time discretization
(corresponding to k = 0 in Eq. (3.2)) on a 64-bit machine, plus some (negligible) additional
overhead to store, for instance, the hashes. For a dG(1) time discretization (corresponding to
k = 1 in Eq. (3.2)), the local Jacobian JT is a 170 × 170 matrix and the needed amount of
memory is 170 ·170 ·64 bit = 231.2 kB or 0.231 MB. Since the code is parallelized, every process
has to store only the information, data and inverses of the cells that it owns. Therefore, the
additional amount of memory, that is needed in each process, can be decreased by increasing
the number of involved processors.

13



4.4 Efficient data exchange in parallel environments

For pre-computing the inverses of the local Jacobian matrices J−1
T , the entries J i,j of JT in

the element T have to be computed. If the code is executed in parallel by multiple processes,
the data access problem that is sketched in Fig. 4.3 occurs. When the local matrix JT1 on
T1 is assembled by the process 1, all the needed matrix entries of the global Jacobian matrix
J are available, and can be copied to the local Jacobian JT1 , since process 1 owns all the
involved degrees of freedom. In contrast, process 2 doesn’t own the degrees of freedom on the
face separating T1 and T2, since in a parallel environment every process has only read access
to the entries it owns. For computing JT2 , the entries in the global matrix J of process 1,
corresponding to the degrees of freedom on the common interface, are required.

T1 T2

1

2

3

process 2process 1

Figure 4.3: Two cells that belong to two different processes with the DoFs for Q2–Pdisc
1 elements

To provide and exchange the needed data efficiently, the following data structure, called
map proc row column value, is generated on each of the involved processes. It involves the
following, nested containers (from top to bottom).

• dealii::MGLevelObject〈 〉: The top level object, that contains the next elements for each
mesh level l. The MGLevelObject〈 〉 is basically a container like std::vector〈 〉, but with
the option to shift indexing. So if the coarsest mesh starts e. g. on level l = 2 one can
access the elements inside this object with the [ ] operator and an index, starting from 2
onward.

• std::map〈unsigned int, std::unordered map〈. . .〉 〉: A map, whose keys are the process
numbers (an unsigned int) of the neighboring processes, that own certain degrees of
freedom. These are exactly those degrees of freedom, that the owning process needs to
access during the assembly of the local Jacobian JT . The process numbers are obtained
by Algorithm 2. The value of the map is a (hashed) unordered map, which leads to the
next container inside the structure:

• std::unordered map〈 std::pair〈unsigned int, unsigned int〉, double〉: For each neighboring
process a hashed, unordered map is stored, that contains the global row and column
number (both unsigned int) of the needed matrix entries and assigns them to the corre-
sponding value, which is stored as a double. Internally the std::pair of global row and
column numbers is stored as hashed value and therefore accessing or inserting operations
into this data structure have an average complexity of O(1).

14



After generation of the mesh hierarchy, every process executes the Algorithm 2.

Algorithm 2: Determine values of J owned by foreign processes

Create map proc row column value ;
foreach mesh level l do

foreach locally owned cell Ki do
foreach DoF j do

if DoF j is not owned by this process then
Get the number of the process np that owns it ;
Add np and all couplings of DoF j with all other locally owned DoFs to
map proc row column value and assign it a value of 0. ;

end

end

end

end

Remark 4.2. If the underlying mesh or the distribution of the degrees of freedom to the
involved processes is fixed, which is especially the case if no remeshing is necessary between
time-steps, then Algorithm 2 needs to be executed only once in the simulation. For instance,
this holds in the numerical examples of Sec. 5. In the simulation of flow problems on evolving
domains by CutFEM approaches, that are currently focused strongly (cf. [49, 12]), this applies
similarly and results in negligible computational costs.
The number of the owning process of a not locally owned DoF is computed using the function
compute index owner() of the dealii::Utilities::MPI namespace, which uses non-blocking point-
to-point communication.

Afterwards the simulation is continued until all contributions of the global system matrix J
on all levels g are assembled. For building the Vanka smoother by assembling and storing the
local matrices J−1

T , the respective sparse matrix entries have to be exchanged such that every
process can access the entries of each local Jacobian matrix JT . This is done by Algorithm 3.

Algorithm 3: Update map proc row column value on each process

foreach mesh level g do
Use MPI some-to-some communication to transfer information:
recv proc row column value ← map proc row column value ;
foreach proc p in recv map proc row column value do

foreach global row i and column j in recv proc row column value do
value ← J i,j

end

end
Use MPI some-to-some communication to transfer back information:
map proc row column value ← recv proc row column value ;

end

Remark 4.3. Algorithm 3 has to be executed whenever the global Jacobian J in (4.1) is
updated. To block as less resources as necessary, just the processes that need to exchange

15



information, communicate with each other. The exchange of data is implemented in the object
map proc row column value. The data transfer is done entirely in one single step (see Algo-
rithm 3), instead of querying the data, that is needed for a single cell T from foreign processes,
in the assembly routine.
Each process saves the received information in the temporary object recv map proc row column value,
which is a container of the same type as map proc row column value, but the process num-
bers are the one of the processes, querying the information. After receiving this object,
each process looks up the queried matrix values in the corresponding rows and columns. In
the last step this information is transferred back to the querying processes and stored in
recv map proc row column value. By this approach, we reduce the communication between
processes to an absolute necessary minimum.
The some-to-some communication utilizes the some to some() function of the dealii::Utilities::MPI
namespace, which basically relies on two-sided communication, utilizing MPI Isend() to ex-
change the information. Before the actual communication, the number of processes, that send
information tho this process, is computed using a MPI Reduce scatter block() call, so each
process knows in advance how many calls to MPI Recv() are necessary. The actual sender is
determined using MPI Probe() functionality.

Remark 4.4. To call MPI functions that transfer data between processes, these data have
to be serializable. The C++17 version of std::unordered map included in the standard library
is by default not serializable. In the code of this work, the boost C++ library is used that
provides serialization capabilities for std::unordered map via the interfaces serialization.hpp
and unordered map.hpp.

5 Numerical examples

In the following we analyze computationally the performance properties of the proposed GMG
approach. This is down for the well-known benchmark problems of flow around a cylinder;
cf. [41]. Our computations were done on a Linux cluster with 96 nodes, each of them with 2
CPUs and 14 cores per CPU. The CPUs are Intel Xeon E5-2680 v4 with a base frequency of
2.4 GHz, a maximum turbo frequency of 3.3 GHz and a level 3 cache of 35 MB. Each node has
252 GB of main memory. In this work, scaling experiments on up to the user limit of 32 nodes
were performed.

5.1 Flow around a cylinder in two space dimensions

In the first numerical experiment we consider the well-known 2d DFG benchmark setting of
flow around a cylinder, defined in [41]. The problem setting is illustrated in Fig. 5.1. Quantities
of interest and comparison in the simulations are the drag and lift coefficient of the flow on
the circular cross-section (cf. [41]). With the drag and lift forces FD and FL on the rigid circle
S given by

FD =

∫
S

(
ν
∂vt
∂n

ny − Pnx
)

dS , FL = −
∫
S

(
ν
∂vt
∂n

nx − Pny
)

dS , (5.1)

16



Figure 5.1: Geometrical setting of the 2d DFG benchmark with computed velocity profile of
the fully developed flow.

where n is the normal vector on S and vt is the tangential velocity t = (ny,−nx)>, the drag
and lift coefficient cD, cL are defined by means of

cD =
2

Ū2L
FD , cL =

2

Ū2L
FL . (5.2)

According to [41], we choose the viscosity ν = 0.001 and the boundary condition on the inflow
boundary Γi as gi(x, y, t) = (4 · 1.5 · y(0.41− y)/0.412, 0)>. This leads to a Reynolds number
of Re = 100 and a time-periodic flow behavior. The final simulation time is T = 10, such that
I = (0, 10]. The space–time discretization is done in the spaces (P1(In;H2

h))2 × P1(In;H1
h,disc)

with time step size τ = 0.005. The Newton iteration is stopped when the residual of the
nonlinear equation is smaller than 1× 10−10 or a relative reduction of the initial residual by a
factor of 10 000 is reached. The computations were done on 4 nodes of the Linux cluster. The
computed velocity field of the fully developed flow is presented in Fig. 5.1.

Table 5.1 shows the space-time degrees of freedom in one single time step and summarizes for
three mesh levels the computed maximum drag and lift coefficients of the fully developed flow
as well as the average number of Newton iterations per time step and the average number of
GMRES iterations per Newton step. The coarse level is always set to g = 1 and we used 8 - Nr.
mesh levels. So for instance for simulation Nr. 1 the finest mesh level is level 6. Table 5.1 further
shows that on all mesh levels an average of less than two Newton iterations per subinterval
is obtained. Moreover, the number of GMRES iterations with GMG preconditioning remains
(almost) grid independent. This demonstrates the efficiency of the proposed approach.

Table 5.1: Computed drag and lift coefficients and average number of Newton steps per time
step and of GMRES iterations per Newton step in the two-dimensional benchmark
for three simulations.hmax is the maximum diameter of the cells on the finest mesh
level G and DoFs denote the problem size on this level. Reference values: cDmax ∈
[3.2200, 3.2400] and cLmax ∈ [0.9900, 1.0100], see [41].

Nr. DoFs hmax cDmax cLmax n̄Newton n̄GMRES n̄GMRES

1 8 305 664 0.0022 3.2350 1.0062 1.72 10 7
2 2 080 256 0.0048 3.2227 1.0060 1.67 9 7
3 521 984 0.0090 3.1274 0.9637 1.53 9 6

Multigrid cycle V (1, 1) V (4, 4)

17



Table 5.2 summarizes the wall time consumed by the different parts of the algorithms. tGMRES

summarizes the time, spent in the outer flexible GMRES solver (including the GMG precon-
ditioner). tInv is the time spent for computing the local inverses of the cell Jacobians J−1

T

and tUpd is the time that is spent in Algorithm 3, exchanging necessary information between
processes. The rest of the computation time is spent mainly in thee assembly routine for the
system Jacobi matrix and to a negligible amount in data output routines.
In our simulations, the same number of compute nodes (4 nodes) were used in all simulations
and on all multigrid levels. The usage of 4 nodes for the considered problem dimensions leads
to a great difference in the percent wall time of the GMRES solver. In problem setting Nr.
1, the GMG preconditioned GMRES iterations consumed only 17.96 % of the total wall time.
The latter indicates that the benefit of a faster system assembly, by using more nodes, would
have paid off and annihilated the costs of an increased parallel communication. In contrast,
on the coarsest level the number of nodes was set too high to pay off. We observe just a slight
decrease in the wall time despite nearly quartering the number of degrees of freedom.

Table 5.2: Wall time consumption of the two-dimensional benchmark simulation.

(a) Utilizing a V (1, 1) multigrid cycle.

DoFs twall tGMRES % of twall tInv % of twall tUpd % of twall

8 305 664 6.14 h 1.10 h 17.96 0.15 h 2.42 0.04 h 0.66
2 080 256 1.10 h 0.57 h 51.81 0.04 h 2.16 0.02 h 1.11
521 984 0.83 h 0.40 h 48.16 0.01 h 1.51 0.01 h 1.40

(b) Utilizing a V (4, 4) multigrid cycle.

DoFs twall tGMRES % of twall tInv % of twall tUpd % of twall

8 305 664 5.76 h 0.72 h 12.44 0.15 h 2.61 0.04 h 0.69
2 080 256 0.88 h 0.35 h 40.07 0.04 h 4.52 0.02 h 2.26
521 984 0.70 h 0.27 h 38.53 0.01 h 1.43 0.01 h 1.42

5.2 Parallel scaling

In this section we analyze the parallel performance properties of our code by a strong scaling
benchmark. We first define the parallel speedup S of a program, according to [3]:

S =
1

rs +
rp
np

, (5.3)

where rs is the ratio of the sequential fraction of the program and rp the portion, that can be
scheduled in parallel with np number of processes. This is called Amdahl’s Law. So, if the
problem size is fixed, the parallel speedup is limited by the serial part of the code. Amdahl’s
law is under the assumption of an instant communication over a network, infinitely fast. In
practice this is not possible and therefore one also has to consider the communication costs,
that are introduced when increasing the number of processes np, due to the finite bandwidth
and latency of the network. In practice, the speedup S for a simulation, that is run multiple

18



times on a different amount of nodes n, is calculated with

S =
twall(n = nmin)

twall(n)
.

Here nmin is the simulation with the smallest amount of nodes.

To measure the speedup S of our code, we use the spatial setup of the 2d DFG benchmark of
Sec. 5.1, but set the inflow condition on Γi as

gi(x, y, t) =

(
4 · 0.3 · y(0.41− y)

0.412
, 0

)>
.

With ν = 0.001 This results in a Reynolds number of Re = 20. After about a simulation
time about t = 2.3 the flow is fully developed, which results in a static flow profile. The final
simulation time is put to T = 3 such that I = (0, 3] and the time step size is fixed to 0.1.
For the first benchmark, the numerical approximation is done in the space–time finite element
spaces (P1(In;H2

h)2 × P1(In;H1
h,disc). The mesh consists of 376 832 cells, which results in

8 305 664 space–time degrees of freedom in each time interval.

5 10 15
n

1

2

3

4

Wall time [h]

measured time ideal time

(a) Benchmarked and ideal wall time.

5 10 15
n

5

10

15

S

measured speedup S ideal speedup S

(b) Benchmarked and ideal speedup S.

Figure 5.2: Strong scaling results for the simulation in (P1(In;H2
h)2 × P1(In;H1

h,disc).

In the benchmark the number of nodes n is varied. We assign to each node 28 processes, so that
each physical CPU core owns a single process. Fig. 5.2 shows the results of the benchmarks.
The ideal time is computed by setting rs in Eq. (5.3) to zero. We see nearly ideal scaling
properties until the usage of 4 nodes. Afterwards, when we further increase the number of
nodes, we still see a decrease of the overall wall time of the simulation until we reach peak
performance with 18 nodes. When using even more nodes, the communication costs dominate
and lead to an increase of the overall runtime of the simulation. In this example the wall time
could be reduced from 4.42 h to just 19.67 min, when using 18 nodes with 504 processes.

For the second scaling benchmark, the numerical approximation is done in the space–time
finite element spaces (P2(In;H3

h)2 × P2(In;H2
h,disc). We use the same spatial mesh as before,

with 376 832 cells. That results this time in 27 166 464 space–time degrees of freedom in each
time interval. The minimum number of nodes, that were used for this benchmark, was 4. With
this configuration the runtime was 54.17 h. The maximum number of nodes, that we used, was
64. With this configuration the runtime was reduced to 3.39 h. Fig. 5.3 shows the results of

19



0 10 20 30 40 50 60
n

10

20

30

40

50

Wall time [h]

measured time ideal time

(a) Benchmarked and ideal wall time.

0 10 20 30 40 50 60
n

5

10

15

S

measured speedup S ideal speedup S

(b) Benchmarked and ideal speedup S.

Figure 5.3: Strong scaling results for the simulation in (P2(In;H3
h)2 × P2(In;H2

h,disc).

the benchmarks. Up to 16 nodes we have nearly optimal scaling results. Then one observes an
increasing difference from the ideal speedup to the measured speedup, due to the increase of
the communication costs. In Table 5.4 we summarize the characteristic statistics for the two
simulations.

Table 5.4: Number of nodes n, number of corresponding processes np, average cells, that each
process owns (cellsp), wall time and speedup S for the two strong scaling bench-
marks.

(a) Using P1(In;H2
h)2 × P1(In;H1

h,disc) elements on each time interval.

n np cellsp Wall time [h] Speedup S

1 28 13 460 4.42 1.00
2 56 6728 2.28 1.93
4 112 3364 1.15 3.83
8 224 1684 0.62 7.16
12 336 1120 0.42 10.46
14 392 960 0.36 12.14
16 448 840 0.34 16.93
18 504 748 0.31 14.45
19 532 708 0.32 13.47

(b) Using P2(In;H3
h)2 × P2(In;H2

h,disc) elements on each time interval.

n np cellsp Wall time [h] Speedup S

4 112 3364 54.17 1.00
8 224 1684 27.08 1.97
16 448 840 13.54 3.83
32 896 420 6.77 7.14
48 1344 280 4.51 10.05
64 1792 212 3.39 11.89

Both strong scaling benchmarks show, that the parallelization pays off. Especially higher order

20



space–time elements are applicable in a reasonable amount of time only with parallelization.

5.3 Parameter robustness regarding ν

In this subsection we computationally analyze the robustness of the GMG preconditioned
GMRES solver regarding changes in the fluid viscosity ν. We consider again the 2d DFG
benchmark of Sec. 5 in the setting Nr. 1 of Table 5.1, with 8 305 664 DoFs per time interval
but vary ν in our simulations. We fix the time step size to τ = 0.005 and utilize 4 pre- and
post-smoothing steps on each multigrid level. In our computational experiments we made
the experience that adding a numerical damping factor ωd to the smoother can increase the
robustness of the GMG scheme:

ST (d, r) := dT + ωd · J−1
T (r0 − Jd)T

Setting ωd to a value of 0.7 leads to a remarkable reduction of the iteration numbers in our
simulations. Table 5.6 shows the results for different simulations.

Table 5.6: Average number of Newton and GMRES steps for varying ν and two different damp-
ing parameters ωd. ∞ means that the GMRES solver didn’t converge within 1000
steps.

ν n̄Newton n̄GMRES n̄Newton n̄GMRES

0.0010 1.72 10 1.69 3
0.0005 1.74 17 1.72 4
0.0003 1.70 56 1.70 11
0.0002 – ∞ 1.75 47
0.0001 – ∞ 1.72 65

ωd 1 0.7

Without damping, the simulation aborted at ν = 0.0002, which is equivalent to a Reynolds
number of 500, due to high iteration numbers (¿ 1000) in the linear GMRES solver. With
ωd = 0.7, the GMG solver showed reasonable performance up to ν = 0.0001, which is equivalent
to a Reynolds number of 1000.

Remark 5.1. We note that we didn’t apply any fluid stabilization, therefore the occurrence
of instabilities in our numerical scheme are expected in convection-dominated settings. There
exist various stabilization techniques like the Streamline Upwind Petrov Galerkin (SUPG) or
Flux-Correction methods [39] to overcome this issue, which are out of the scope of this work.

5.4 Flow around a cylinder in three space dimensions

In this subsection the proposed GMG approach is applied to simulate flow around a cylinder in
three space dimension; cf. [23, 41]. We note that this benchmark continues to be a challenging
test problem for flow solvers. So far, the benchmark is still an open one since guaranteed

21



0.41
0.45

0.15

0.16

1.95

0.1

z

x

y

0.205

(0,0,0)

Figure 5.4: Geometrical setting of the 3d benchmark problem.

numbers for the drag and lift coefficients are not available yet. The geometry of the benchmark
is shown in Fig. 5.4.

The goal quantities are again the drag and lift coefficients. With the drag and lift forces defined
in (5.1), the drag and lift coefficients are given by

cD =
2

Ū2DH
FD , cL =

2

Ū2DH
FL , (5.4)

where the diameter of the cylinder is D = 0.1 and the height of the pipe is H = 0.41 (cf.
Fig. 5.4). On the inflow boundary Γi the fluid velocity v = (vx, vy, vy)

> with

vx(x) =
−16 · Um · y ·

(
z − H

2

)
· (H − y) ·

(
z + H

2

)
H4

, vy(x) = 0 , vz(x) = 0 , (5.5)

and Um = 2.25 is prescribed. By the characteristic velocity of the flow of U = 1 and a viscosity
of ν = 0.001 we compute the Reynolds number of the flow to

Re =
U ·D
ν

= 100 . (5.6)

The final simulation time is put to T = 8 such that I = (0, 8].

The numerical approximation is done in the space-time finite element spaces (P1(In;H2
h)2 ×

P1(In;H1
h,disc). Thus, the discontinuous Galerkin approximation in time with piecewise linear

polynomials is used. We perform threes simulations with different spatial mesh sizes, shown in
table 5.7. On the largest problem, Nr. 1, this results in 96 876 736 spatial degrees of freedom
on the finest mesh level G in each time interval In , i.e., over all degrees of freedom in time
on In. The time interval I = (0, T ] is divided into 1598 slices of different length, due to the
benchmark configuration. The simulation is performed on up to 32 nodes of the Linux cluster
(see table 5.8). To each CPU core an own process is assigned. Thus, the simulations is run

22



e.g. in setting Nr. 1 by 32 · 2 · 14 = 896 processes. In setting Nr. 1 the mesh level G consists
of 1 703 936 cells such that each process accesses 1901 ± 1 cells of the mesh. The amount of
memory of each process to store all the cell inverses J−1

K on the finest level in setting Nr. 1
therefore is 231.2 kB · 1902 ≈ 439.7 MB. For current high performance computing systems this
represents a very reasonable or even small amount of memory usage. Fig. 5.5 visualizes the
computed velocity field in the longitudinally cut domain at the final simulation time T = 8.

Figure 5.5: Flow profile in the longitudinally cut domain (at z = 0) of the benchmark problem
with Re = 100.

Table 5.7: Computed drag and lift coefficients and average number of Newton steps per time
step and of GMRES iterations per Newton step in the three-dimensional benchmark
for three simulations. hmax is the maximum diameter of the cells on the finest mesh
level G and DoFs denotes the problem size on this level.

Nr. DoFs hmax cDmax cLmax n̄Newton n̄GMRES n̄GMRES

1 96 876 736 0.0110 3.2877 −0.0072 1.47 87 26
2 12 293 216 0.0220 3.2070 −0.0034 1.42 74 22
3 1 583 152 0.0440 2.9309 −0.0031 1.44 72 24

Multigrid cycle V (1, 1) V (4, 4)

Table 5.7 and Fig. 5.6 present the computed drag and lift coefficients. The coarse level is
always set to g = 1 and we used 6 - Nr. mesh levels. So for instance for simulation Nr. 1 the
finest mesh level is level 5. Moreover, Table 5.7 summarizes the average number of Newton
steps per subinterval and GMRES iterations per Newton step.

The efficiency of the Newton iteration for solving the nonlinear problem is clearly demon-
strated. The average number of Newton iterations is smaller than in the two-dimensional case;
cf. Table 5.1. This might be due to fact that the stopping criteria was weakened to a tolerance
of 1× 10−6 instead of 1× 10−8 in the two-dimensional case. Again, the GMG preconditioned
GMRES solver shows an almost grid independent convergence behavior. The average number
of GMRES iterations per Newton steps is only increased very slightly by grid refinements.

23



0 2 4 6 8
t2.8

2.9

3.0

3.1

3.2

3.3

3.4
cD

1 2 3

(a) Computed drag coefficients cD.

2 4 6 8
t

-0.04

-0.02

0.00

0.02

0.04

cL

1 2 3

(b) Computed lift coefficients cL.

Figure 5.6: Computed drag and lift coefficients of the 3d benchmark on different mesh levels.

Thereby, the high efficiency of the proposed GMG preconditioning is demonstrated impres-
sively.

Finally, Table 5.8 shows the wall-time consumption of the code for three mesh levels of suc-
cessive refinement in space. In contrast to the two-dimensional case, most of the compute
time is now spent on solving the Newton-linearized system. The main reason for this shift is
probably the increased number of GMRES steps, compared to Table 5.1, that are performed
until convergence of the GMRES method is reached.

24



Table 5.8: Wall time consumption of the three-dimensional benchmark simulation.

(a) Utilizing a V (1, 1) multigrid cycle.

DoFs nNodes twall tGMRES % of twall tInv % of twall tUpd % of twall

96 876 736 32 153.89 h 92.22 h 60.00 1.57 h 1.00 0.51 h 0.44
12 293 216 16 45.50 h 27.90 h 65.64 0.14 h 0.34 0.07 h 0.16
1 583 152 2 7.36 h 5.22 h 70.94 0.04 h 0.74 0.04 h 0.50

(b) Utilizing a V (4, 4) multigrid cycle.

DoFs nNodes twall tGMRES % of twall tInv % of twall tUpd % of twall

96 876 736 32 106.99 h 45.32 h 42.36 1.70 h 1.59 0.47 h 0.44
12 293 216 16 32.00 h 14.40 h 45.00 0.15 h 0.46 0.08 h 0.24
1 583 152 2 4.96 h 2.82 h 56.86 0.04 h 0.77 0.04 h 0.83

6 Summary and outlook

In this work a parallel GMG preconditioner with a cell-based Vanka smoother for solving the
nonstationary, incompressible Navier–Stokes equations was presented. Its efficient implemen-
tation in the deal.II finite element library was discussed. Discontinuous Galerkin methods and
inf-sup stable pairs of finite element spaces with discontinuous pressure elements were used
for the discretization of the time and space variables, respectively. The GMG preconditioner
was applied to a flexible GMRES method for solving the Newton linearized algebraic problem.
The performance properties of the GMG method and its parallel implementation were ana-
lyzed computationally for the two- and three-dimensional benchmark problem of flow around a
cylinder. A quasi grid independence of the GMG preconditioned GMRES solver was observed
confirming the high efficiency of the GMG approach. In a forthcoming work we will address
an extension of the proposed GMG method to discretizations of the Navier–Stokes equations
on evolving domains by using CutFEM techniques on fixed background meshes; cf. [5].

Acknowledgments

The authors wish to thank Friedhelm Schieweck from the University of Magdeburg for his
helpful support to the development and implementation of the GMG approach.

References

[1] C. Ager, B. Schott, M. Winter, and W. Wall, “A Nitsche-based cut finite element method
for the coupling of incompressible fluid flow with poroelasticity,” Computer Methods in
Applied Mechanics and Engineering, vol. 351, pp. 253–280, Jul. 2019.

25



[2] N. Ahmed and G. Matthies, “Numerical Studies of Higher Order Variational Time Step-
ping Schemes for Evolutionary Navier-Stokes Equations,” in Boundary and Interior Lay-
ers, Computational and Asymptotic Methods BAIL 2016, Z. Huang, M. Stynes, and
Z. Zhang, Eds. Cham: Springer International Publishing, 2017, vol. 120, pp. 19–33.

[3] G. M. Amdahl, “Validity of the single processor approach to achieving large scale com-
puting capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer Con-
ference on - AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM Press, 1967, p. 483.

[4] M. Anselmann and M. Bause, “Higher order Galerkin–collocation time discretization with
Nitsche’s method for the Navier–Stokes equations,” Mathematics and Computers in Sim-
ulation, p. S0378475420303827, Nov. 2020.

[5] ——, “Cut finite element methods and ghost stabilization techniques for space-time dis-
cretizations of the Navier–Stokes equations,” International Journal for Numerical Methods
in Fluids, p. fld.5074, Mar. 2022.

[6] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T. Heis-
ter, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak, I. Tomas,
B. Turcksin, Z. Wang, and D. Wells, “The deal.II library, Version 9.2,” Journal of Nu-
merical Mathematics, vol. 28, no. 3, pp. 131–146, Sep. 2020.

[7] S. Basting and E. Bänsch, “Preconditioners for the Discontinuous Galerkin time-stepping
method of arbitrary order,” ESAIM: Mathematical Modelling and Numerical Analysis,
vol. 51, no. 4, pp. 1173–1195, Jul. 2017.

[8] R. Becker, “Mesh adaptation for Dirichlet flow control via Nitsche’s method,” Communi-
cations in Numerical Methods in Engineering, vol. 18, no. 9, pp. 669–680, 2002.

[9] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,”
Acta Numerica, vol. 14, pp. 1–137, May 2005.

[10] ——, “Numerical solution of saddle point problems,” Acta Numerica, vol. 14, pp. 1–137,
May 2005.

[11] D. Braess and R. Sarazin, “An efficient smoother for the Stokes problem,” Applied Nu-
merical Mathematics, vol. 23, no. 1, pp. 3–19, Feb. 1997.

[12] E. Burman, S. Frei, and A. Massing, “Eulerian time-stepping schemes for the non-
stationary Stokes equations on time-dependent domains,” Dec. 2020.

[13] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler, “A Flexible, Parallel,
Adaptive Geometric Multigrid Method for FEM,” ACM Transactions on Mathematical
Software, vol. 47, no. 1, pp. 1–27, Jan. 2021.

[14] E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, “Stabilization and scalable block precon-
ditioning for the Navier–Stokes equations,” Journal of Computational Physics, vol. 231,
no. 2, pp. 345–363, Jan. 2012.

[15] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers:
With Applications in Incompressible Fluid Dynamics, second edition ed., ser. Numerical
Mathematics and Scientific Computation. Oxford, United Kingdom: Oxford University
Press, 2014.

26



[16] J. G. Heywood, R. Rannacher, and S. Turek, “Artificial boundaries and flux and pres-
sure conditions for the incompressible Navier–Stokes equations,” International Journal
for Numerical Methods in Fluids, vol. 22, no. 5, pp. 325–352, 1996.

[17] J. G. Heywood and R. Rannacher, “Finite Element Approximation of the Nonstationary
Navier–Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for
Spatial Discretization,” SIAM Journal on Numerical Analysis, vol. 19, no. 2, pp. 275–311,
Apr. 1982.

[18] S. Hussain, F. Schieweck, and S. Turek, “A Note on Accurate and Efficient Higher Order
Galerkin Time Stepping Schemes for the Nonstationary Stokes Equations,” The Open
Numerical Methods Journal, vol. 4, no. 1, pp. 35–45, Jan. 2012.

[19] ——, “An efficient and stable finite element solver of higher order in space and time
for nonstationary incompressible flow,” International Journal for Numerical Methods in
Fluids, vol. 73, no. 11, pp. 927–952, Dec. 2013.

[20] ——, “Higher order galerkin time discretization for nonstationary incompressible flow,” in
Numerical Mathematics and Advanced Applications 2011, A. Cangiani, R. L. Davidchack,
E. Georgoulis, A. N. Gorban, J. Levesley, and M. V. Tretyakov, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 509–517.

[21] ——, “Efficient Newton-multigrid solution techniques for higher order space–time
Galerkin discretizations of incompressible flow,” Applied Numerical Mathematics, vol. 83,
pp. 51–71, Sep. 2014.

[22] V. John, “Higher order finite element methods and multigrid solvers in a benchmark prob-
lem for the 3D Navier-Stokes equations,” International Journal for Numerical Methods in
Fluids, vol. 40, no. 6, pp. 775–798, Oct. 2002.

[23] ——, “On the efficiency of linearization schemes and coupled multigrid methods in the
simulation of a 3D flow around a cylinder,” International Journal for Numerical Methods
in Fluids, vol. 50, no. 7, pp. 845–862, Mar. 2006.

[24] ——, Finite Element Methods for Incompressible Flow Problems, ser. Springer Series in
Computational Mathematics. Cham: Springer International Publishing, 2016, vol. 51.

[25] V. John and G. Matthies, “Higher-order finite element discretizations in a benchmark
problem for incompressible flows,” International Journal for Numerical Methods in Fluids,
vol. 37, no. 8, pp. 885–903, Dec. 2001.

[26] V. John and L. Tobiska, “Numerical performance of smoothers in coupled multigrid meth-
ods for the parallel solution of the incompressible Navier–Stokes equations,” International
Journal for Numerical Methods in Fluids, vol. 33, no. 4, pp. 453–473, 2000.

[27] G. Kanschat and Y. Mao, “Multigrid methods for Hdiv-conforming discontinuous galerkin
methods for the stokes equations,” Journal of Numerical Mathematics, vol. 23, no. 1, Jan.
2015.

[28] D. Kay, D. Loghin, and A. Wathen, “A Preconditioner for the Steady-State Navier–Stokes
Equations,” SIAM Journal on Scientific Computing, vol. 24, no. 1, pp. 237–256, Jan. 2002.

27



[29] U. Köcher, M. P. Bruchhäuser, and M. Bause, “Efficient and scalable data structures and
algorithms for goal-oriented adaptivity of space–time FEM codes,” SoftwareX, vol. 10, p.
100239, Jul. 2019.

[30] M. Kronbichler, A. Diagne, and H. Holmgren, “A fast massively parallel two-phase flow
solver for microfluidic chip simulation,” The International Journal of High Performance
Computing Applications, vol. 32, no. 2, pp. 266–287, Mar. 2018.

[31] X. S. Li and J. W. Demmel, “SuperLU DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems,” ACM Transactions on Mathematical Software,
vol. 29, no. 2, pp. 110–140, Jun. 2003.

[32] S. Manservisi, “Numerical Analysis of Vanka-Type Solvers for Steady Stokes and
Navier–Stokes Flows,” SIAM Journal on Numerical Analysis, vol. 44, no. 5, pp. 2025–
2056, Jan. 2006.

[33] G. Matthies and L. Tobiska, “The inf-sup condition for the mapped Qk / P disc
k−1 element

in arbitrary apace dimensions,” Computing, vol. 69, no. 2, pp. 119–139, Oct. 2002.

[34] ——, “Mass conservation of finite element methods for coupled flow-transport problems,”
International Journal of Computing Science and Mathematics, vol. 1, no. 2/3/4, p. 293,
2007.

[35] J. Molenaar, “A two-grid analysis of the combination of mixed finite elements and Vanka-
type relaxation,” in Multigrid Methods III, W. Hackbusch and U. Trottenberg, Eds. Basel:
Birkhäuser Basel, 1991, pp. 313–323.

[36] Y. Notay, “A new algebraic multigrid approach for Stokes problems,” Numerische Math-
ematik, vol. 132, no. 1, pp. 51–84, Jan. 2016.

[37] M. A. Olshanskii and Y. V. Vassilevski, “Pressure Schur Complement Preconditioners for
the Discrete Oseen Problem,” SIAM Journal on Scientific Computing, vol. 29, no. 6, pp.
2686–2704, Jan. 2007.

[38] R. P. Pawlowski, J. P. Simonis, H. F. Walker, and J. N. Shadid, “Inexact Newton Dogleg
Methods,” SIAM Journal on Numerical Analysis, vol. 46, no. 4, pp. 2112–2132, Jan. 2008.

[39] T. Richter, Fluid-Structure Interactions: Models, Analysis and Finite Elements, ser. Lec-
ture Notes in Computational Science and Engineering. Cham: Springer, 2017, no. 118.

[40] Y. Saad and M. H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific and Statistical Com-
puting, vol. 7, no. 3, pp. 856–869, Jul. 1986.

[41] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher, “Benchmark Computations
of Laminar Flow Around a Cylinder,” in Flow Simulation with High-Performance Com-
puters II, E. H. Hirschel, K. Fujii, B. van Leer, M. A. Leschziner, M. Pandolfi, A. Rizzi,
B. Roux, and E. H. Hirschel, Eds. Wiesbaden: Vieweg+Teubner Verlag, 1996, vol. 48,
pp. 547–566.

[42] The Trilinos Project Team, The Trilinos Project Website, Jul. 2020.

28



[43] S. Turek, Efficient Solvers for Incompressible Flow Problems, ser. Lecture Notes in Com-
putational Science and Engineering, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose,
and T. Schlick, Eds. Berlin, Heidelberg: Springer, 1999, vol. 6.

[44] S. Turek and H. Wobker, “Numerical Studies of Vanka-Type Smoothers in Computational
Solid Mechanics,” Advances in Applied Mathematics and Mechanics, vol. 1, no. 1, pp. 29–
55, 2009.

[45] J. van der Vegt and S. Rhebergen, “Hp-Multigrid as Smoother algorithm for higher order
discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel
analysis,” Journal of Computational Physics, vol. 231, no. 22, pp. 7537–7563, Sep. 2012.

[46] ——, “Hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin dis-
cretizations of advection dominated flows. Part II: Optimization of the Runge–Kutta
smoother,” Journal of Computational Physics, vol. 231, no. 22, pp. 7564–7583, Sep. 2012.

[47] S. Vanka, “Block-implicit multigrid calculation of two-dimensional recirculating flows,”
Computer Methods in Applied Mechanics and Engineering, vol. 59, no. 1, pp. 29–48, Nov.
1986.

[48] ——, “Block-implicit multigrid solution of Navier-Stokes equations in primitive variables,”
Journal of Computational Physics, vol. 65, no. 1, pp. 138–158, Jul. 1986.

[49] H. von Wahl, T. Richter, and C. Lehrenfeld, “An unfitted Eulerian finite element method
for the time-dependent Stokes problem on moving domains,” preprint, Feb. 2020.

[50] A. J. Wathen, “Preconditioning,” Acta Numerica, vol. 24, pp. 329–376, May 2015.

[51] M. Winter, B. Schott, A. Massing, and W. Wall, “A Nitsche cut finite element method
for the Oseen problem with general Navier boundary conditions,” Computer Methods in
Applied Mechanics and Engineering, vol. 330, pp. 220–252, Mar. 2018.

29


	1 Introduction
	2 Mathematical problem, notation and discretization
	2.1 Model problem
	2.2 Notation
	2.3 Space discretization
	2.4 Time discretization

	3 Space-time finite element discretization
	4 A parallel geometric multigrid preconditioner
	4.1 Key idea of the geometric multigrid method
	4.2 A parallel, cell-based Vanka smoother
	4.3 Efficient application of bold0mu mumu JJsubsectionJJJJT-1
	4.4 Efficient data exchange in parallel environments

	5 Numerical examples
	5.1 Flow around a cylinder in two space dimensions
	5.2 Parallel scaling
	5.3 Parameter robustness regarding 
	5.4 Flow around a cylinder in three space dimensions

	6 Summary and outlook

