Check for
Updates

An Event and Service Mesh Architecture Supporting Service
Integration in Society 5.0 enabled Smart Cities

Alessandro Calvio
alessandro.calvio@unibo.it
University of Bologna
Bologna, Italy

Armir Bujari
armir.bujari@unibo.it
University of Bologna

Bologna, Italy

ABSTRACT

Society 5.0 envisions a more resilient, sustainable, and human-
centered society fostered by ever-evolving cooperation and knowl-
edge sharing among the many digital systems already shaping our
daily lives. However, the current state of smart cities often consists
of siloed systems, with different actors and stakeholders manag-
ing their services and assets independently. This phenomenon is
evident in both technological and operational domains, posing
challenges to seamless collaboration. In this context, new cloud
computing models and technologies like event and service mesh
promise to reduce the burden associated with the development and
integration of solutions. In the attempt to pave the way for more
integrated IT environments, we propose a practical architecture
that combines service and event mesh technologies, enabling the
seamless exploitation of service invocation and composition based
on event distribution and direct service calls. Our proposal allows
applications to remain transparent of the underlying technology,
facilitating various optimizations on the network and management
plane, necessary to meet the diverse operational requirements of
complex and heterogeneous applications. We validate our proposal
in a real-use case scenario implementation, discussing the tradeoffs
that emerge.

CCS CONCEPTS

« Information systems — Information systems applications;
« Computer systems organization — Dependable and fault-
tolerant systems and networks; « Networks — Network manage-
ment.

KEYWORDS

Smart City, Service Integration, Event Mesh, Service Mesh, Middle-
ware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GoodIT °23, September 06-08, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0116-0/23/09...$15.00
https://doi.org/10.1145/3582515.3609568

462

Andrea Sabbioni
andrea.sabbioni5@unibo.it
University of Bologna
Bologna, Italy

Luca Foschini
luca.foschini@unibo.it
University of Bologna

Bologna, Italy

ACM Reference Format:

Alessandro Calvio, Andrea Sabbioni, Armir Bujari, and Luca Foschini. 2023.
An Event and Service Mesh Architecture Supporting Service Integration
in Society 5.0 enabled Smart Cities. In ACM International Conference on
Information Technology for Social Good (GoodIT °23), September 06—08, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3582515.3609568

1 INTRODUCTION

Recently, the concept of Society 5.0 is gaining increased attention
and interest. Originating in Japan to promote the next phase of
human history, it aims to create a new kind of smart and human-
centered society, characterized by the pervasive use and seamless
integration of technological solutions and digital systems, address-
ing the principal challenges of our time, improving the quality of
life of the collective [20]. Although Society 5.0 efforts have a broader
scope, it is clear that people tend to move to cities, and it is foreseen
that by 2050 about two-thirds of the world’s population will reside
in urban areas. As more and more people move to cities, they bring
their economic, cultural, social, and political interests, making cities
the main center of human activity. Therefore, improving the quality
of life in cities can have a significant impact on people’s overall
well-being.

The smart city paradigm seeks to improve urban infrastructure
(e.g., public transportation), clean air and water, and ease access
to quality healthcare, education, and cultural activities, making
the environment more liveable for their residents. In turn, this can
lead to increased productivity, economic growth, and social cohe-
sion, as well as a more sustainable and resilient urban environment
from both an individual and collective point of view. Indeed, the
smart city concept plays a key role in improving living conditions
by exploiting the synergistic interaction between Information and
Communication Technologies (ICT) and the Internet of Things (IoT)
[12]. Central to this vision is the idea of connection: by creating a
network of interconnected devices, services, and people, it is possi-
ble to create a highly interoperable and efficient urban environment
[11].

Moreover, smart cities become essential components promoting
deep integrations among different domains, such as manufactur-
ing, logistics, energy management, and agriculture etc. While this
vision embodies many benefits, the reality is that these verticals
operate as isolated, separated from the other sectors that make up

https://orcid.org/0000-0002-2403-2969
https://orcid.org/0000-0001-9817-1702
https://orcid.org/0000-0002-1955-7699
https://orcid.org/0000-0001-9062-3647
https://doi.org/10.1145/3582515.3609568
https://doi.org/10.1145/3582515.3609568
https://doi.org/10.1145/3582515.3609568
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582515.3609568&domain=pdf&date_stamp=2023-09-06

GoodIT 23, September 06-08, 2023, Lisbon, Portugal

the landscape of society [16]. This is mainly because these domains
are often managed by different departments or stakeholders within
a city (e.g., transportation systems may be managed by a transporta-
tion department, while energy systems are managed by an energy
company, etc.). In addition, different actors may have different levels
of access and ownership over the data generated by their systems
or may be concerned about data privacy and security when sharing
data between different organizations. All these factors prevent us
from acquiring a holistic view of the city’s systems, thus, missing
opportunities for integrated solutions to achieve common goals. As
an example, municipalities could leverage the data from agriculture
and logistics to improve the supply chain or from energy to reduce
pollution levels.

The integration of these heterogeneous systems requires IT
methodologies and services able to cope with the increasing com-
plexity of the solutions we seek (Figure 1). In particular, new models
of Cloud Computing offerings allow the offloading of management
tasks to cloud providers, leaving customers with the duty of develop-
ing the business logic. However, the need of ensuring timely respon-
siveness and reducing latency for real-time decisions means that
modern city infrastructures cannot rely on cloud solutions alone.
The same abstraction level needs to be extended on distributed
architectures that are spread over a continuum of IoT-Edge-Cloud
resources spanning potentially different administrative domains.
To support this paradigm, technologies like service and event mesh
have emerged as promising solutions, abstracting the logic govern-
ing service-to-service communication from individual services, and
introducing a dedicated control layer for service management.

In an effort to foster a federated collaborative environment sup-
porting Society 5.0 and smart city sustainable development along
different dimensions, our proposal aims to create an innovative
distributed infrastructure that integrates service and event mesh
approaches to meet the diverse needs and requirements of mod-
ern architectures. In our solution, the presence of a quality-aware
middleware enables the adoption of a set of abstractions that en-
sure the transparency of the underlying technology with respect to
the applications above. This abstraction layer empowers develop-
ers to define their desired qualities of service while offloading the
responsibility of the actual implementation to the infrastructure.

The work is structured as follows: Section 2 discusses some tech-
nological solutions under scrutiny. Section 3 provides an overview
of related work similar in effort to ours. Section 4 introduces the
layered reference architecture and its functional components, dis-
cussing some technological enablers. In Section 5 we conduct an
experimental evaluation of the approach, and finally, Section 6
concludes the work.

2 BACKGROUND

For many years, monolithic software has ruled the development
practice. However, as applications start to grow in complexity, this
methodology embodies many limitations. Beyond the rigid organ-
isational aspects of the design and implementation process, this
approach is not cost-effective and not capable of fully leveraging
the benefits at the core of the cloud paradigm, such as resource mul-
tiplexing and task pipelining. By breaking down big applications

463

Calvio et al.

into small independent and loosely coupled services, a microser-
vice architecture provides a more flexible, scalable, and resilient
approach to deal with the complexity of enterprise systems from
both a development and organizational point of view [13].

Having a set of smaller computational entities allows for being
more resilient concerning elevated and sudden changes in demand
or usage patterns; each service can be independently scaled, leading
to better overall resource utilization [14]. To this end, management
and orchestration frameworks platforms such as Kubernetes can
be exploited to handle horizontal and vertical scaling of resources
depending on the quality specification of applications. Although
the microservice-oriented architecture has become an established
software engineering practice, connecting, configuring, and man-
aging heterogeneous assets and services belonging to potentially
different administrative domains is a challenging and open research
question [24].

This problem is further exacerbated as the number of services
grows, undermining the reliability of the entire application. More-
over, unlike a monolithic application where software interactions
are self-contained, different microservices are not always colocated
and may be hosted on distinct nodes, requiring the use of the net-
work to perform successful communication. This leads to the intro-
duction of additional latency and overhead at the system level and,
at the same time, of complexity at the structural level since each
service must also handle the network communication logic.

Yet, another challenge is the monitoring of the individual services
and the service chain as a whole. With many actors working to-
gether, it can be difficult to monitor the performance of each service
to identify performance bottlenecks or errors. Effective monitoring,
metrics collection, and distributed tracking mechanisms constitute
essential building blocks for healthy and effective service opera-
tions. Finally, security issues are also more critical in architectures
of this type. The presence of different services exposes multiple
points of attack, and vulnerabilities in one service can compromise
the security of the entire system [26].

The advantages brought by the microservices approach intro-
duce several new issues related to configuring, connecting, and
maintaining the entities involved, diverting programmers’ atten-
tion away from developing business logic. To handle the complexity
of integration, service and event mesh represent two emerging and
promising technologies. The idea behind the use of these technolo-
gies is to abstract, through an infrastructure layer, the application
logic part from the management and communication part. This is
done through the use of software components called proxies that
are deployed alongside each microservice and that take care of
the data plane part of the infrastructure [6]. In addition to this, a
set of external components take care of the control and configura-
tion logic of the proxy components. The main difference between
the two technologies lies in the communication paradigm adopted,
with a service mesh approach implementing a synchronous interac-
tion between microservices, while the latter uses an asynchronous
approach facilitated by the use of brokers.

In this work, we propose an innovative infrastructure support,
integrating both technologies into a single platform capable of
fostering the diversity of service requirements present in modern
smart cities.

Event and Service Mesh Architecture for Service Integration in Smart Cities

Agriculture

="

GoodIT ’23, September 06-08, 2023, Lisbon, Portugal

((A))

B>

A

Smart City

Energy

- -=-=> Asynchronous interaction

Mobility

—> Synchronous interaction

Figure 1: Society 5.0 promotes the integration among the different actors managing different dimensions of Smart Cities’
functioning in different ways. This calls for new forms of infrastructures able to leverage both synchronous and asynchronous

interactions.

3 RELATED WORKS

Methodologies and mechanisms addressing the effective integra-
tion of enterprise systems have long attracted the attention of both
academia and industry. In [18], the authors discuss potential chal-
lenges associated with integrating heterogeneous IoT devices and
networks. To overcome this challenge, the authors emphasize the
crucial role of middleware solutions, meant as a set of abstractions
that allow developers to focus on the core business logic. The pa-
per also provides an overview of different types of middleware,
including event-based and service-oriented approaches.

Additionally, numerous projects are dedicated to addressing the
issue of service integration within smart city environments. In [25],
the authors present a summary of notable smart city initiatives
that specifically tackle service integration. They characterize these
initiatives based on three major facilitators: semantic functional
description of city objects, a distributed service directory, and plan-
ning tools for composing services.

In [19], the authors propose a communication model that com-
bines the Request-Response and Publish-Subscribe paradigms in
order to address various functional and non-functional require-
ments in ubiquitous systems. At the functional level, the model
enables synchronous message exchange and asynchronous noti-
fications, making it suitable for developing software applications

464

and services such as chats, task monitoring, multimedia informa-
tion exchange, and real-time collaboration. The advantage is that
developers only need to understand the communication semantics
rather than specific mechanisms, which simplifies development and
promotes independence from distinct technologies.

To the best of our knowledge, the integration of service mesh
and event mesh represents a novel and emerging research area
within the field of service integration. In [1], Li et al. conducted
an investigation into the possibilities of using service mesh as
a next-generation technology for achieving seamless integration
between microservices. The authors were able to capture the main
characteristic of this technology and how it could be exploited in
different scenarios ranging from traditional enterprise applications
to the telecommunication field. While service mesh offers benefits
in managing communication among microservices, reliance on a
proxy component embodies some limitations due to the presence
of a single point of failure. In their work, Rusti et al. [21] applied
the concept of service mesh in MATILDA, a framework tackling
the overall lifecycle of design, development, and orchestration of
5G-ready applications and 5G network services over programmable
infrastructure. Here, the service mesh is deployed in the form of
a network slice, closely aware of the available network resources
to realize the abstraction plan of the business logic part from the
network-specific functionalities.

GoodIT 23, September 06-08, 2023, Lisbon, Portugal

Similarly, in [23] the authors advocate for the use of a service
mesh architecture, specifically emphasizing the benefits of Istio[6],
a popular service mesh implementation. The work highlights the
standardized and declarative approach offered by the service mesh
paradigm, enabling seamless management of interactions and run-
time capabilities without requiring modifications to the application
code. This research highlighted the advantages of service mesh, pro-
viding insights into its usage and benefits for microservices-based
applications.

While there is a lack of relevant works specifically addressing
the concept of an event mesh in the research area, it is worth noting
that the event-driven approaches have been widely acknowledged
as an enabler in smart city scenarios.

In [15], the authors developed an event-based architecture that
enables the management and collaboration of heterogeneous sen-
sors for monitoring public spaces. In [17], the authors present SEMi,
an event-based architecture with components that meet important
requirements for smart city platforms, including scalability, flexi-
bility, and heterogeneity in event processing. The architecture is
evaluated, demonstrating the effectiveness of event processing in
real-time scenarios.

Drawing upon previous research, this paper introduces an inno-
vative architecture designed for the integration of services in smart
city environments. Our main contribution regards the investigation
of the efficient utilization of both service mesh and event mesh
within a unified architecture, catering to the diverse needs of city
applications. Additionally, our effort also aims to promote the wider
interest in these technologies within the research community.

In the following section, we provide a comprehensive overview
of our architecture, discussing its essential layers and functional
components.

4 SERVICE AND EVENT MESH PLATFORM TO
SUPPORT MULTI-SITE APPLICATIONS

Considering the heterogeneity and constraints of applications and
services hosted on potentially different administrative domains,
while supporting the development of Society 5.0, a one size fits all
architectural style is hardly the solution. Our proposal integrates
both event and service mesh paradigms, aiming to overcome their
inherent limitations and exploit their complementarities. In particu-
lar, considering complex scenarios integrating multiple services and
data sources coming from different Society 5.0 actors, the approach
enables the joint exploitation of event mesh technology, for those
service compositions seeking more decoupled and asynchronous
interactions, and service mesh approaches for those requiring more
strict, synchronous, and controlled interactions.

To this end, we propose a layered architecture comprised of
data (overlay) and a control plane, shown in Figure 2. Through
this section, we provide a comprehensive overview of each layer,
including their functional responsibilities and how they interact
and contribute to the overall system.

4.1 Application Layer

The Application Layer represents the first component within the
proposed conceptual architecture, situated in the upper part of
the framework. This layer encompasses all the services and assets

465

Calvio et al.

developed by different actors operating within the Society 5.0 envi-
ronment and provides tools for them to exploit the infrastructure
below. The heterogeneity here mainly materializes on several di-
mensions, including but not limited to operational requirements
and development specification that depends on the purposes and
functions of each service.

As an example, let us consider the multitude of sensors in a
smart city deployment (such as sensors, vehicles, cameras, etc.)
continuously generating valuable (raw) data. These data need to
be collected from multiple sources and processed in real-time by
high-performance components situated at the edge or cloud levels.
The primary operational requirements in this scenario are high
throughput and low latency. The focus is on efficiently processing
large volumes of data in real-time, with no immediate need for
data reliability. Therefore, the emphasis is on handling the massive
influx of data swiftly to support timely decision-making.

Another example pertains to the control aspect that a smart city
may exercise over its territory. In this case, numerous services may
practically interact with the physical assets spread over the city,
such as traffic lights or energy grids, to tweak so to optimize their
duty cycling. The operational requirements for this type of interac-
tion involve high-reliability constraints so to maintain a consistent
state of the system. Point-to-point interactions are necessary, ensur-
ing that commands or changes made to physical assets are reliably
executed and consistently reflected across the entire system. Ad-
ditionally, there is a need for rollback and atomicity of operations,
allowing the system to revert to a previous stable state in the event
of errors or failures, ensuring the integrity and consistency of the
controlled assets.

Applications rely on a Quality-Aware Middleware component,
providing a high-level abstraction over the resources, and facili-
tating the seamless integration between application/service com-
ponents. An important responsibility of the latter is to provide an
abstraction over the underlying communication model employed
by applications, thereby enabling developers to prioritize commu-
nication semantics and the desired qualities of service. Depending
on the application, developers can define their preferred communi-
cation semantics, such as reliable or ordered delivery, while also
allowing them to specify latency requirements and the necessity for
receiving responses from recipients. By abstracting these aspects,
the middleware shields developers from the complexities associ-
ated with underlying communication technologies and protocols,
enabling them to focus on the core aspects of their applications.

Among the abstraction, it offers the capability to establish con-
nections with other services, customized to include desired com-
munication properties, such as specifying the preferred delivery
semantics, such as at least once, at most once, or exactly once.
Furthermore, the middleware provides flexibility by allowing appli-
cations to choose the type of interaction they prefer. A synchronous
communication enables blocking requests, while an asynchronous
connection facilitates non-blocking interaction, allowing the appli-
cation to continue processing without waiting for a response. In the
case of asynchronous communication, the middleware requires the
specification of appropriate handlers to process incoming messages.
It is important to note that the abstraction chosen by the service
does not necessarily reflect the underlying communication used in
the infrastructure. The control plane performs the resolution of the

Event and Service Mesh Architecture for Service Integration in Smart Cities

Application Layer

Microservice A Microservice B

Microservice C

[Quality-Aware Middleware

Overlay Network

Service Mesh Event Mesh

[Proxy Components

Message Broker

Q
Py
o
(@]

~

Network
Acceleration

.

GoodIT ’23, September 06-08, 2023, Lisbon, Portugal

I
! 1
(e) [| [roenn]
! 1
! 1
|
I
& \
& |
¥ |
| 1
I Iy
I g
I g
. I
I i
I g
I i
I i
. I

|
=
| |
! i I
i | i I I
i | i I I
| I |
] |
| - L
|
|
|
|
|

Figure 2: A layered reference architecture to promote service integration by leveraging a network of services and events.
The application layer deals with application development, dealing with abstractions, and interfacing applications with the
underlying resources. The overlay network deals with the practical issues involved in implementing the correct communication
model, while the control plane includes a set of tools to properly manage and coordinate the entire system.

requirements based on criteria such as the foreseen length of the
service interaction.

The middleware has the responsibility of selecting the most
suitable concrete interaction model and technology to fulfil the
prescribed constraints and qualities of service, ensuring that the
chosen communication model aligns with the specifications and
desired semantics articulated by developers.

On a practical note, the middleware can be implemented as
an SDK, exposing a range of abstraction elements, empowering
developers to proficiently utilize the platform, and harnessing the
advantages proffered by the architecture. By furnishing an SDK,
developers gain access to pre-built functions and libraries that can
expedite communication with the underlying infrastructure. This
activity is currently a work in progress.

4.2 Overlay network

The next macro layer, the Overlay Network, emerges as the first
infrastructural layer within the proposed architecture, taking on
the responsibility of practically implementing the desired com-
munication semantics according to specifications dictated by the
applications. It comprises several components, ranging from the
application level (OSI/ISO), where the proper tool technologies and
protocols are selected, to the network level, to realize the actual
data plane with custom qualities of service.

As highlighted in Figure 2, the first component to come into play
is the proxy element. In line with the state-of-the-art in service
mesh and event mesh solutions, its primary role revolves around
intercepting requests from the Application Layer and forwarding
them to their intended destinations. This layer takes charge of imple-
menting the necessary mechanisms for different interaction models,
such as synchronous and asynchronous patterns. In practice, this

466

can be done by having separate proxies designated for each inter-
action model, ensuring that the respective elements appropriately
handle the specific details and requirements.

When considering service mesh architectures, there are already
established, cloud-native solutions available, such as Envoy[2] and
HAProxy [4], that can be readily adopted as implementation choices.
These tools have robust support for state-of-the-art synchronous
protocols like HTTP/3 and gRPC[3], ensuring efficient and reliable
communications. They are also extensible in the sense that cus-
tom modules can be implemented to enhance their capabilities. It
is important to note that these components are better suited for
synchronous interactions.

When it comes to the event mesh, relying solely on a proxy is
not sufficient. To support decoupled and transparent interactions
effectively, another component is required. This is where message-
oriented middleware technology, such as a broker, plays a crucial
role. Brokers typically implement queue systems that store mes-
sages and facilitate the decoupling of applications, ensuring the
correct and reliable transmission of messages, and enabling asyn-
chronous communication within the infrastructure. State-of-the-art
message middleware solutions like HiveMQ[5] that support the
MQTT protocol or the NATS[7] broker with its homonymous proto-
col, can be readily utilized. Each proxy can employ any technology
that supports message brokering, allowing for the deployment of a
federated and heterogeneous network of brokers, enhancing the
overall flexibility and adaptability of the architecture.

Enabling effective communication between the proxy component
and the upper layers of the architecture is a noteworthy design
consideration. In particular, leveraging interprocess communication
mechanisms becomes an appealing option. Technologies such as

GoodIT 23, September 06-08, 2023, Lisbon, Portugal

shared memory can be utilized to establish efficient and low-latency
communication channels between the proxy and the upper layers.

On the other hand, in situations where the proxy is remotely
deployed, alternative techniques come into play. An option is repre-
sented by ReST interactions that are commonly employed in such
cases, while another technique that can be employed is RDMA
[22], which enables direct data transfer between memory spaces of
different machines.

To achieve the desired QoS, a set of techniques that operate
at the OSI/ISO L2/L3 levels are required. Network acceleration ap-
proaches can play a crucial role in optimizing network performance
and enhancing data transfer when stringent latency/bandwidth re-
quirements are requested. In our case, modifications in the proxy
component are required to enable them to use such techniques by
means of technologies like DPDK (Data Plane Development Kit)
or XDP (Express Data Path) which bypass the network stack and
move the packet processing to the userspace.

4.3 Control Plane

The Control Plane represents another important macro layer in our
architecture, managing and configuring overlay network compo-
nents, providing mechanisms for the coordination and the actual
transmission of messages between hosts. Hence, the role of the
control plane is to ensure that the isolated set of proxies work
as a coherent and distributed system. This is achieved through a
set of components that handle various aspects of the system, in-
cluding service discovery, security measures, fault tolerance, and
more. These components are offered to the user with different levels
of granularity, depending on the complexity of the control plane
implementation. In some cases, the control plane allows human
operators to manually configure each aspect of the system, provid-
ing complete control over the configuration. Alternatively, there
may be varying degrees of autonomy based on high-level policies
set by the administrator. This enables a balance between manual
control and automated management, depending on the specific
requirements and preferences of the deployment.

Given that our architecture aims to support multi-site service
integration, it becomes necessary to administer several pools of
services located in different places and managed in heterogeneous
ways using various orchestration platforms such as Kubernetes or
Nomad[8]. In this context, multiple deployment options are avail-
able for the control plane components. One approach involves hav-
ing a global instance that governs each service, providing central-
ized control and coordination. Alternatively, a hierarchical structure
can be implemented, where control plane elements are deployed
in proximity to the services or at aggregated points that offer a
holistic view of the configuration and networking landscape.

Going more into detail, the control plane’s instrumentation ca-
pability has the crucial function of setting up and managing proxy
components at the application layer. Its role is to ensure the proxies
are created and configured correctly, aligning with the operational
requirements specified by the applications. This configuration pro-
cess ensures proper connectivity between the proxies and their
corresponding services. Additionally, for the event mesh part, it is

467

Calvio et al.

also necessary to provide the proxies with all the proper informa-
tion (i.e. location, type of broker, protocol, and topic) to interact
with the broker.

The instrumentation component of the control plane relies heav-
ily on service discovery to maintain a comprehensive understanding
of the system’s current configuration. This is essential because the
landscape of services can undergo changes due to scaling events or
failures. By collaborating closely with the service discovery mech-
anism, the instrumentation component ensures it has the most
up-to-date information about the network locations of service in-
stances to update proxy configurations. Service discovery achieves
this by leveraging a distributed database, such as etcd, to serve
as the service registry. The service registry acts as a centralized
repository that stores and updates the network locations of service
instances. It provides a reliable and scalable solution for maintaining
an accurate record of the services available within the architecture.

When a proxy starts up, it subscribes to the nearest service reg-
istry by providing all the necessary details to describe its specific
instance and establishing itself as an active participant in the ar-
chitecture. Additionally, the proxy has to provide some kind of
heartbeat metrics in order to confirm its operational status and
detect node failures. The service registry also stores additional
metadata that proves useful for other control components within
the architecture. This metadata provides valuable insights into the
operational constraints and capabilities of specific services.

The metadata associated with each service instance can be used
to configure the tracing and observability components within the
control plane. Tools like Prometheus[10] or OpenTelemetry[9] al-
low the extraction of various metrics and indicators, such as re-
sponse times, error rates, and resource utilization, to assess the
health and performance of the services.

Another control aspect within the architecture concerns the
fault tolerance capability, which can vary depending on the type
of interaction being employed. In case of node failures, synchro-
nous interactions tend to have slower and more expensive recovery
processes. When a node fails in synchronous communication, the
sender must wait for a timeout to occur before redirecting the
requests to an alternative host. This delay can impact the respon-
siveness of the system. In contrast, asynchronous communication
provides a more flexible approach. Interactions in asynchronous
communication are not coupled to a single host. Instead, by utilizing
mechanisms like grouped subscriptions, messages can be delivered
only to active subscribers. On the other hand, service mesh tech-
nology enhances fault tolerance by facilitating the implementation
of rollback mechanisms to create atomic operations. In cases where
a rollback is necessary, the service mesh provides the necessary
support to revert to a previous stable state, ensuring the integrity
and consistency of operations. However, implementing rollback
mechanisms in event mesh architectures can be more challenging.
This is due to the inherent difficulty of reconstructing the service
chain that served a specific interaction, making the process more
complex and potentially limiting the ability to perform efficient
rollbacks.

Event and Service Mesh Architecture for Service Integration in Smart Cities

Finally, interoperability of communication becomes a challenge
in the architecture due to the heterogeneity of interactions. En-
suring effective collaboration between services with different sup-
ported formats or interaction requirements necessitates the trans-
formation and adaptation of information to align with the specific
formats they use at the application level. The control plane takes on
the responsibility of storing all the relevant information regarding
the format supported by each service, along with the schema of the
actual data. This information is stored in a schema registry, which
acts as a distributed repository for schemas and format specifica-
tions.

5 PERFORMANCE EVALUATION

In the following, we present a preliminary experimental assess-
ment of a proof of concept implementation of the proposed layered
architecture, assessing service and event mesh approaches.

5.1 Experimental Settings

With reference to the scenario in Figure 1, the investigation of
service chains is relevant because of the multiplicity of application
domains that could be integrated. For example, a service chain could
be concerned with the use of traffic data to calculate optimal routes
for delivery and order fulfillment purposes. Here several services
could be included: one service could deal with the collection of
traffic data from the various city sources, a second could use it to
calculate the level of traffic and congestion, and a third would use
this information to calculate the optimal route to meet delivery
times.

To assess our proposal, we implemented two use case scenarios
consisting of interconnected services, each operating in conjunction
with a pair of proxies that enable synchronous and asynchronous
interactions, respectively.

The first use-case, adhering to the service mesh approach, has
been developed as a ReST service interacting through synchronous
interactions with their sidecar proxies. In this case, we rely on the
Envoy proxy, a widely recognized and extensively used technology
in service mesh solutions such as Istio. To elaborate on our setup,
each proxy is configured with two Envoy listeners that facilitate
smooth bidirectional ReST communications among the various
services in the network. The first listener acts as an entry point,
forwarding incoming requests from the associated benefit to the
network, while the second listener enables the reception and pro-
cessing of messages from the network back to the client. To ensure
appropriate message routing, each Envoy listener is equipped with
an HTTP Communication Manager filter, which directs each mes-
sage to the correct destination. This configuration assumes that
each proxy has complete knowledge of the services present in the
system, thereby facilitating efficient and accurate message routing.

In the second use-case, the asynchronous interaction of the sys-
tems is facilitated through the utilization of NATS, a high-performance
message middleware, deployed on a separate node. To enable the
asynchronous communication of the services, we built a dedicated
proxy as a REST service that accepts requests from its respective
service and forwards them to the NATS message broker. During the
bootstrap phase, each proxy subscribes to a specific topic unique for
each service (e.g. the proxy of service A is mapped to topicA, etc.).

468

GoodIT ’23, September 06-08, 2023, Lisbon, Portugal

When a service requires asynchronous communication, it sends
a request to its corresponding proxy. It encapsulates the request
into a message and publishes it to the destination topic on the bro-
ker. This approach allows the service to proceed without waiting
for the complete propagation of messages throughout the system.
Similarly, when the proxy consumes messages from the mapped
topic, it extracts the request data and forwards it to the appropriate
service for processing.

In our experimental study, we aim to investigate and analyze
the performance of the system with varying numbers of chained
services. In specific, we consider five different configurations start-
ing with 2 chained services up to a maximum of 5 together with
their proxies (Figure 3), all deployed as containerized functions on
separate VMs connected through a 1Gbit network in a star topology.
Each node consists of a virtual machine with Ubuntu 22.04 LTS
operating system, equipped with 8GB of RAM and 4 virtual CPUs.
The system was stressed using the JMeter tool colocated with the
first service in the chain.

5.2 Results

Figure 4a shows the end-to-end latency in milliseconds, exploiting
both synchronous and asynchronous interaction. On the x-axis, we
considered the number of concatenated services and, by extension,
the number of steps each request must go through sequentially
before it can provide a response. Each configuration was tested
with a constant request ratio of 20 request/s over a 5-minute period.
In the synchronous case, we observed a significant upward trend in
latency times. Initially, the latency values were below 10 millisec-
onds, but they dramatically increased to approximately 9 seconds
as the number of services in the chain increased. In contrast, the
asynchronous case demonstrated a more consistent performance,
with latency ranging between 25 and 40 milliseconds, even when
utilizing a chain of 5 services.

The observed behavior stems primarily from the correlation be-
tween the request load and the number of concurrent connections
that each service needs to handle during message processing. In
periods of high request load or sudden spikes in traffic, numer-
ous clients may simultaneously establish new connections to the
services. This influx of connection requests can overpower the
server’s capacity to handle and process them, leading to queuing
as excess connection requests await available resources, including
CPUs, RAM, and bandwidth. This is particularly evident in the
transition from 3 to 4 microservices, where the phenomenon of
queuing starts to become dominant in the performance of the entire
system. Additionally, the time for resources to become available
again depends on the processing time of each service.

The queuing phenomena are further amplified by the sequential
execution nature of services. This means that the first services in a
service chain encounter lengthier waiting times as they must wait
for all subsequent services to finish their internal logic. The waiting
time is compounded by the fact that resources occupied by these
initial services cannot be freed until the entire chain completes
processing.

The asynchronous interaction model, facilitated through the
utilization of a message broker, addresses these issues. It enables the
system to decouple the request-handling process from immediate

GoodIT 23, September 06-08, 2023, Lisbon, Portugal

Event Proxy Event Proxy

HTTP

Hrrp | €)

envoy envoy

i HTTP
Service Proxy

(Envoy)

Service Proxy
(Envoy)

Calvio et al.

Event Proxy

envoy

HTTP
Service Proxy

Figure 3: Deployment architecture used to assess the reference scenarios

104

B synchronous
== asynchronous
103 p
102 4
) j .
100 i
2 3 4 5

Number of chained microservices

Latency (ms)

(4a) End-to-End latency varying the number of chained services
with a traffic load of 20 request/s over a 1-minute period

responses, allowing for parallel processing of multiple requests.
Instead of waiting for each request to finish before proceeding to
the next one, requests can be dispatched to the appropriate services
and processed independently.

This approach enhances the utilization of system resources.
Rather than dedicating resources exclusively to a specific request
until it completes processing, resources can be swiftly released and
made available for handling subsequent requests. Consequently,
the system can effectively manage a higher request load without
overwhelming resources or experiencing significant queuing phe-
nomena.

Figure 4b provides a closer examination of the previous graph,
focusing on the final response time, in milliseconds, of the service
chain, which represents the time for the response to travel from
the last service in the chain back to the first.

469

102

(Envoy)
B synchronous
== asynchronous

101 { | | |
]ooj
2 3 4 5

Number of chained microservices

Latency (ms)

(4b) Response latency varying the number of chained services with
a traffic load of 20 request/s over a 1-minute period

The graph exhibits a similar trend to the previous analysis, where
the latency times in the synchronous case increase as the number
of concatenated services grows, ranging from 3 milliseconds to
approximately 70 milliseconds. This can be attributed to the fact
that each response must traverse the entire chain in reverse, result-
ing in increased latency. Conversely, in the asynchronous case, the
response times remain stable between 7 and 9 milliseconds. This is
mainly because of the direct delivery of the response to the respec-
tive service without the need to pass through intermediary services.
As a result, the response always requires a single step, in contrast
to the previous case where the number of hops is proportional to
the length of the service chain.

Based on these findings, it becomes evident that the synchro-
nous interaction offers distinct advantages, particularly for smaller
service chains where the overhead introduced by including a third

Event and Service Mesh Architecture for Service Integration in Smart Cities

actor like the broker does outweigh the cost of maintaining con-
nections. However, as the complexity of interactions increases, the
asynchronous approach proves to be more advantageous in terms
of ensuring improved response times and overall quality of service.

6 CONCLUSION

The continuous evolution of technologies is rapidly shaping our
society, craving for a more interconnected and cooperative envi-
ronment. In this context, the development and affirmation of new
models of cloud computing bridge the gap with the rising complex-
ity of interconnecting systems and dealing with highly distributed
infrastructure. To support more effective integration of Society5.0
services we proposed an innovative architecture combining service
and event mesh approaches enabling an efficient and transparent
exploitation of both asynchronous decoupled and synchronous
coupled communication paradigms. Results showed that both ap-
proaches have distinct advantages in terms of communication capa-
bilities and preservation of the quality of service, motivating their
joint use. By necessitating an additional layer such as the federated
network of brokers, asynchronous communication does not fit sce-
narios with small interactions due to the overhead introduced. In
this case, synchronous approaches show their potential in maintain-
ing the overall latency low. On the other hand, as the complexity
starts growing the limitation of blocking communication manifests
their limitation calling for more decoupled techniques. Different
aspects can be addressed to expand the proposed architecture. One
direction is to evaluate the applicability of the architecture in the
context of the cloud continuum. This involves exploring how the
architecture can effectively leverage heterogeneous resources and
adapt to new network technologies, such as Wi-Fi 6 and 5G, to
ensure optimal performance and scalability. Another area regards
the development of optimization techniques for proxy distribution.
This includes investigating algorithms and strategies to efficiently
allocate and manage proxies across the infrastructure.

REFERENCES

[1] 2019. Service Mesh: Challenges, state of the art, and future research opportuni-
ties. Proceedings - 13th IEEE International Conference on Service-Oriented System
Engineering, SOSE 2019, 10th International Workshop on Joint Cloud Computing,
JCC 2019 and 2019 IEEE International Workshop on Cloud Computing in Robotic
Systems, CCRS 2019 (5 2019), 122—-127. https://doi.org/10.1109/SOSE.2019.00026
2023. Envoy Proxy. https://www.envoyproxy.io/ Accessed: 2023-06-9.

2023. gRPC. https://grpc.io/ Accessed: 2023-07-16.

2023. HAProxy. https://www.haproxy.com/ Accessed: 2023-06-9.

2023. HiveMQ. https://www.hivemq.com/ Accessed: 2023-07-16.

2023. Istio Architecture. https://istio.io/latest/docs/ops/deployment/architecture/
Accessed: 2023-06-9.

2023. NATS.io. https://nats.io/ Accessed: 2023-07-16.

2023. Nomad. https://www.nomadproject.io/ Accessed: 2023-07-16.

2023. OpenTelemetry. https://opentelemetry.io/ Accessed: 2023-07-16.

2023. Prometheus. https://prometheus.io/ Accessed: 2023-07-16.

Bengt Ahlgren, Markus Hidell, and Edith C.-H. Ngai. 2016. Internet of Things
for Smart Cities: Interoperability and Open Data. IEEE Internet Computing 20, 6
(2016), 52-56.

Paolo Bellavista, Carlo Giannelli, Stefano Lanzone, Giulio Riberto, Cesare Ste-
fanelli, and Mauro Tortonesi. 2017. A Middleware Solution for Wireless IoT
Applications in Sparse Smart Cities. Sensors 17, 11 (2017).

Tomas Cerny, Michael] Donahoo, and Michal Trnka. 2018. Contextual under-
standing of microservice architecture: current and future directions. ACM SIGAPP
Applied Computing Review 17, 4 (2018), 29-45.

Nathan Cruz Coulson, Stelios Sotiriadis, and Nik Bessis. 2020. Adaptive Microser-
vice Scaling for Elastic Applications. IEEE Internet of Things Journal 7, 5 (2020),
4195-4202.

470

[15

[16

[17

(19]

[20

[21

[22

[23

[24

[25

[26]

GoodIT ’23, September 06-08, 2023, Lisbon, Portugal

Luca Filipponi, Andrea Vitaletti, Giada Landi, Vincenzo Memeo, Giorgio Laura,
and Paolo Pucci. 2010. Smart City: An Event Driven Architecture for Monitoring
Public Spaces with Heterogeneous Sensors. IEEE International Conference on
Sensor Technologies and Applications, 281-286.

Riccardo Petrolo, Valeria Loscri, and Nathalie Mitton. 2014. Towards a smart city
based on cloud of things. Proc. of ACM International Workshop on Wireless and
Mobile Technologies for Smart Cities, 61-66.

Jurairat Phuttharak and Seng W. Loke. 2023. An Event-Driven Architectural
Model for Integrating Heterogeneous Data and Developing Smart City Applica-
tions. Journal of Sensor and Actuator Networks 12 (2 2023), 12. Issue 1.
Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and Siobhan
Clarke. 2016. Middleware for Internet of Things: A Survey. IEEE Internet of Things
Journal 3 (2 2016), 70-95. Issue 1.

Carlos Rodriguez-Dominguez, Kawtar Benghazi, Manuel Noguera, José Luis
Garrido, Maria Luisa Rodriguez, and Tomas Ruiz-Lopez. 2012. A Communication
Model to Integrate the Request-Response and the Publish-Subscribe Paradigms
into Ubiquitous Systems. Sensors 12 (6 2012), 7648-7668. Issue 6.

Carolina Narvaez Rojas, Gustavo Adolfo Alomia Pefiafiel, Diego Fernando Loaiza
Buitrago, and Carlos Andrés Tavera Romero. 2021. Society 5.0: A Japanese
Concept for a Superintelligent Society. Sustainability 13 (6 2021), 6567. Issue 12.
https://doi.org/10.3390/su13126567

Bogdan Rusti, Horia Stefanescu, Jean Ghenta, and Cristian Patachia. 2018. Smart
City as a 5G Ready Application. Proc. of IEEE International Conference on Com-
munications (COMM), 207-212.

Andrea Sabbioni, Lorenzo Rosa, Armir Bujari, Luca Foschini, and Antonio Corradi.
2022. DIFFUSE: A DIstributed and decentralized platForm enabling Function
composition in Serverless Environments. Computer Networks 210 (6 2022), 108993.
Ozair Sheikh, Serjik Dikaleh, Dharmesh Mistry, Darren Pape, and Chris Felix.
2018. Modernize Digital Applications with Microservices Management Using
the Istio Service Mesh (CASCON ’18). IBM Corp., USA, 359-360.

Bhagya Nathali Silva, Murad Khan, and Kijun Han. 2018. Towards sustainable
smart cities: A review of trends, architectures, components, and open challenges
in smart cities. Sustainable Cities and Society 38 (4 2018), 697-713.

Fikret Sivrikaya, Nizar Ben-Sassi, Xuan-Thuy Dang, Orhan Can Gorur, and Chris-
tian Kuster. 2019. Internet of Smart City Objects: A Distributed Framework for
Service Discovery and Composition. IEEE Access 7 (2019), 14434-14454.
Muhammad Usman, Simone Ferlin, Anna Brunstrom, and Javid Taheri. 2022. A
Survey on Observability of Distributed Edge & Container-Based Microservices.
IEEE Access 10 (2022), 86904-86919.

https://doi.org/10.1109/SOSE.2019.00026
https://www.envoyproxy.io/
https://grpc.io/
https://www.haproxy.com/
https://www.hivemq.com/
https://istio.io/latest/docs/ops/deployment/architecture/
https://nats.io/
https://www.nomadproject.io/
https://opentelemetry.io/
https://prometheus.io/
https://doi.org/10.3390/su13126567

	Abstract
	1 Introduction
	2 Background
	3 Related Works
	4 Service and Event Mesh platform to support multi-site applications
	4.1 Application Layer
	4.2 Overlay network
	4.3 Control Plane

	5 Performance Evaluation
	5.1 Experimental Settings
	5.2 Results

	6 Conclusion
	References

