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Abstract—Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent
creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious
challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a
timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of strengths and
weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar
concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the
existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each
subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer
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vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the
survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of

providing guidance to follow-up research.

Index Terms—Cross-domain, Few-shot Learning, Fine Tuning, Meta learning, Transfer Learning.

1 INTRODUCTION

Recent advances in hardware and information technology
have accelerated the interconnection of billions of devices
in various loT-enabled application domains. Smart and
adaptive devices are increasingly deployed in critical infras-
tructures such as health, transportation, industrial produc-
tion, environmental detection, home automation, and many
other justifying the Internet of Everything (IoE) frameworks.
These massive number of terminal devices have been gen-
erating a huge amount of data, which need to be sent back
to the server for central processing and storage. Although
the total amount of generated data at the edge is very large,
the volume of every dataset generated by a single device or
single scene is extremely limited with very few samples.
Traditional data-driven and single-domain algorithms do
not perform well in these settings. To this end, numerous
research has been conducted in exploring effective learning
methods based on few samples and cross-domain scenes.
Few-shot learning (FSL) as well as meta-learning have in-
evitably emerged as a promising way. However, how to
effectively obtain valid information from small sample data
set or even cross-domain still remains the greatest challenge
faced by FSL today.
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Besides, data distribution in real-world scenarios of-
ten has long-tail effects and it is difficult to generalize
the same model across diverse domains. Taking the smart
manufacturing industrial inspection as an example, such
poor generalization issue has become one of the key chal-
lenges affecting the performance of its intelligent models.
Specifically, current industrial quality inspection equipment
requires certain specific lighting conditions, and the Al
models trained under one lighting condition are difficult
to “generalize” to other lighting conditions. In addition,
considering the high accuracy requirements of industrial
quality inspection scenarios, current Al models, usually us-
ing supervised learning, require a large number of defective
samples for training. However, it is difficult to collect a
sufficient number of satisfactory samples as the proportion
of defective products in actual production scenes is small.
Moreover, it is not possible to transfer across domains either.
For example, a model for PC appearance defect detection
cannot be directly used to detect defects of mobile phone
screens, refrigerators, washing machines, or even different
models of PCs. Similarly, as another example, when recog-
nizing character images of components and circuit boards,
as there are many suppliers of components, many types of
devices, and many different character styles, thus it is not
possible to collect a sufficient number of all kinds of samples
of character images for one supplier, resulting in few or no
samples of each type. Table|l| provides a detailed summary
of these challenges.

To address these challenges more effectively, FSL has
produced some creative work on data, algorithms, and
models. Up to now, as one of the most classical taxonomy,
FSL is classified into meta-learning and metric-based learn-
ing. In this review, from the perspective of challenges, we
divide the FSL into data augmentation, transfer learning,
meta-learning, and multimodal learning. Data augmenta-



TABLE 1
Current challenges that industry urgently needs to address

Scenes

Challenges

Key Solutions

Susceptible to light
Few sample data
Unable to transfer across-domains

Quality Inspection Line

Few shot cross-domain transfer
Robust model generalization

A variety of colors, sizes and brands
Insufficient samples of each brand
Existence of unseen new brands

Electronic Component Identification

Few-shot learning
Transfer learning
Unified feature representation

tion focuses on simulating data in different scenarios by
metric or generative methods to maximize the actual data
distribution. Transfer learning is mainly combined with pre-
training and fine-tuning to extract prior knowledge from
large-scale auxiliary data sets. When domain relevance is
relatively uncommon or large auxiliary datasets are not
available, transfer learning has definite limitations. Meta-
learning is currently the mainstream approach to solve the
FSL problem. In recent years, some scholars have ques-
tioned “Is such a kind of meta or episodic-training paradigm
really responsible and optimal for the FSL problem?”. This
has led to extensive discussions [1]], [2] on the necessity
of meta-learning for FSL. As for multimodal learning, it
integrates different dimensions of information, such as lan-
guage, images, and audio. Multimodal learning is expected
to break the dilemma of insufficient useful information for
FSL in the real human information world.

Due to the specificity of FSL, each method of FSL is
confronting multifaceted challenges to varying degrees. One
of the most direct challenges in data augmentation is that
the data samples are too limited and the model cannot
evaluate the true data distribution by relying solely on a
few samples. As a result, the model trained in this setting is
biased and easily falls into over-fitting. In transfer learning,
features can effectively alleviate the problem of FSL, where
the volume of data is small and cannot be migrated across
similar domains. Nevertheless, how to represent features
effectively, how to reuse features between different tasks,
and how to establish an effective mapping between data
and labels are great challenges that exist in transfer learning.
Moreover, in the meta-learning paradigm, when training the
meta-learner with a set of tasks, it not only samples the data
space but also the task space. By constantly adapting to each
specific task, it makes the network have an abstract learn-
ing ability. When the training task and the target task are
distinctly different, the effect of meta-learning is minimal.
Furthermore, in the field of multimodal learning, extensive
studies have been conducted to explore how to effectively
integrate information from multiple modalities to assist the
FSL.

Several existing survey papers have investigated the re-
lated work of FSL, for instance, the work [3] categorizes FSL
approaches into experience learning and conception learn-
ing. The work [4] classifies FSL approaches into generative
models and discriminative models according to probability
distribution. Lately, the work [5] proposes a new taxonomy
to classify the FSL approaches from the aspect of data,
models, and algorithms. Nevertheless, to the best of our
knowledge, no one paper has ever provided a taxonomy

from the perspective of challenges in FSL. By summarizing
the challenges of FSL, readers can better grasp the motiva-
tion and principle behind the FSL, rather than being limited
to various models. A list of key acronyms used in this paper
is summarized in Table 2]

1.1 Organization of the Survey

The remainder of this survey is organized as follows.
Section [2| provides an overview of FSL, introducing FSL,
comparatively analyzing machine learning, meta-learning,
and transfer learning along with summarizing the current
variants of FSL and challenges. Furthermore, to tackle the
obstacles systematically, in this section we demonstrate a
new taxonomy to classify the existing FSL related works.
Section [3] to Section [6] present a systematic investigation
on the current mainstream researches from the perspective
of challenges in FSL and provide a comparative analysis
from various aspects. With this taxonomy, a discussion and
summary are provided at the end of each section, giving
our insights into the respective fields accompanied by some
potential research opportunities. Section [7] takes computer
vision as an example, counting the latest progress of FSL
in image classification, object detection, semantics segmen-
tation, and instance segmentation in chronological order.
Section [§| delves into exploring the current challenges faced
by FSL and how to seek breakthroughs in each branch. The
overall outline of this paper is shown in Fig.

The main contributions of this survey can be summa-
rized as follows:

e We start with the edge computing scenario, in which
the few-shot learning challenges arise, explaining
and clarifying several similar concepts that are easily
confused with FSL. This will be beneficial to help
readers establish the relationship between few-shot
learning, transfer learning, and meta-learning.

e We comprehensively investigate the FSL related
work from the perspective of challenges through
knowledge graphs and heat maps. With this taxon-
omy, we divide the FSL into several different levels,
where the highest level is multimodal learning that
mainly uses various semantic knowledge to assist
judgment, and the second, third, and fourth levels
are single-modal learning that addresses data level,
feature level, and task level challenges, respectively.
Notably, we also provide insightful discussions on
FSL cross-domain research, which is currently the
more challenging direction in the field of FSL.



TABLE 2

A List Of Key Acronyms

NOMENCLATURE
Full Form Abbreviation | Full Form Abbreviation
Artificial Intelligence Al Few-Shot Learning FSL
Deep Learning DL Machine Learning ML
Zero-Shot Learning ZSL One-Shot Learning OSL
Neural Architecture Search NAS Conventional Neural Network CNN
K-NearestNeighbor KNN Support Vector Machine SVM
Nearestcentroid Classifier =~ NCC Graph Few-Shot learning GFL
Variational Auto Encoders ~ VAE Few-Shot Object Detection FSOD
Long Short-Term Memory  LSTM Data Augmentation DA
Few-Shot Cross-Domain FSCD Contrast Learning CL

What Is Few-shot Learning? ~

What Is Machine Learning
And How It Is Different R
From Few-Shot Learning?

What Is Meta-Learning and Overview (Q&A)

How It Is Different From - Y
Few-shot Learning? AN

What Is Transfer Learning
and How It Is Different -
From Few-shot Learning?

Few-shot image
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Few-shot object ¥

detection Computer Vision

Applications

Few-shot semantic
segmentation

Few-shot instance
segmentation

Future Direction

Perspective of Challenges

Inaccurate data distribution [
assessment

I

Data Augmentation: To Evaluate
The True Data Distribution With
Maximum Probability

—

Feature Reuse Sensitivity

Transfer Learning: Builds Data-
To-Label Mappings For Specific
Problems

—

Generality of future tasks

Meta-learning: Derive Task-To-
Target Model Mappings Out Of
Specific Problems

Defects of single-modal
information

I

Multimodal Learning:
Complementary Learning Of
Small Samples With Limited

T
Using only few sample to
evaluate the real data
distribution

Fig. 1. The conceptual map of the survey.
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Improve robustness of  Learn more effectively
data-to-label mapping from historical tasks

Information

e« We investigate an adequate number of papers in

recent three years and summarize the main achieve-
ments of FSL in the field of computer vision, includ-
ing image classification, object detection, semantic
segmentation, and instance segmentation.

With these challenges mentioned at the end of the
survey, combined with practical applications, we
delve into the current challenges of FSL and explore
how to find breakthrough points in each branch to
jointly drive the research of FSL towards a more
practical direction.

We provide unique insights into the evolution of FSL
and identify several future directions and potential
research opportunities concerning each challenge.
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2 CONCEPTS AND PRELIMINARIES

As a branch of machine learning (ML), FSL is still a young
field. What is FSL, and how does it relate to machine
learning, transfer learning, and meta-learning? What are
the variants of FSL that currently exist? What benchmark
datasets frequently appear in research papers? In this sec-
tion, we will address the obstacles to FSL for readers by

answering these questions.

2.1

What Is Few-Shot Learning?

The concept of FSL is inspired by the robust reasoning and
analytical capabilities of humans, and it is widely found
in edge computing scenarios. In 2020, Wang et al. [5] give
a detailed definition of FSL through experience, task, and



performance of machine learning, which is one of the most
recognized definitions so far: A computer program is said
to learn from experience F with respect to some classes of
task 7" and performance measure P if its performance can
improve with I/ on T' measured by P. It is worth mentioning
here that I in FSL is very small. In recent years, relevant
neural scientific evidence [6], [7] has shown that innate
human abilities are related to various memory systems,
including parametric slow learning neocortical systems and
non-parametric fast hippocampal learning systems, which
correspond to FSL's data-based slow learning and feature-
based fast learning, respectively.

To better understand FSL, it is necessary to introduce
two concepts, one is N-way-K-shot problem and the other
is cross-domain FSL. The N-way-K-shot problem is often
used to describe the specific problems encountered by FSL.
In this case, the support set represents the small dataset used
in the training phase, which generates reference information
for the second phase of testing. The query set is the task on
which the model actually needs to predict. Notice that the
query set classes never appear in the support set. Classical
N-way-K-shot represents support set with N categories
and K samples per category, then the whole task has only
N x K samples. As thus, N-way-1-shot represents one-
shot learning and N-way-0-shot represents zero-shot learn-
ing. The concept of cross-domain originates from transfer
learning, which refers to the transfer the knowledge from
source domain to target domain. There usually exist domain
gaps between these domains. Cross-domain FSL integrates
the features of cross-domain and FSL, and is a challenging
direction that has recently emerged.

At this stage, there still exist many challenges in FSL,
which are generated from various aspects, including but not
limited to data, models, and algorithms. In this context, the
challenges can be generally summarized according to the
degree of integration of knowledge as follows:

e Inaccurate data distribution assessment:

FSL does not have access to large datasets due to
costs, ethical, legal, or other reasons. Consequently,
relying on few samples for learning produces biases
in estimating the actual data distribution, which
may be fatal for some tasks. To this end, maximizing
the exploration of data distributions with limited
information becomes the most significant challenge
for FSL. Data augmentation is the direct way to
address the inaccurate estimation of FSL. The
primary efforts currently focus on exploring
migratable intra-class or inter-class features and
customizing specific images using generators.

e Feature reuse sensitivity: Continuous accu-
mulation of a priori knowledge by sampling large-
scale auxiliary datasets. Transfer learning can eas-
ily use it from the source domain to the similar
target domain. Pre-training aims to extract high-
dimensional feature vectors through a feature extrac-
tor, while the goal of fine-tuning is to make minor
adjustments to the initial parameters of the pre-
training. Transfer learning focuses on the data level
and obtains more valuable features independent of
the task by mapping data to labels. It has an out-
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standing performance in optimizing specific tasks,
but it is generally limited by the characteristics of
current tasks and has a poor generalization to future
tasks. Especially when there is a large shift in the
domain, without filtering and alignment of features
may result in negative knowledge transfer.

e Generality of future tasks: Differing from
transfer learning, meta-learning learns to quickly
build mappings from known tasks to target models
in previously unseen tasks by double sampling the
task and data. In FSL, by exploring the task space,
summarizing meta-knowledge in different tasks can
result in fast aggregation of unseen tasks at a lower
cost. As a general learning framework, meta-learning
is independent of specific problems and more ori-
ented to future tasks instead of optimizing the cur-
rent one. However, meta-learning has proven effec-
tive only when the testing and training tasks are
relatively similar, and it is highly depends on the
network structure and lacks flexibility. When training
meta-learners with a set of tasks at the same time, it
is even difficult to adapt to the distribution of tasks,
requiring a redesign of the network structure.

e Defects of single-modal information: Itis
difficult to learn features effectively because FSL
is inherently information-limited. This situation is
improved to a great extent when aided by getting
information from other modalities. In this respect,
semantic assistance [8]], [9] is an excellent method
to provide external prior knowledge, where through
the introduction or generation of semantic informa-
tion as weak supervision, adaptive classification can
be accomplished in conjunction with the original
model.

2.2 What Is Machine Learning And How It Is Different
From Few-shot Learning?

The traditional Von Neumann computer architecture allows
users to execute a series of instructions step by step in the
form of a program [10]. However, this method does not
work in ML. On the contrary, ML uses large-scale datasets as
input. Its judgment on a new sample is based on statistical
results extracted by historical data. Now, the burgeoning
of 5G [11] provides massive connectivity for millions of end
devices, enabling an interconnection of everything. The total
amount of data generated by terminal devices is huge, but
the amount of one single data set is extremely small. Hence,
traditional ML, whose performance strongly depends on
large data sets, cannot perform well in this setting with few
samples. To this end, FSL emerges and provides a promising
way to handle the data scarcity scenario.

In recent ten years, the research on FSL has been ex-
tensively conducted, and significant research progress has
been achieved, e.g. the KGBert [12] proposed by Alibaba
surpasses humans in the field of FSL for the first time. Fig. 2]
exhibits the statistics of paper publications related to FSL in
recent ten years based on the statistical results of the Web of
Science. As revealed, there are relatively few related papers
from 2011 to 2015 due to that the FSL theory is still incom-
plete. With the rise of deep learning since 2015, the number



of FSL related research papers has increased linearly almost
every year. In the past 2020, the number of relevant papers
has reached as high as 239, and the number of citations has
reached 2731 times, accordingly. Fig. 3| provides a knowl-
edge map covering the hot research topics and cutting-edge
developments in the field of FSL in recent years, including
but not limited to zero-shot learning, one-shot learning,
transfer learning, multi-task learning, and meta-learning.
FSL related tasks include feature representation, visual-
ization, robotics and cross-domain transfer. Among them,
domain adaptation is a widely utilized method for few-shot
cross-domain learning. Computer vision with predominant
green color is the most active research field, including image
classification, object detection, semantic segmentation, and
instance segmentation.
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Fig. 2. The number of FSL-related papers published in prestigious
journals from 2010 to the first half of 2021, excluding citations.
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Fig. 3. The knowledge graph uses Few-shot learning, One-shot learning
and Zero-shot learning as keywords to relate the main advances and
research directions in the field of Few-shot learning in recent three
years.

The most significant difference between FSL and tra-
ditional machine learning is that the set of classes of the
support set and the query set are disjoint. In machine
learning, the classes of the test set are included in the
training set in advance. FSL combines the limited supervi-
sion information with prior knowledge to train the model.
The input of the model is generally given in the form of
tasks. Through continuously collecting tasks, the model can
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recognize the similarities and differences between data as
well as task. When the model encounters an unseen task,
knowledge transfer can be accomplished quickly with just
a few iterative training steps with appropriate initializa-
tion parameters. In contrast, traditional machine learning
requires optimization through the loss function generated
by a large scale data sets in the model. In conclusion, FSL
is only a very young branch of machine learning, which
mainly addresses the issue of difficult access to quality data
sets in machine learning scenarios.

2.3 What Is Transfer Learning and How It Is Different
From Few-shot Learning?

Traditional transfer learning involves applying knowledge
learned in the source domain to a different but related target
domain. In FSL, the limited amount of training data, domain
variations, and task modifications are the key factors that
cause the model to fail to transfer well from the source
domain to the target domain. For instance, a medical image
dataset with low similarity to the natural image dataset
imagenet is difficult to identify accurately without the help
of relevant expertise, even for a human-guided by only a
few images. Certainly, it is also effective when the source
domain and target domain are relative similar. The end in
FSL tasks, if the prior knowledge is obtained from other
tasks or domains by pre-training, FSL can belong to transfer
learning, which mainly learns the mapping of data to labels.

According to the taxonomy of transfer learning, there are
many variants of FSL problems, including one-shot learning
(OSL), zero-shot learning (ZSL), and cross-domain few-shot
learning.

e One-shot learning: OSL has only one correct
label for each sample in the support data set, which
aims to find the most similar class as a match among
the seen-classes. During the police interrogation,
these two processes are incredibly similar. The wit-
ness just looked once at the suspect, and the photos
given by the police can be regarded as the query
image. The witness only needs to answer "yes’ or 'no’
towards those photos. Similarly, one-shot learning
does not classify the data specifically, but simply
makes a cluster in order of similarity function. Ac-
cording to the existing work, one-shot learning can
be divided into two main approaches. One is to use
generative models to caste prior knowledge [13], [14],
[15], where bayesian programming learning [16] is
the most representative framework [17] in this field.
Another method is to convert a OSL classification
task into a verification task [18], [19].

e Zero-shot learning: ZSL was first proposed by
Lampert et al. [20], which considers a more extreme
case in FSL. In the absence of any query samples,
the inference mechanism is solely relied on to iden-
tify samples that have not been seen before. ZSL
is essentially done by using high-dimensional se-
mantic features [21], [22], [23] to replace the low-
dimensional raw data. Embedding representations
and autoencoders are the most efficient ways to
construct intermediate semantic spaces, which con-
tains attributes that more comprehensively define the



categories. Up to now, zero-shot learning is one of the
closest methods to human intelligence that discerns
previously unobserved categories. One-shot learning
and FSL can essentially be considered as special ZSL.

e Cross—-domian few-shot learning: In transfer
learning, each class in the target domain has a suf-
ficiently large number of available samples. When
a large domain shift occurs between the source do-
mains and target domains, knowledge transfer tends
to become very challenging. Cross-domain few-shot
learning combines the challenges of transfer learning
and FSL. In the existence of domain gaps, where
the intersection of classes in the source and target
domains is empty, and the available sample size for
each class in the target domain is extremely small.
The improvement of the model’s generalization ca-
pability through source domain data alone brings
very limited performance to the model. The present
work mainly focuses on the shift transformation of
features and the construction of auxiliary datasets.
Cross-domian few-shot learning can be regarded as
one of the most challenging setting in the field of FSL
at present.

2.4 What Is Meta-Learning and How It Is Different From
Few-shot Learning?

Meta-learning is a general learning paradigm that provides
training on tasks in an episodic-training mechanism. Fig.
illustrates the three-steps involved in meta-learning [24]
training. Meta-learning focuses on improving generalization
for unseen tasks using prior knowledge. If prior knowledge
is used to teach the model how to learn on a specific task,
meta-learning can be regarded as a variant of FSL. It is
emphasized that meta learning is not equivalent to FSL.
FSL should be seen rather as an ultimate goal. It aims
to achieve robust generations without relying on a large
scale of datasets. By dual sampling of data and task space,
meta-learning is enabled to construct a large number of
auxiliary tasks related to the unseen task. Even if some
papers do not use meta-learning, it is likely to improve the
model’s performance if episodic-training mechanism can be
considered, such as meta reinforcement learning [25], [26],

meta video detection [27], and so on.
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Fig. 4. Meta-learning training three-step approach includes: find the
learning algorithm, define loss function using tasks, find parameter that
can minimze loss function.
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Nevertheless, meta-learning has its own limitations:
when the training and testing tasks exist obviously domain
gap, Meta-learning is rarely used to initialize parameter
weights. It can easily lead to negative migration of the
model. In addition, meta-learning is highly dependent on
the structure of the network, and needs to be redesigned for
widely varying tasks. In spite of this, meta-learning is still
one of the most effective methods to solve FSL.

2.5 Datasets

Before the availability of FSL benchmark datasets, re-
searchers regularly used tasks like manually constructing N-
way-K-shots to evaluate the performance of models. How-
ever, these simple tasks cannot reflect the complexity of
real-world problems. After 10 years of evolution, the FSL
benchmark dataset has completed the transition from a
single domain, single dataset to a cross-domain, multiple
dataset.

As shown in Fig. 5} during 2017-2021, 898 papers used
the CUB-200-2011 [28] dataset, accounting for 46.6% of
the total number of statistics; 587 papers used the Mini-
ImageNet [29] dataset, accounting for 30.5%; and 335 papers
using the Omniglot [30] dataset, accounting for 17.4% ; 44
papers used the PASCAL-5i [31] dataset, and 46 papers
used the Meta-DataSet [32]. The other specific datasets are
Paris-Lille-3D [33], N-Digit MNIST [34], SUN397 [35], which
are used in 15 papers in the past five years. In terms of
quantity, the CUB-200-2011, Mini-ImageNet, and Omniglot
benchmark datasets occupy a dominant position in the field
of FSL. Table. B| compares the datasets mentioned above
from different dimensions. By the publication of the article,
a more objective benchmark dataset [36] for evaluating the
cross-domain ability of FSL was proposed. 1) CropDiseases
[37], a plant diseases dataset , 2) EuroSAT [38], a dataset for
satellite images, 3) ISIC [39] a medical skin image dataset, 4)
ChestX [40], a dataset for X-ray chest images. The similarity
comparing to MinilmageNet is decreas across these datasets.

2.6 Taxonomy

According to the degree of integration of knowledge, FSL is
broaderly divided into a single-modal learning and a multi-
modal learning. In this survey, The single-modal learning
can be further divided into data augmentation, transfer
learning, and meta learning. It mainly focuses on abstracting
or transferring limited information into higher-level feature
vectors or meta-knowledge. Multimodal learning is more
close to the real world of human intelligence, which no
longer relies on the limited sample, and tries to find the
space of other modalities to assist the FSL. With this tax-
onomy, we exhaustively review and discuss each method.
Fig. [f] vividly demonstrates the FSL's taxonomy under the
challenge perspective.

e Evaluate The True Data Distribution: The
key to the difficulty of FSL is that limited samples
cannot reflect the actual data distribution. The most
intuitive idea of machine learning is to generate
additional data based on a certain probability model
or to extend the auxiliary data set using a large
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TABLE 3
The latest performance of FSL in the main tasks of machine vision

Dataset Variant ~ Leader Numbers/Classes ~ Train/Test Content Main FSL Task License
CUB-200 Wah el al. [28] 11788/200 5994/5794 Birds Few-shot Image classifition Attribution 4.0
Mini-ImageNet  Vinyals et al. 600/100 480/120 Real scene Few-shot Image classifition
Omniglot Lake et al. 32460/50 4800/1692 Character Few-shot Image classifition MIT
PASCAL-5i Shaban et al. [31] 576/20 11530/~ Really scence Few-shot Image classifition MIT
Meta-Dataset Triantafillou et al. [32] 10 datasets -/- Really scence Few-shot Image classifition Multiple licenses
BSCD-FSL Guo et al. [36] 4 datasets -/- Really scence, Satellite and medical image ~ Cross-domain few-shot learning ~ MIT
Paris-Lille-3D Roynard et al. 133] 450000000/50 450000000/380000000  Point cloud Few-shot Semantic Segmentation ~ CC BY-NC-ND 3.0
N-Digit MNIST ~ Oh et al. [34] -/~ -/- Character Metric Learning Apache License
SUNB397 Oh et al. 108,753/397 76128/21750 Really scence Few-shot Image classifition -
Multmodal Learning dataset can be reused, which will significantly re-
Complementary Learning duce the pressure of the model on the data. Pre-
With Limited Information

- training and fine-tuning assist FSL by learning ef-
fective representation of data to labels, coupled with
effective regularization of the underlying semantic
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integration of Learning the optimal initialization parameters in a variety of

e different tasks, and the fine-tuning stage freezes most
of the lower-level parameters and retrains only the
- parameters of the classification layer.

‘ e Derive Task-To-Target Model Mappings:
Edge Fine-tuning already has a good performance in
_ baseline models with small samples. Nevertheless,
in multi-task learning, a large scale of tasks are
learned just as one task, which leads to a terrible

Cloud

Fig. 6. The entire taxonomy is presented in the form of a pyramid. The

bottom level represents the "cloud-edge-terminal” edge computing sce- gene?alization of the model. In contrast, meta-
nario, which is characterized by few-shot real-time computation under learning dual-samples the data and task space
high traffic. Based on this, the challenges of FSL are classified into four using episodic-training mechanism, finding latent

levels according to the degree of integration of the required knowledge. s : .
Among them, the challenges represented by data augmentation, trans- associations between different tasks and thus having

fer learning, and meta-learning are single-modal challenges. a good description of the whole task space.
e Complementary Learning With Limited Information:

learning has been proposed in deep learning for a
long time, but it has only started to be integrated
with FSL in recent years. Information in multimodal
dimensions is closest to the real human information
world, and it compensates to some extent for the
inability of FSL to make accurate assessments
of data distributions in a single modality. Pixels,
semantics, and sounds can be supervised signals
for FSL tasks, and even more recently unsupervised

volume of unlabeled data from extending data. Ex-
isting work focuses on exploring feature differences
that can be learned between classes or with external
datasets at the semantic level. Handcrafted rules and
automatic learning data processing are the two main
approaches at this stage.

e Build Data-To-Label Mappings: Furthermore,
if a large number of features from the benchmark



learning has been used to explore more robust
feature representations using contrast learning.

3 DATA AUGMENTATION To EVALUATE THE TRUE
DATA DISTRIBUTION WITH MAXIMUM PROBABILITY

In real-world FSL tasks, the number of samples in the
support and query sets is usually limited due to privacy,
collection costs, and labeling costs. To mitigate this issue,
data augmentation is recognized as the most direct way
to increase the sample richness in FSL. Nevertheless, the
core risk of the FSL data augmentation is how likely the
augmented dataset can evaluate the distribution behind the
real data. Based on whether the data augmentation tech-
niques can be reused on other tasks, FSL data augmentation
is divided into hand-crafted rules and automatic learning
data processing.

3.1 Hand-Crafted Rules

Hand-Crafted rules require guidance from experts with
specialized domain knowledge. A representative result is
that Bouthillier et al. proposed to randomly discard pix-
els [41] on a random rectangular area to generate black
rectangular blocks of simulated noise. Similar operations
also include random erase [42] and fill [43], [44] in FSL.
Nevertheless, briefly relying on the simple transformation of
single-sample pixels cannot prevent the risk of overfitting.
Further, the hand-crafted rules contains data level and fea-
ture level according to the dimension of information. Table.
summarizes the data augmentation methods for hand-
crafted rules making.

Image Deformation
——— CSEI

Fig. 7. FSL data augmentation based on data level mainly includes
internet data collection, environment variation, difference transfer and
random crop filling. Here a picture of a panda is used as an example to
implement the above variation.

3.1.1 Data Level

The data level augmentation is mainly a transformation of
the input data that aims to scale up existing data by making
modifications to the data marginally for achieving diversity
in model input. Random erasure and random cropping
[43], [53] are classical algorithms by simulating the images
with different degrees of damage and thus improving the
generalization of the model. Inspired by this, Li et al
[46] discarded the traditional approach based on a entire
feature extractor for images and instead focused on local
patch images. These methods require large-scale datasets
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as support. It is not easy to achieve in the FSL settings.
Conversely, CSEI [46] does not require extra data sets. The
specific operation is to erase most of the discriminatory area
in the support set derived from the metric function and
replace it with an image fill using the restoring operation.
FTT [45] enriches the data set by linear interpolation of some
transiently transformed attributes, such as different weather
and lighting. Z Chen et al. proposes an end-to-end
approach to partitioning images as a whole inspired with
the idea of MIXUP [54], which argues that images preserve
important semantic information even after they have un-
dergone various distortions. The most significant difference
between image distortion and GNN is that image distortion
simply stitches two images together in a linear pattern. This
method is able to achieve maximum deformation without
loss of classification. In addition, it is a good direction for
data expansion by using the large amount of unlabelled data
sets in the real world for supplementation. Finally, when
both the source and target classes both have only a limited
number of samples, AdarGCN’s implementation crawls
data from internet resources and automatically removes
irrelevant noise to achieve controllable data augmentation.
At the same time, AdarGCN can automatically determine
how far the information has been propagated in each graph
node. In conclusion, data augmentation at the data level
focuses on increasing the number of samples by means of
pixel transformations and pixel generation. Fig. [/]shows the
main methods based on data level under hand-crafted rules.
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=¥ ﬁ I vectors
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Fig. 8. Feature level-based data enhancement can be mainly divided into
global features and local features. Global features focus on the whole
image, including the foreground and background. Local features, on the
other hand, selectively focus on the subject part in the foreground.

3.1.2 Feature Level

Feature level data augmentation mostly maps pixel infor-
mation into a high-dimensional latent space. It carries more
valid information than mere original pixels. Gao et al. [48]
first explored the underlying distribution behind few-shot
data and proposed an adversarial covariance augmentation
network to overcome the limitations of FSL. Its experiments
have shown that relying solely on learning the features of
the entire image brings noise into the results. Chu et al.
[49] tried to compute feature representations for each patch,
rather than the entire image. Each small patch is connected
by RNN and the features of the image are further fused.
This heuristic algorithm is far superior to simple attentional
models[55]. Zhang et al. [50] explain partial feature learning



TABLE 4
The latest performance of FSL in the hand-crafted rules.

Model Core View Key Approach

Experimental Dataset Using External Dataset ~ Data Level — Feature Level

FTT |45 Enriching Instant Attributes Places-CNN

CSEI |46 Erase Repair Metric based
Image Deformation [15 Semantic Invariance Meta-learning
AdarGCN [47 Denoising the collected web images GCN layer

Covariance-Preserving Adversarial
Augmentation Network [48]

Spot and Learn [49.
Saliency-guided Hallucination [50.
Laso [51

Dual TriNet |52

"Variability” of covariance information

as base instances

extracts varying sequences of patches
Background - Prospective Learning

Explore the reliable differences between labels
Semantic Synthesis Example

Transfer learning
Auto Encoder

Generative Adversarial Network

reinforcement learning
Realation network

Transient Attributes Database
minilmageNet
minilmageNet

AN AN

ImageNet

minilmagenet
minilmagenet
MS-COCO
MS-COCO

XAX%X N N\ x\

A N N

from another perspective, proposing to use a pre-trained
model to decompose visual features into three parts and
then select the original, foreground, and background images
to be re-stitched into new visual features. Similarly, Laso
[51] explores the differences in features between different
datasets in a high-dimensional space. Combining different
labels through the intersection and complementation of sets
allows images to contain key information from multiple
classes at the feature level simultaneously. Training this part
of the image as a support set can significantly improve the
classification performance of small samples. Chen et al. [56]
go further by extending the features to a high-dimensional
semantic space. In FSL, feature-level augmentation is more
effective than data-level augmentation by modeling the
valid information in a compressed manner. Fig. [§{shows the
main methods based on features level under hand-crafted

rules.

Differential Search

Contrast Generator ]. - .] -

Original Augmented

Fig. 9. Learned Data Processing aims to learn a policy generator in
multiple task spaces so as to automatically match different tasks. Its
biggest benefit over hand-crafted rule is that it can be reused.

3.2 Learning Data Processing

In 2018, data augmentation entered the area of auto aug-
mentation with the maturation of meta-learning. Through
the combination of meta-learning with other data augmen-
tation methods, a large amount of excellent work emerged
during this period. Hu et al. [57] was inspired by the
DARTS algorithm to abstract the data augmentation into
multiple sub-strategies, each with a certain probability of
being selected according to the different few-shot tasks. In
addition to the probability-based method, another approach
is based on generation. Li et al. [58] proposed the adversarial
feature phantom network-AFHN. The phantom diversity
and discriminative features are conditional on a small num-
ber of labelled samples. Chen et al. [56] attempt to train a
meta-learner and generate a network to learn similarities

and differences between images end-to-end by fusing pairs
of images. MetaGAN [59], on top of which an adversarial
generator conditional on the task is introduced, which helps
FSL tasks form generalizable decision boundaries between
different classes. On the other hand, Zhang et al. [50] further
demonstrate the usefulness of phantom data generation for
FSL and propose a low-cost automated data generation
method that uses a direct foreground-background combi-
nation to generate feature space-level data for training. In
addition, it is also effective to explore the migratable differ-
ences between and within classes in support datasets. Delta-
encoder [60] uses auto-encoder [61] to learn differences in
the same class for transfer learning, which is different from
metric-based computation [62] of visual similarity. Table. [f
summarizes the data augmentation methods for learning
data process. Fig. [f] shows the main approaches involved
in auto-learning data processing under FSL.

3.3 Discussion and Summary

To maximize the evaluation of the distribution of the real
data in FSL setting, data augmentation has from the hand-
crafted rules to the auto learned data processing stage. The
watershed is the maturity of meta-learning in 2018. This
section comprehensively investigates the emerging repre-
sentative technologies in the field of data augmentation and
reviews the evolution of few-shot data augmentation. Table.
summarizes the model in different dimensions clearly.

4 TRANSFER LEARNING BuiLDS DATA-TO-LABEL
MAPPINGS FOR SPECIFIC PROBLEMS

Transfer learning [63] is a classical learning paradigm, which
aims to solve the challenging problem that there are only
a few or even no labelled samples [64] in the FSL [65].
Feature reuse is the core idea of transfer learning to solve
FSL absence of data setting. The basic operation is to pre-
train the model on an extensive dataset and then fine-
tune on the limited support set. When source and target
domains exist a large gap, knowledge transfer is invariably
much less effective. This cross-domain setting brings a new
challenge for FSL. In FSL, transfer learning can be broadly
divided into pre-training and fine-tuning stage, which can
also be referred to the baseline. Fig.[I0]illustrates the general
process.

4.1

From 2012 to 2018, a large number of excellent works
have emerged in the field of computer vision and natural

Pre-training and Fine-Tuning
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TABLE 5
The latest performance of FSL in the field of learn data process.

Model Core View Key Approach Experimental Dataset ~ Using External Data

DADA [57] Automatic generation of Gradient Descent CIFAR-10 v
enhancement policies

AFHN Condition-based generation Generative Adversarial Network ~ MNIST v

MetaGAN Generate extral data Generative Adversarial Network ~ MNIST v

Delta-encoder Differential transfer Auto Encoder Mini-ImageNet v
Calculate multi-scale features

MSFN and the similarity of Metric Learning Omniglot v

each class of labels

Feature
Extractor

Metric Learning

Task

Metric Learning [l Knowledge distillation

- Base-line

Meta-learning

Fig. 10. Transfer learning can be divided into pre-training and fine-
tuning stages, where the baseline model can be combined with other
techniques to improve the model performance.

language processing, such as MobileNet [66], ResNet [67],
ELMO [68], GPT [69], and BERT [70]. In particular, the
area of natural language processing was slow to progress
before the advent of pre-training models. It has grown
considerably under the leadership of BERT as computing
power has increased and excellent pre-training models have
been proposed.

As a downstream task, how to use these excellent models
to obtain features will largely alleviate the pressure on the
data for FSL. Especially for few-shot image classification, as
a pre-training model [71]], [72], it needs to use an external
large-scale label dataset to extract prior knowledge from
similar task. The most common practice is to design a back-
bone model without classifier layer, which includes convo-
lutional neural networks or auto-encoders. The input of the
model is an array of images, and the output is the feature
vector embedding in a high-dimensional space [73]. High-
dimensional feature vectors obtain sufficient valid semantic
information about the target image. After the pre-training
was put forward, the researchers proposed fine-tuning later.
Most parameters in the pre-training are frozen, and only the
classification layer parameters are updated in the testing
stage. Many recent works [74], [1] have proved that fine-
tuning can improve the 5-way-1-shot tasks accuracy rate
by 2%-7% compared with the baseline model. Although the
number of samples in the support set and query set is small,
pre-training and fine-tuning are still very helpful for im-
proving the accuracy of FSL. The conclusions are analogous
in natural language processing as well. The authors in [75],
[76], [77] have also shown that fine-tuning can be embedded

in state-of-the-art meta-learning or semi-supervised learn-
ing frameworks for optimizing model parameters.

Dhillon et al. [76] replaced the standard activation
function with cosine similarity, and Nakamura et al. [74]
replaced conventional gradient descent with an adaptive
gradient optimizer, which both improve the fine-tuning
process in the accuracy of the model. Currently, fine-tuning
is usually combined with meta-learning. Cai et al. [78]
attempted to integrate them to train networks with specific
layers. However, experimental results suggest that since the
support and query sets do not overlap in FSL setting, trans-
ferring whole knowledge from the source dataset is not the
best solution for FSL. Shen et al. [79] suggest that knowledge
should be transferred specifically for parts. The degree of
transferability needs to be controlled by freezing or fine-
tuning specific layers in the backbone model. Similarly, fine-
tuning can also be used to prevent new classes of networks
from polluting the feature space of the basic classes. Up to
now, the FSL and fine-tuning have been widely used in tasks
like plant disease and insect pest identification [80], road
detection [81], and automatic question and answer [82].

4.2 Cross-Domain Few-shot Learning

The latest progress of FSL largely depends on the labelled
data of the training stage. However, it is unrealistic to collect
various forms of datasets for specific tasks in many practical
applications, which results in challenging of FSL between
intensely different domains. Cross-domain few shot learn-
ing integrates FSL and domain adaptive problems, which
is a relatively comprehensive and challenging setting. For
a long time, the benchmark datasets commonly used for
FSL have suffered from a standardized dataset structure
and large similarity of natural scenes, which leads to that
models perform well on standard datasets but get unac-
ceptable results in the real world task. Google first released
a FSL cross-domain dataset named Meta-Dataset [32] in
2020, which includes a total of 10 public image datasets
including ImageNet, CUB-200-2011, etc. Yet these datasets
are still focused on natural scenarios and cannot be broadly
regarded as cross-domain few-shot benchmark datasets.
Until the availability of BSCD-FSL [36] datasets. According
to the degree of similarity with the ImageNet, it is divided
into CropDiseases [37], EuroSAT [38], ISIC [39], ChestX [40].
The authors extensively evaluate the performance of current
FSL methods, and experiments show that the accuracy of
all methods is correlated with the proposed natural image
data similarity metric. Nowadays, cross-domain FSL focuses



on distinguishing domain-irrelevant features and domain
adaptive techniques with transfer learning.

The objective of domain adaptation is to transfer knowl-
edge from the source domain to the target domain, which
has the same set of classes but a different data distribution
than the source domain. Recently, much work has used
adaptive networks to align their features with a new do-
main or to select domain-irrelevant features from multiple
backbone model. Dvornik et al. [83] obtained multiple do-
main representations separately by training a set of feature
extractors with different domains. Setting the model to a
dataset with multiple domains during training allows an at-
tempt to migrate to other domains during the testing stage.
Nevertheless, this approach may not be effective during the
meta-training and meta-testing phases when the domains
are orthogonal. Based on this, FRN [84] explores the po-
tential space for few-shot image classification, using ridge
regression to reconstruct and normalize the feature map
without adding new learning parameters. FWT [85] utilizes
only the source data for the affine transformation of features,
as do LRP-GNN [86] and SBMTL [87]. FD-MIXUP [88]
constructs auxiliary datasets by mixup and uses encoders
to learn domain-irrelevant features to guide the network
generalization to other tasks. STARTUP [89] takes advantage
of not only the source data but also assumes that the model
has access to a lot of unlabeled target data during training.
A large amount of unlabeled data is used to enhance the
generalizability of the model to other domains. Metric-based
approaches are frequently used for semi-supervised and
unsupervised cross-domain FSL. A recent paper by Lu et
al. [90] uses attention as a metric strategy to reweight and
combine domain-specific representations. Chen et al. [72]
based on a meta-baseline by pre-training the classifier on
all base classes and classifying a small number of samples
based on the nearest centroid algorithms for meta-learning,
which greatly surpasses the latest state-of-the-art methods.
Li et al. [91] inspired by [92], [93]], proposes to map domain-
specific features to the same shared space, thus achieving a
domain-irrelevant universal representation.

4.3 Discussion and Summary

While meta-learning methods have higher performance
than transfer learning in standard FSL settings, the situation
is reversed in cross-domain FSL settings. A newly published
paper recently pointed out that the improvements from fine-
tuning and pre-training are similarly very limited when
the domains appear orthogonal. In the pre-trained feature
space, the base classes form compact clusters, while the new
classes are distributed in large difference groups. Currently,
the actual deployment of trained models into production
environments is often not adapted to rapidly changing
environments. Pre-training can be seen as a task with many
learning classes, but it is only a single learning task.

5 META-LEARNING DERIVE TASK-TO-TARGET
MoDEL MAPPINGS INDEPENDENT OF SPECIFIC
PROBLEMS

Meta-learning learns historical prior knowledge from a dual
sampling of data and tasks, then extracts meta-knowledge
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to apply to future tasks. Meta-learning is independent of
the specific problem, and exploring an optimal initialization
parameter in task space, discarding the task-independent
feature representation under traditional supervised learn-
ing. Up to now, most of the meta-learning models are
updated with parameters using traditional gradient descent.
Absolutely, there are also non-gradient descent methods
based on reinforcement learning and metric methods. In
FSL, meta-learning can be used to automate the learning
of model parameters, metrics function, and the transfer of
information

5.1 Learning Model Parameters

Most of the deep learning frameworks use different param-
eter initialization methods, such as uniform distribution,
normal distribution, and so on. The biggest problem with
this random initialization is that it easily falls into the local
optimal position. The goal of meta-learning is to train a hy-
perparameter generator, the classical methods being MAML
[94], Repital [95] even their derived variants. MAML iden-
tifies the global optimization direction by calculating the
optimization direction for each task. Compared to MAML,
Reptile can update fewer parameters at once. The biggest
difference between meta learning and multi-task learning is
that multi-task learning only focuses on the performance
of the current task. Meta-learning was demonstrated to
perform better than transfer learning with a standard FSL
benchmark dataset. Nevertheless, meta-learning is more
sensitive to network structure and requires fine tuning of
hyperparameters. After that more versions have evolved
to address these issues separately. Such as MAML++ [96],
First-order MAML (FOMAML) [95], Meta-SGD [97], TAML
[98], iMAML [99], iTMAML [100]. Of which Meta-SGD,
expect MAML, finds the optimal learning rate and update
the direction of the parameters at the same time, in addition
to learning the initialization parameters. TAML [98] is a
task-independent method, which overcomes the problem
that MAML can only use an external model. Subsequently,
IMAML [99] proposes a new loss function and a corre-
sponding method for computing the gradient, making it
possible to obtain the gradient of the parameters by calcu-
lating only the solution of the loss function, without caring
its specific optimization method. iTMAML [100] based on
TAML, which implements automatic task recognition. It can
be quickly adapted to new tasks by updating when the data
is in a continuous state. At present, MAML has been widely
used in various tasks [101]], [102], [103], producing different
variants. Table.[6|distinguishes between MAML, Reptile and
their variants in various perspective.

Learning optimizers are another important direction for
learning model parameters. LSTM as the base optimizer
[104], [105], which accepts the difference at time ¢ and
the hidden state of the meta-network at time ¢t — 1. The
output of the original network is an updating of the model’s
weight and bias. In 2016, Xu et al. [106] proposed the
BPTT to supervise LSTM training. It is notable that this
is performed in the context of supervised learning. What
update should be required to the optimization if it is in
the setting of unsupervised and active learning? Inspired
by this, there has been a long period of work focusing on
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TABLE 6
Summary MAML, Reptile and their variants

Model Directions for improvement Key Approach First order gradient =~ Two-step gradient
MAML [94] Original Inner-loop+outer-loop X v
Reptile [95] Computational Complexity Standard stochastic gradient descent v X
FOMAML [95]  Simplify secondary gradient updates  Using the gradient calculated from the previous task v X
Meta-SGD [97]  Increasing the Volume of the Model =~ Increase the learning rate vector parameter X v
TAML [98] Task unbiased estimation Introducing Entropy and Inequality Metrics X v
iMAML [99] Gradient disappearance Propose new loss functions and optimization methods X v
iTMAML [100]  Automatic task identification Data is in continuous state X v

reinforcement learning [107], Bayesian inference [108] and
evolutionary algorithms [109] in an attempt to automatically
find optimization strategies through heuristic algorithms.
Finally, traditional Neural Architecture Search (NAS)
also incorporated the idea of meta-learning and adapted it
accordingly under FSL. To our best knowledge, the shared
[110] and randomly selected supernet weights [111], [112]
were early solutions for FSL. Recently, a large volume of
work [112], [113], [114] has shown that performance differ-
ences still exist between one-shot NAS and traditional NAS.
The one-shot NAS uses weight-sharing networks to train the
supernetwork only once and then perform a single round
of inference to get an accurate prediction, greatly reducing
the amount of computation required for the experiment.
Subsequently, Zhao et al. [115] proposed the few-shot NAS
based on one-shot NAS. The core idea is to divide the
supernets into multiple sub-supernets to search different
regions of the search space. With a slight increase in the
number of supernets, the accuracy of few-shot NAS is
greatly improved. MetaNAS [116] is the first method that
completely integrates meta-learning and traditional NAS.
MetaNAS be capable of better initialization parameters with
the help of meta-learning ideas. It completely replaces the
weighted summation in the DARTS algorithm to reduce
different operations, and the experimental results also show
that it is more adaptable to more downstream learning tasks.

5.2 Learning Metric Algorithm

Metric learning [117] is different from classical meta-
learning, metric learning no longer divides the model into
training and testing stages. In many previous papers [4], [5],
[3], [118], metric learning is always introduced separately.
In our context, metric learning will be explained under the
frame of meta-learning. Fig. [11] illustrates one of the most
representative learning methods, which is based on a proto-
type network that has been improved to obtain substantial
improvements on a benchmark dataset for classification
tasks.

The siamese neural network [119] is a relatively early
model in the metric learning. It can be simply regarded
as a binary classification problem. The input to the model
composes of a set of positive or negative sample pairs, and
the model needs to evaluate the similarity of the images
during inference stage. Triple loss [120] is another way to
deal with more than pairs input in FSL metric learning.
Contrary to the Siamese neural network, triple loss requires
positive samples, negative samples, and anchor samples to
be available at the same time. If training samples are easily

distinguished from each other, this would not be beneficial
for the model to better learn discriminative features. The
hard sample selection technique [121]] incorporates the ab-
solute distance between positive sample pairs in addition
to considering the relative distance between positive and
negative samples. In addition to this, Li et al. [122] revisited
the classical triplet network and extended it to a K-tuple
network for FSL.

Compared to the Siamese neural network, the prototype
network [123]] realizes the true meaning of classification. The
most significant difference is that the model allows for more
data as input. By feature averaging it is feasible to find the
most representative sample as a prototype. However, simple
feature averaging is easily disturbed by noise. On this basis,
many works [124], [125], [126], [127], [128] have explored
how to make the distance between prototypes larger and
larger. One of the most representative works is the proposal
of positive and negative margins [129], which further reduce
the over-fitting and enhance the generalization based on
maximizing the discriminative ability of the model.

Nearest Neighbor ldeas
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Fig. 11. The framework [128] performs end-to-end learning of the em-
bedding model and prototype learning jointly, and the learned embed-
ding features are used to compute the distance between the query
image and the prototype, pushing the distance between different classes
farther and bringing the distance between the same classes closer.

Matching Networks [29] is a more general network
framework that maps few-shot datasets and unlabeled data
to vectors in the embedding space. The matching network
combines the best features of parametric and nonparametric
models of the nearest neighbour algorithm to model the
sample distance distribution by learning the embedding
representation. Experiments have proved [130] that embed-
ding propagation produces a smoother embedding mani-
fold. How to learn high-quality embedding representations
in a limited time is substantial for improving the model’s
accuracy. GVSE [131] fuses visual embeddings, semantic
embeddings, and gating metrics automatically balances the
relative importance of each metric dimension by the model.



Subsequently, Arvind Srinivasan et al. [132] proposed a new
architecture to improve Inception-Net, U-Net, Attention U-
Net, and Squeeze-Net, which takes the time to generate
embedding quality as a cost. The processing based on the
embedding representation plays a vital role in FSL.

The relational network [133] differs from the three mod-
els mentioned above in that its similarity is calculated by
using a neural network. In contrast to the Siamese neural
networks and prototype networks, relational networks can
be seen as providing a learnable nonlinear classifier for
determining relationships. The classifier can be a feature
extractor of a pre-trained neural network [122] or a multiple
embedded module [134]. The most significant contribution
of the relational network is that it breaks away from a single
linear metric function and explores the use of an alternative
model to generate similarity. Table. [7|categorizes each of the
representative metric learning algorithms, comparing their
innovations on the original approach.

5.3 Learning To Transmit Information

It is proved that graph neural networks (GNNs) [137] have
performed well on relational-based tasks in recent years
[138]]. Researchers have found that its classes-based transfer
of information can work well to help FSL learn to identify
new class, while avoiding these classes being dominated
by proprietary features. Primarily, early graph neural net-
works simulate the propagation of weights between differ-
ent nodes by creating full connections between support and
query sets. The nodes can be represented by either a one-
hot encoding or an embedding vector, and the connections
between nodes can be passed through edges. Given the
complexity of graph neural network algorithms, most graph
neural networks currently have a shallow number of layers.
In order to better accommodate FSL, graph neural networks
have been uniquely designed with nodes and edges in
recent developments. Fig. [12| shows a recent representative
algorithm for FSL of graph neural networks from the per-
spective of exploring small sample distributions.
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Fig. 12. DPGN [139] is concerned with the relationship between samples
in GNN, in addition to the relationship between sample distributions.
Where Point Graph is used to describe the samples and Distribution
Graph is used to describe the distribution. The two GNNs fuse the
instance-level and distribution-level relationships by passing information.

generation n

The EGNN uses vertex sets, edge sets, and task sets to
encode the labels of nodes. When updates occur between
nodes, both the similarity and the difference are considered,
which greatly improves the generalization performance of
graph neural networks to FSL. Meta-GCN [140] further
incorporates the idea of meta-learning, which enables the
updating of weights of graphs under FSL to also be opti-
mized according to the gradient descent steps, the whole
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process requires very few gradient steps and can receive
new data quickly. Subsequently, several models based on
improvements in the graph structure itself have emerged.
The prototype network was improved by GFL [141] network
that focuses on learning small samples of data with a graph
structure. DPGN uses a dual graph neural network that de-
scribes samples while modelling their distribution. Further-
more, GERN [142]] uses embedding of graph neural network
connections to achieve more robust intra-class weight trans-
fer. Nevertheless, none of these approaches addressed the
problem of shallow layers of graph neural networks until
2021, HGNN [143] designed three sections of bottom-to-top,
and skip connections to remove the pitfall of ordinary GNNs
losing the hierarchical association between nodes. Based on
this, Frog-GNN [144] uses multidimensional information to
synthesize information about the adjacency between nodes
to form pairwise relational features of intra-class similarity
and inter-class dissimilarity. At present, graph neural net-
works are widely used for tasks such as few-shot image
classification [145]], [146], semantic segmentation [147] and
instance segmentation tasks.

5.4 Discussion and Summary

In FSL, meta-learning mainly explore the mapping from the
task to the target model. It trains a super-tuning device
that gives a good set of hyperparameters as it converges
according to the different tasks. In contrast to multi-task
learning, which learns only focus on single task. However,
meta-learning is not universal for all conditions. The current
idea of meta-learning is to have enough historical tasks. If
there are not enough tasks on certain problems, then meta-
learning may not be able to solve those problems. Similarly,
if the domain gap between source and target is too large, the
results will also become terrible.

6 MuLTIMODAL COMPLEMENTARY LEARNING OF
SMALL SAMPLES WITH LIMITED INFORMATION

Until now, FSL has made significant progress in the uni-
modal domain. Within unimodal learning, models are pri-
marily responsible for representing information as feature
vectors that can be processed by a computer or further
abstracted into higher-level semantic vectors. Particularly,
multimodal learning in FSL refers to learning better feature
representations by exploiting complementarities between
multiple modalities and removing redundancies between
modalities. In real life, when parents teach their babies
about things, they always include general information along
with semantic descriptions. This is crucial for FSL, which
inherently comes with little valid information to make a
good evaluation of the data or feature distribution. Inspired
by this, many research works [8], [148], [149] consider the
introduction of other modal information when solving FSL.
By fusing multimodal information, the ability of the model
to perceive small sample data can be improved. Fig.
shows the main paths of FSL under multimodality,

6.1 Multimodal embedding

Recent works [9]], [148], [149], [150], [160] proved the limi-
tations of visual features for FSL of certain tasks. Semantic
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TABLE 7
A Summary of Metric Learning by base approach.

Model Key idea Metric function Improvement
Siamese Neural Network [119 A pair of inputs Cosine Original
Triple loss [120] Triple input Cosine M? ximize ‘mtra-class d.lstance and
minimize inter-class distance
E-nagivate sample [121] Difficult sample training Cosine Compare more samples at once
K-tuple network [122] K inputs Cosine Compare more samples at once
Prototype Network [123] Prototype representation European Original
Negative Margin Matters [129] Negative margin loss Cosine Balancing discriminative and migratory
. : Consider spatial association . . .
Attentive Prototype [128] between features European Weighted summation to obtain the prototype
. - The modal length of the constraint feature

SEN [15] Feature normalization European approximates the modal length of the prototype
Prototype Rectification [136] g/{;ﬁ;ﬁ;gg prototypes with Cosine Consistent distribution of query sets and support sets
Matching Network [29] Attention mechanism to. Cosine Original

access the memory matrix

The relative importance of the . . . .
GVSE [131] automatic balancing model for Cosine Fuses V}Sual embeddmgs, semantic embeddings,

. and gating metrics

each metric
Optimization of image embeddings [132] = Monitoring embedded quality Manhattan Improved quality of embedding
Relational Network [133] Using models to compute similarity Model Original

Revisiting metric learning [122]
BSNet [134]

Using a simple but powerful baseline

Simultaneously by two similarity measures

non-linear distance Proposing a deep K-tuplet network
Learning feature maps based on the similarity

Euclidean and cosine of two different features

— N
Modeling | Transiation | | Alignment | | Fusion |
o J/
o
5 N
‘3 J
Input Modalities tanguage Visual
Acoustic e o o
—/ o o
) O
Extral Origin
Knowledge Knowledge

Fig. 13. Multimodal FSL scenarios, how to effectively model other modal
information under the condition of feature representation by fusion,
alignment, and assistance to compensate for the lack of valid information
in itself.

TABLE 8
The challenge of learning from small samples in multimodality.

Approach Representation ~ Alignment Fusion Co-Learning Translation

Wang et al. [8 v

Li et al. [148] 4
Eli et al. [150] v

Peng et al. [151] v
Schonfeld et al. [149

Wang et al. [152]

Pade et al. [153]

Fortin et al. [154] v

Zhang et al. [155

Sharma et al. [156 v
Akata et al. [157] v

Elhoseiny et al. [158] v
Zhu et al. [T59 v

Xian et al. [21] v

Pahde et al. [153] v

AN

space as auxiliary information can provide effective context
for visual features and help FSL. Experiments have shown
[8], [148], [149] that adaptive combinations of two or more
modalities are much better than unimodal FSL. Wang et al.

[8] constructed weak semantic supervision for each category
by integrating multiple visual features. Schonfeld et al.
[149] instead used variational autoencoders (VAEs) to model
semantic features based on latent visual features. Subse-
quently, Schwartz et al. [150] and Peng et al. [151] further
extended the semantic information by adding classes labels,
attribute and natural language descriptions, and knowledge
inference. The additional semantic information is aligned
with visual features by embedding loss functions [152] to
largely reduce the cost of knowledge transfer. Based on
this, Karpathy et al. [160] used multimodal alignment to
find potential correspondences that exist between image
patches in the training set images and their descriptive
utterances. Aoxue et al. [148] went further by using semantic
information to model classes as hierarchy.

6.2 Generate semantic information from images

In addition to this, another related area using multimodal
FSL is text-to-image generation. In few-shot visual classi-
fication tasks, the visual and semantic-based approaches
[153], which try to use textual descriptions to generate
additional training images, have a considerable advantage.
Pade et al. [153] used generative adversarial networks as
data generators to train the model, which can purposefully
generate corresponding visual features based on semantic
information, and enhanced visual features can be obtained
by combining the original visual features. Zhu et al. [159]
and Xian et al. [21] explored generative images and feature
vectors, respectively, making promising progress in the field
of ZSL.

Similarly, Fortin et al. [154] migrated text-to-image gen-
eration to the target detection task, which can be integrated
with current FSL to implement a more general module in the
contextual joint learning phase. Zhang et al. [155] improved
the resolution of the generated images by concatenating two
CGANSs based on ordinary generative networks. The first
subtask generates a relatively blurred image from the text,
and the second subtask generates a high resolution image



from the blurred image. Eventually, the model will use
more details to generate images. Nevertheless, sometimes
text descriptions contain multiple targets and a single text
description does not capture all the details in an image.
Sharma et al. [156] provided a dialogue interface that uses
textual information from the dialogue to obtain more de-
tailed information about the image.

Another set of text-to-image algorithms is based on the
variant auto-encoder with embedding. Unlike the gener-
ative approach, the input to the encoder is a vector of
attributes. Akata et al. [157]] explored semantic features from
different sources, such as WordNet and word embeddings.
However, these methods were unable to recognize parts
of an image without part-term annotation. Elhoseiny et al.
[158] used a visual classifier to detect patches from bird
image dataset by using only text terms and tests without
partial annotation. The results show that visual text infor-
mation and bird parts can be linked with zero samples.

6.3 Discussion and Summary

Multi-modal FSL is still in the developing stage and there
are currently several challenges until now: how to combine
data from heterogeneous domains, how to deal with the
different levels of noise that occur during the combination
of different modalities, and how to learn together. Table.
classifies FSL tasks in multimodality as representation,
alignment, fusion, co-learning, and translation. In a multi-
modal FSL, a good feature representation should be able
to fill in the missing modalities based on the observed
modal information. More approaches will emerge in the
future, going well beyond modal embedding and generating
semantic information from images.

7 FSL APPLICATIONS IN COMPUTER VISION

In the past five years, we systematically combed and sum-
marized FSL in the field of computer vision [161] and
divided tasks into image classification, object detection, se-
mantic segmentation, and instance segmentation. Following
is a detailed summary in the form of graphs and tables
based on the time dimension. By reading this section, the
reader will be able to gain a comprehensive grasp of FSL in
the field of computer vision.

7.1 Few-shot Image Classification

Except like Google and Facebook, most researchers in real
life do not have access to a large dataset of good quality.
In FSL computer vision classification tasks, each task may
contain only one or a few samples. Solving few-shot image
classification tasks is mainly addressed by data augmenta-
tion, transfer learning, meta-learning, and multimodal fu-
sion learning. At present, the top three methods in terms of
accuracy are all based on feature augmentation and feature
transformation of the backbone model. In this section, we
investigates all few-shot image classification models from
2016 to the present and counts the best performance of all
models on the mini-ImageNet benchmark dataset. Here we
use 5-way-1-shot and 5-way-5-shot as baseline tasks. Table.
[]and Fig. [14]illustrate our investigation results.
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7.2 Few-shot Object Detection

Few-Shot Object Detection (FSOD) is the task of detecting
rare objects from several samples. There has been a lot of
progress in FSL for image classification, but rarely for object
detection. At present the evolution of few-shot object detec-
tion can be divided into three main camps: Data augmen-
tation, transfer learning, and meta-learning. Out of them,
Attention mechanisms plays a pivotal role in small sample
target detection. Equally, the issue of slow inference for a
few-shot object detections to meet real-time requirements
remains serious. The Table. [10]and Fig. [14] are used to show
recent advances in object detection in FSL.

7.3 Few-shot Semantic Segmentation

Few-shot semantic segmentation was first proposed in [31]
until 2017. And it has been widely used in scenes such
as medical images and driverless cars. Unlike traditional
semantic segmentation, few-shot semantic segmentation has
less pixel annotation information in support data set. To
our best knowledge, few-shot semantic segmentation can be
broadly classified into supervised semantic segmentation,
unsupervised semantic segmentation, and video semantic
segmentation. In the machine learning stage, the more clas-
sical approach is to use probabilistic mappings as prior
knowledge for derivation. In the deep learning phase, a
large number of efficient algorithms for segmentation tools
have emerged, but these models often require a large num-
ber of manual sample annotations. Recently, [201] has made
significant improvements to few-shot semantic segmenta-
tion by proposing a more concise paradigm where only the
classifier is meta-learned and the feature encoding decoder
remains trained using a conventional segmentation model.
Providing the Table. [T6] and Fig. [14] for showing few-shot
semantic segmentation.

7.4 Few-Shot Instance Segmentation

In contrast to semantic segmentation, instance segmentation
involves identifying each pixel in an image and labelling
it separately. Recently, few studies are dealing with the
problem of segmenting few samples of instances. Current
work still focuses on how to improve R-CNNs using some
effective tools. The most recent work [210] proposes an in-
cremental few-shot instance segmentation algorithm, which
greatly improves the performance on benchmark data sets.
In this section, we survey papers of recent three years on
few-shot instance segmentation. Table. [12|and Fig. [14| show
the research progress of the few-shot instance segmentation.

8 FUTURE DIRECTION AND OPPORTUNITIES OF
FSL

Considerable recent work has made promising progress
on various task settings for FSL. Nonetheless, for more
challenging scenes, both the training and validation data
sets are minimal, where the distribution of other data neither
helps real samples to be evaluated nor has extensive training
data or validation datasets for transfer learning. Moreover,
meta-learning also does not have enough tasks to initialize
the parameters. With the taxonomy proposed in this sur-
vey, in this section we put forward several possible future
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The latest performance of FSL in the image classification tasks of computer vision
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Ref Model 5-way-1-shot accuary ~ 5-way-5-shot accuary ~ Extra Training Data ~ Approach Features Pubilsed Date  Available code
Lee etal. ESFR 76.84% 84.36% v ﬁi’gﬁfﬁge Feature Reconst Jun 2021 v
Wang et al. Multi-Task Learning 59.84% 77.72% X I‘Ez;‘{’n;rsgk Learning and Meta Jun 2021 v
Afham et al. RS-FSL 65.33% - v Semantic assistance Apr 2021 v
Rizve et al. [165] Invariance-Equivariance 67.28% 84.78% X fgrv,f;t‘i:::nd Equivariant Repres Apr 2021 v
Esfandiarpoor et al. pseudo-shots 73.35% 82.51% X Exploiting Existing Resources Dec 2020 v
Chen et al. MATANet 53.63% 72.67% X Multi-scale Adaptive + Attention Nov 2020
Wang et al. MTUNet 55.03% 56.12% X using backbone model and weight Nov 2020 v
generated
Khacef et al. WRN + Self-Organizing Map 71.5% 82.2% X Self-Organizing Maps Sep 2020 X
Xue et al. RCN - ResNet12 57.40% 75.19% X Transfer learning Sep 2020 v
Zhong et al. MCRNET 62.53% 80.34% X Meta-learning Jul 2020 v
Ziko et al. LaplacianShot 75.57% 84.72% X Transductive Laplacian-regularized Jul 2020 v
Bateni et al. Transductive CNAPS + FETI 79.9% 91.5% v Data Augmentation Jun 2020 X
Rajasegaran et al. [174] SKD 67.04% 83.54% X Knowledge Distillation Jun 2020 v
Hu etal. PT+MAP 82.92% 88.82% X Feature Distribution Jun 2020 v
Simon et al. [176] Adaptive Subspace Network 67.09% 81.65% X central block of a dynamic classifier Jun 2020 v
Bateni et al. [173] Transductive CNAPS 55.6% 73.1% X Self-Organizing Maps Jun 2020 v
Li et al. [177] TRAML 67.10% 79.54% X Adaptive Margin Loss May 2020 v
Hu et al. [178] SIB 70.0% 79.2% X Empirical Bayes Transductive May 2020 v
Wang et al. 1ICI 69.66% 80.11% X Instance Credibility Inference Apr 2020 v
Rodriguez et al EPNet + SSL - 88.05% v Embedding Propagation Apr 2020 v
Nguyen et al SImPa 52.11% 63.87% X PAC-Bayes framework Mar 2020 X
Guan et al. DAPNA 71.88% 84.07% v Domain Adaptation Feb 2020 X
Chen et al. [1 AmdimNet 76.82% 90.98% v Embedding network Nov 2019 v
Use similar gradient descent
Xu et al. [183] MetaFun-Attention 64.13% 80.82% X to encode labeled data Jau 2020 v
to predict unlabeled data.
Liu et al. MetaOptNet-SVM+Task Aug 65.38% 82.13 % v Embedding Propagation Nov 2019 v
a o Uing pre-trained base model
Song et al. ACC + Amphibian 62.21% 80.75% v to generalize novel model Nov 2019 v
Rodriguez et al. DKT + BNCosSim 62.96% 64% X Learn a kernel that Dec 2019 v
transfers to new tasks
Mangla et al. [187] S2M2R 64.93% 83.18% v Embedding Propagation Apr 2020 v
Train a small sample
Lietal LST 70.1% 78.7% v model to predict fake Sep 2019 v
signatures on unlabeled data
Learn the reference vector
Yoon et al. [189] TapNet 61.65% 76.36% v of each class in May 2019 v
different tasks
. . . Using graph neural network
Kim et al. [T90] EGNN + Transduction - 76.37% X to model intra-class similarity May 2019 v
Set-to-set applied
Ye et al.[197] feat+ 61.72% 78.38% X to embedded functions Jau 2019 v
Li et al. [[92] DN4 51.24% 71.02% X {se image local descriptors Jun 2019 v
or measurement
Park et al. MC2+ 55.73% 70.33% X Factorization matrix Jau 2019 v
TABLE 10
The latest performance of FSL in the tasks of few-shot object detection during 2019-2021
10-shot AP/ . . . .
Ref Model 30-shot AP Extra Training Data  Core idea Approach Taxonomy Pubilsed Date  Available code
Use semantic alignment to
Zhangetal [26] MetaDETR  17.8/229 X perform specific encoding and Feature Reconstruction  Jun 2021 v
feature-independent decoding
of images
Compare proposal coding loss
Sun et al. [194] FSCE 11.1/153 X to improve intra-class compactness  Feature embedding Jun 2021 v
and inter-class variance
Learning Semantic Embeddings
Zhu et al. [195] SSR-FSD 11.3/14.7 v Using the Invariance of Embedding learning Mar 2021 X
Semantic Relations
Share the features of
Xiao et al. [196] FsDetView 12.5/14.7 v the base class and Meta-learning Jul 2020 v
the new class
Wu et al. [197] MPSR 9.8/14.1 X Reﬂngment of samples usng Data augmentation Jul 2020 v
multi-scale techniques
Fine-tuning the final . . v
0] —
Wang et al. TFA w/ cos 10/13.7 X layer of the detector Fine-tuning Mar 2020
Yan et al. Meta R-CNN -/12.4 X ?é[aetts;leiammg using partial Meta-learning Sep 2019 v
Wang etal. [200] MetaDet 7.1/113 4 Prediction of component-specific =y 100 ming Sep 2020 X

parameters from several samples
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Fig. 14. Best performance of metric learning in image classification
tasks during 2017-2021
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Fig. 16. Best performance of metric learning in semantic
segmentation tasks during 2018-2021

research directions in FSL. Furthermore, recent advances in
applications and algorithms are also presented through this
comprehensive survey of FSL.

8.1 Better evaluation of data distribution

The essence of FSL is that the support data sets are too small
to evaluate the true data distribution. So what exactly can
be done to maximize the evaluation of the true data distri-
bution using a limited number of samples? The latest work
[215] is making a useful attempt in this direction, proposing
the idea of distribution correction where the mean and co-
variance of the base class are computationally corrected and
then a linear classifier can be used directly to obtain good
results. In fact, the difference between FSL and traditional
deep learning is not big enough when the few samples are
accurate enough to estimate the true data distribution. This
is an exciting direction to explore. Similarly, in the field of
computer vision, there are no task settings or datasets based
on real application scenarios for FSL. Most of the work is
still focused on leveraging and mining information from
image data. The current mainstream benchmark datasets
have more or less various problems: the mini-Imagenet
dataset has some inappropriate samples or too difficult
samples, such as solid occlusion, multiple objects in the
same image, etc. The Omniglot dataset is far away from
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Fig. 15. Best performance of metric learning in object detection
tasks during 2017-2021

224

ONCE iMTFA
20 -

MAP50
3

FAPIS
Siamese Mask R-CNN
Mask R-CNN

TIME(year/month)
1

2017/8 2018/11 2020/9 20211

1-shot

2021/4

Fig. 17. Best performance of metric learning in instance
segmentation tasks during 2017-2021

practical applications and is not easily inspired in real-world
applications. BSCD-FSL [36] provides a more violent cross-
domain FSL benchmark dataset involving satellite images,
medical images. Until now there is no benchmark dataset
to evaluate the generalization ability of a model at a fine
grained detail. Developing and completing a benchmark
dataset in the field of FSL will provide a more realistic
evaluation of the current state-of-the-arts in FSL.

8.2

A new challenge to FSL is posed by the emergence of BSCD-
FSL. Its emergence explores and reveals the limitations of
current FSL solutions for cross-domain learning. Recent
research has produced some excellent results in this area,
such as skillfully designed task tuning, more sophisticated
hyperparameter tuning, formation of auxiliary data sets,
and extraction of domain-irrelevant features. Currently, fine-
tuning is already performing very robustly at the intersec-
tion of transfer learning and meta-learning. Nonetheless,
both techniques are still very distinct. Pre-training can be
seen as learning many categories of tasks, but it is single-
task learning. Meta-learning, on the other hand, is a multi-
task learning approach. Whether there is a better model that
can integrate meta-learning and fine-tuning to maximize the
performance of the model while reducing the computational

Improving the robustness of data-to-label mapping
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TABLE 11
The latest performance of FSL in the tasks of few-shot semantic segmentation during 2019-2021

1-shot Mean IoU/

Ref Model 5-shot Mean ToU Extra Training Data ~ Core idea Approach Taxonomy  Pubilsed Date  Available code

Zhang et al. [202] CyCTR 64.3/66.6 X ?ggrega.te supported and pixel Transfer learning Jun 2021 v
eatures into query sets
Extracting different sets of

Min et al.[203] HSNet 66.2/704 v feature composition from different Feature Engineering ~ Apr 2021 v
levels of intermediate convolutional
layers
Different image regions are

Yang et al. [204] RPMM 56.3/- X assocm}ted with rm'ﬂhple prototypes Metric learning Sep 2020 v
to obtain a semantic
representation

Tian et al. [205 PFENet 60.8/- X Feature enrichment + a priori mask Feature Engineering Aug 2020 v

Liu et al. [206] PPNet 51.5/62.0 v Refinement of samples using GNN Sep 2020 v
multi-scale techniques
Measuring the cosine similarity

Nguyen et al. [207] FWB 56.2/59.9 X of class feature vectors Metric learning Sep 2019 v
and query feature vectors

Wang et al. [208] PANet 48.1/55.7 X Each pixel is compared to the prototype  Metric learning Feb 2020 4
Support for performing multi

Zhang et al. [209] CANet 55.4/57.1 X -level feature comparisons between Metric learning Mar 2019 v

images and query images

TABLE 12
The latest performance of FSL in the tasks of few-shot instance segmentation during 2018-2021.

Core idea Approach Taxonomy  Pubilsed Date  Available code

Ref Model 1-shot MAP50  Extra Training Data
Ganea et al. [210] ONCE iMTFA 20.13 X
Nguyen etal. [211] ~ FAPIS 16.3 X
Fan et al. [212] FGN 16.2 X
He et al. [213] Mask R-CNN 14.8 X
Michaelis et al. [214] Siamese Mask R-CNN 14.5 X

Learning discriminative
embedding vectors
Modeling of shared parts v
Using attention and
relationships to guide Based model Sep 2020 v
generalization

v

v

Jun 2021 v
Apr 2021

Metric learning

Metric learning

Adding masks to

predicted objects Aug 2017
Encoding reference image
subjects

Data Augmentation

Metric learning Nov 2018

complexity of meta-learning is a direction worthy of deeper
discussion and exchange among researchers at the moment.

8.3 Learn meta-knowledge more effectively from his-
torical tasks

Meta learning is still limited to performance in a specific
task space under a defined network structure. In the case of
classification tasks, only associations between classification
tasks can currently be considered. Is it possible to have a
framework that can take into account tasks such as classi-
fication, detection, prediction, and generation at the same
time? This would enable meta-learning to be somewhat
separated from the conception of tasks. Some recent work
has attempted to optimize each small batch as a whole. In
this case, how to optimize the inner loop will be an im-
portant direction of optimization for efficient applications.
In the future, pre-training and fine-tuning will become the
mainstream algorithms for FSL. At present, meta-learning is
still exploring the correlation between tasks, and no relevant
theory has yet emerged to explain the causal relationship
behind meta-learning. As the causation theory framework
evolves, meta-learning would probably tend to become a
more general framework.

8.4 Full convergence of multimodal information

Multimodal learning is currently an emerging approach for
solving FSL problems by automatically learning small sam-
ple tasks in edge scenarios without supervised information
and quickly migrating to data from different domains. It

is widely regarded as a path exploration from weak Al in
limited domains towards general Al. The implementation
of pre-training and fine-tuning in multimodal learning sce-
narios can largely enable the usage of a uniform feature
representation across different tasks. For instance, cross-
modal understanding, and cross-modal generation. The
emergence of multimodal pre-training models can support
multiple tasks, generalize across many scenarios, and have
a substantial ability to generalize and replicate at scale.
Extensive work has been done on fusing two or more types
of information, including semantic information. Nonethe-
less, the main work is still focused on pixels and semantic
information, with a relatively single function. In order to
effectively address feature reuse under multiple modalities
and reduce the cost of data annotation, there is an urgent
need for the industry to materialize a powerful pre-trained
model involving the fusion of three and more modalities.

9 CONCLUSION

As an important branch of deep learning, few-shot Learning
does not require a large amount of data but chooses a
softer approach to solve problems, where it can be perfectly
integrated with techniques such as transfer learning, meta-
learning and data augmentation. In this paper, we provide
a comprehensive survey of FSL in the form of questions and
answers that easily distinguish the confused concepts and
summarize the rich baseline dataset under FSL. Besides, we
provide unique insights into the challenges in the develop-
ment of FSL following a new taxonomy. The evolution of



relevant research methods is analyzed in depth according
to the degree of integration of knowledge in each stage.
Furthermore, for the sake of completeness of the exposition,
we also compare and analyze the recent advances of FSL
in the field of computer vision. Finally, we present a list
of possible future research directions and opportunities in
light of the extensive recent literature. Overall, this paper
provides an overall comprehensive summary of the frontier
advances in FSL over the past three years and is expected
to contribute to the synergistic development of FSL and its
related fields.
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