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ABSTRACT

Augmented Footwear has become an increasingly common research
area. However, as this is a comparatively new direction in HCI,
researchers and designers are not able to build upon common plat-
forms. We discuss the design space of shoes for augmented tactile
reality, focussing on physiological and biomechanical factors as well
as technical considerations. We present an open source example
implementation from this space, intended as an experimental plat-
form for vibrotactile rendering and tactile AR and provide details on
experiences that could be evoked with such a system. Anecdotally,
the new prototype provided experiences of material properties like
compliance, as well as altered perception of their movements and
agency. We intend our work to lower the barrier of entry for new
researchers and to support the field of tactile rendering in footwear
in general by making it easier to compare results between studies.
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1 INTRODUCTION

When we think of devices for VR and AR, the first things that
to come to mind likely are displays. The next type of hardware
we might think of likely are controllers or headphones. However,
beyond vision, hearing, and hand movements, there are very few
areas where device designs have converged in such a manner. That
is not to say that other input and output modalities are not also im-
portant. Especially, haptic experiences in VR and AR are something
generally considered desirable. There is also a recognition in the
importance of our feet in how we engage with the world [60, 74].
Consequently, a small but persistent research area in VR and AR is
the design of interactive shoes for tactile augmented reality.

This has led to a wealth of literature featuring novel shoe pro-
totypes. These devices range from vibrotactile augmentation [58,
60, 72], to mechanical approaches [17, 54], all the way to direct
electrical interfaces with the body [9]. Recent advances in vibro-
tactile rendering of tactile experiences such as friction [39, 70],
compliance [31], texture [60], torsion [22] and even complex object
interactions [82] suggest that vibration can be a much more pow-
erful tool in this context than one might superficially expect. We
focus on vibrotactile actuators as they are comparatively easy to
integrate in shoes, while providing powerful illusions of material
properties and material interaction.

However, unlike with other VR and AR hardware such as dis-
plays, controllers or headphones, there are no commercial devices
available which might serve as a platform to develop on top of, or
act as benchmarks to compare with. This has two negative aspects.
It requires researchers to continuously re-invent the wheel, leading
multiple different teams (e.g., [60, 65, 74]) to repeat very similar
engineering efforts and simultaneously making the research area
difficult for new researchers to enter. It also makes it difficult to
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compare, contrast, or contextualize existing work as a shared frame
of reference is missing.

The purpose of this paper is to discuss the design design space
of such shoes. We argue that a shared understanding of the design
space can act as a shared frame of reference. With this shared under-
standing many of the implicit design assumptions and decisions can
be made explicit. This will help future researchers design their own
shoes, and also support contextualizing their work. Additionally, we
show by example how this design space might be used in creating a
prototype which can create rich tactile experiences. This prototype
is open source!, can easily be reproduced, and lowers the barrier
of entry for new researchers to conduct work in this field. We
also provide an overview of experiences which can be created
by such shoes, based on empirical reports and supplemented by
literature. As such, the contributions of this work are a) a dis-
cussion of the relevant design space, b) an open-source example
implementation and c) reports of experiences that can be created
with such a prototype.

2 RELATED WORK

In this section, we discuss the state of the art of research in vi-
brotactile rendering and augmented footwear. We then highlight
augmented footwear systems based on vibrotactile rendering meth-
ods before discussing the value of open-source tools for science.

2.1 Vibrotactile Rendering

Carefully designed vibrotactile signals can be used to create expe-
riences of forces and materials exceeding what one might naively
believe vibration is capable of. For instance, Romano and Kuchen-
becker used prerecorded acceleration of a pen moving over textures
to vibrate a handheld device in a way that users experienced these
textures on smooth surfaces [51]. In a psychophysical experiment,
Strohmeier and Hornbaek found that the timbre and granularity
of vibrations can create distinct experiences, while the amplitude
alters the perceived strength of a texture [61]. Yao and Hayward
rendered vibrotactile cues on a handheld tube to simulate the dy-
namics of a rolling ball inside the tube [82]. Participants were able
to estimate the length of the inner cavity from solely rendered
vibrations.

Another approach demonstrated by Kildal was that rendering
of vibrotactile feedback based on the user’s movement can cre-
ate an experience of compliance [31]. This vibrotactile rendering
approach of vibration coupled with the human motion was fur-
ther used by Strohmeier et al. to create an experience of changing
material composition [59]. Heo et al. generated experiences of bend-
ing, stretching and twisting by rendering vibrations based on the
changes in force and torque applied by the user [22]. They also
generated an experience of compliance by vibrotactile rendering
based on the tangential force provided by the user [21]. Sabnis et
al. presented an open source vibrotactile rendering system which
can be used to implement these experiences [53].

Vibrotactile illusions are another approach to generate high fi-
delity renderings. One of the earliest known vibrotactile illusions is
the apparent tactile motion illusion. Here, two vibrotactile stimuli
placed in proximity on the skin with overlapping actuation times
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would not be perceived as two actuators, but rather as a single
actuator moving between them [8]. Israr and Abnousi used this illu-
sion to create calming sensations on the forearm [25]. Alles found
that a phantom sensation of a vibrating actuator can be created
by providing two vibrotactile stimuli on two different parts of the
arm [3]. Tawa et al. proposed mathematical models to extend the
range of presentation of the phantom sensations beyond the con-
ventional inter-stimulus model [68]. Israr and Poupyrev proposed
an algorithm called Tactile Brush to create smooth two-dimensional
motions using the apparent tactile motion as well as the phantom
sensation [26]. With this algorithm, they were able to design high-
density sensations with a few actuators. Rendering asymmetrical
vibrotactile stimuli on the skin has been used to successfully pro-
vide directional cues and angular velocity cues for certain body
movements [5, 52].

Despite all these developments in vibrotactile rendering, the ro-
bustness of the rendering is dependent on physiological parameters
of the human body as well as the technological constraints. With
feet being one of the less sensitive areas to tactile stimuli, vibrotac-
tile rendering for shoes affords its own line of research, which we
aim to support with this paper.

2.2 Augmented Footwear

Foot interfaces have a tradition in Human-Computer Interaction
research and evolved from stationary platforms over wearables to
highly integrated devices for human augmentation [12]. Further-
more, augmented footwear is still gaining attention in research.
Although many different approaches have been developed and
studied in the last two decades, referring to Elvitigala et al. there
are still open challenges, especially to create interfaces that sense
biomechanical parameters and to provide subtle and efficient feed-
back [12]. Even though there are efforts for open-source devices [50],
Elvitigala et al. described the lack of widely available augmented
footwear as one of the open challenges as well [12]. This is the
challenge we wish to address in this paper.

In their review of more than 100 academic papers, Elvitigala
et al. identified categories of popular applications for augmented
footwear like sports and well-being, rehabilitation, assistive devices,
or VR [12]. In sports and fitness instrumented shoes and insoles
support users to learn motor skills, for example to improve their
climbing technique [15], maintaining the correct posture during ex-
ercises [13, 14], or to support online fitness sessions [67]. Symbolic
and metaphoric vibrotactile patterns have been implemented with
multi-actuator devices (e.g., 4X4 matrix [75]) to indicate directions
in navigation tasks [66, 75]) as well as systems to guide users by
inducing a certain walk cycle [80] or using tactile illusions [36].
Integrated [2, 20] and distributed systems [81] have been used in
the domain of rehabilitation for gait training (e.g., post-stroke reha-
bilitation). Other assistive applications are for instance supporting
deaf dancers perceiving the rhythm and tempo of music [83] or
to elicit cognitive awareness of people with Alzheimer’s disease,
specifically avoiding mental trance [46]. Finally, a large corpus of
work can be found in the domain of VR and AR, which we focus
on in the paper.

There is a broad range of approaches used for augmenting walk-
ing for VR and AR. These include grounded systems which can be
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quite powerful, enabling experiences such as falling [55], or step-
ping up staircases [54]. A popular and somewhat more light-weight
approach are pneumatic systems. Here, air-filled bladders are used
to render an object or terrain [77-79]. Non grounded systems have
also been explored, for example, by using the air flow of multiple
fans attached to the calf to simulate resistant force while walk-
ing in fluids in VR [29]. Another interesting approach includes
shoes with variable friction soles, which can mediate the shoe-floor
contact [24, 39, 70].

Generally speaking, the above examples come with significant
mechanical complexity, cost, or weight. Due to the relative ease with
which vibrotactile actuators can be integrated in everyday shoes,
their comparatively low energy requirements and minimal require-
ments for additional moving parts, they are the most commonly
seen approach in such augmented footwear [12]. As vibrotactile
feedback is also capable of creating a rich breadth of sensations,
and because we intend to design shoes which are as easy to re-
produce as possible, we also think vibrotactile actuation to be the
preferable approach of augmenting footwear for VR and AR. In the
next section, we present work which applies vibrotactile rendering
methods to augmented footwear.

2.3 Tactile Rendering in Shoes

There is an active research effort on applying the findings from
vibrotactile rendering research and vibrotactile illusions to aug-
mented footwear. Early approaches used audio-haptic systems
based on audio recordings to simulate the experience of walking
on different grounds [47, 58, 73]. These prototypes typically used
sensors for detecting impact and then playing back predetermined
audio-based vibrotactile or acoustic signals. Turchet furthermore
proposed several physically inspired models for foot-floor interac-
tions in combination with anthropometric features and parameters
of different shoe types to synthesize a broad range of realistic foot-
step sounds [71]. These sounds were also rendered as vibrotactile
feedback.

Other work directly implemented illusions that have already
been applied to other HCI areas to interactive shoes. For example,
Strohmeier et al. demonstrated measuring the pressure dynamics of
the foot, and generating corresponding vibrotactile signals in real
time [60]. This was used to create compliance experiences inspired
by Kildal [31] which were in turn used to create experiences such
as stepping on to foam or gravel [60]. Another interesting use of
vibrotactile illusions was presented by Lee et al. [34]. They aug-
mented the foot with two actuators—one on the sole and the other
on the instep of the foot-to evoke a body-penetrating phantom
sensation [34], similar to prior non-wearable work using appar-
ent tactile motion and phantom sensations [26, 57]. An interesting
side note is that while the bulk of these prototypes were designed
with the intention of augmenting the experience of the ground,
they might also augment the experience of the body. For example,
Tajadura-Jimenez et al. demonstrated a system that could change
the perceived weight of users through manipulating the sound of
their footsteps [65].

Currently, most prototypes are not capable of adapting their
feedback to foot dynamics in real time [58, 73], or are restricted
to foot dynamics at a specific location [60] , or purely focus on
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input, without any actuation [50]. One of the goals of the device we
present in this paper is to support exploration of a system which is
responsive to foot-dynamics in multiple dimensions.

2.4 Open Source Tools in Science

Reproducibility is one of the foundational pillars of modern science.
To encourage transparency of the research and open source sharing
of resources, data, research methodologies, successes and failures,
etc., the Open Science movement has gained a lot of importance
in recent years [1]. Current practices in the field of vibrotactile
haptics rely on re-inventing and re-development of devices used for
research [56], which restricts the bandwidth available to researchers
to expand the boundaries of knowledge. This could be prevented
by creating scientific tools and platforms that are free and open
source [48]. Such open-source hardware does not only provide
better science, as results are easier to reproduce, these open-source
tools are also cheaper, making them accessible also to institutions
with less available funding [69].

Open-source microcontroller platforms such as Arduino or Teensy
have had a substantial impact on supporting such open-source scien-
tific hardware [10]. For instance, Reinhardt et al. published material
for researchers to build open-source shoes for VR applications [50].
However, the accessibility and scalability of augmented footwear is
still an open challenge [12]. In our work, along with demonstrating
the prototype development process, we make all the designs, soft-
ware, findings and lessons learned openly available. Thereby, we
both support easy replication of our own experimental platform,
while also sharing what we learned on the way to encouraging
others to build remix and adapt the existing design to their own
needs and to create even more versatile shoe augmentations in the
future.

3 DESIGN DIMENSIONS

When building vibrotactile shoe prototypes, the literature typically
reports a subset of the design choices made by researchers. What is
often omitted is the broader design space these choices are sampled
from; what other options could have been chosen. Here, we wish
to discuss this broader space, both to help contextualize choices
other researchers already made and to guide researchers interested
in creating their own custom vibrotactile shoe prototypes.

3.1 Actuator Selection

Vibrotactile actuation can be provided with different technologies.
In this section, we discuss the properties of some widely used
actuators as well as scientific considerations.

3.1.1 Actuator Properties. Vibrotactile feedback is provided pri-
marily using Linear Resonant Actuators (LRAs), Eccentric Rotating
Masses (ERMs) and piezoelectric actuators. Important factors in
choosing an actuator include independent control of frequency
and amplitude, as well as overall acceleration. This is why LRAs
are the most common actuator found in research on vibrotactile
rendering (e.g., in [45, 51, 60, 61, 72]). See Figure 1 for an overview
of some actuators we like.

Other parameters which are important to consider include time
to signal onset, or the lag between the electrical signal and the
mechanical output. Here there is often a trade-off with velocity.
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Figure 1: Vibrotactile Actuators for providing high-definition
tactile feedback: (A) Arctronica HapCoilOne (Haptuator
Mark II-D), (B) Lofelt L5, (C) Grewus EXS 241408W A, (D)
Vibronics VLV101040A. The direction of the vibration is in-
dicated by arrows.

For example, the HapCoilOne by Actronica requires only 14 ms
to full amplitude, with an acceleration of 11.4 g (at 0.1 kg, peak-to-
peak). While the HapCoilPlus by Actronika requires 29 ms, but can
then reach a peak acceleration of 19.3 g. Depending on application,
the bandwidth is also important. Broadband actuators such as
the HapCoilOne or Apple’s Tactile Engines are able to provide
strong signals at a broad range of frequencies, enabling detailed
texture rendering [51, 61]. Other actuators (e.g., C and D in Figure 1)
only output their full velocity at specific frequencies, usually tuned
around the frequencies we are most perceptive to (approx. 170 to
230Hz [76]). This is sufficient for many rendering applications,
such as generic compliance illusions [31]. Available actuators also
differ in terms of form factor and encapsulation. Some have the
moving parts encapsulated (e.g., A and D in Figure 1) and others
have them exposed (e.g., B and C in Figure 1). On the one hand, the
encapsulation makes an actuator slightly bigger, which could be a
limitation for integration in small objects or prototypes with less
space. On the other hand, an encapsulated actuator can simplify
the integration, for instance placing them in tightly fitting molds
without worrying about the exposed moving parts.

3.1.2  Scientific Considerations. A factor not often discussed in
actuator choice is the information availability. For example,
actuators by Actronika are well documented and are built on a
legacy of the de-facto standard in vibrotactile rendering so far
(e.g.: [40, 51, 58, 60]). This means that experiments using these
devices can be easily contextualized with one another, and its be-
havior can be referenced to datasheets. In contrast, devices such
as the Taptic Engine by Apple have been used with much success
in prototypes, but as their documentation is not readily available
and, because they do not have the same tradition as the Actronika
devices, experimental results obtained using them are more diffi-
cult to put in context with the larger body of research. Finally, for
building research prototypes, reproducibility is essential. Here,
opting for low-cost devices is a simple way of ensuring a device
is easy to replicate. For example, while reproducing a prototype
using 5-6 Actronika Actuators will easily cost more than 1000 €,
the same device using Vibroncis actuators can be likely built for
under 50 €. However, cost is not the only thing to consider in this
context. As the haptics industry is currently developing at a rapid
pace, product life-cycles can be very short. For example, start-ups
might be bought up by larger companies, without the guarantee
that their products will continue to be available. This, for example,
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is presumably the reason why the excellent Lofelt actuator is no
longer available.

In summary, selection of the correct actuator for a research pro-
totype is a complex question. It is not sufficient for researchers
to consider the electrical and mechanical specifications of the ac-
tuators in question, instead it is already at this early stage that
questions around experimental validity and reproduceability must
be considered. Researchers must not only consider the actuator
itself, but also the actuators ecology and economic context.

3.2 Actuator Integration

In this section, we discuss the challenges to integrate actuators
in wearable prototypes based on physiological and mechanical
constraints.

3.2.1 Physiological Considerations. The perception of vibration
differs depending its frequency [76] and on the body part where it
is provided at [11]. Mechanoreceptors in the glabrous skin which
are receptive for vibrations are the fast adopting (FA) Meissner
corpuscles (FAI) and Pacinian corpuscles (FAII) [27]. In this work
we focus on the FAI and FAII receptors because these are sensitive
to the frequencies which typical vibrotactile actuators can provide,
i.e. FAL: 5-40 Hz and FAII: 100-300 Hz [30]. Their distribution across
the plantar sole as well as the size of the receptive fields have been
investigated among other properties in several studies [62-64].
Findings indicate that if working with lower frequency actuation,
one might use a comparatively dense array of actuators, as the
smaller receptive fields of Meissner corpuscles are indicative of
better spacial discrimination (Figure 2 A). For higher frequencies,
however, the larger receptive fields of Pacinian cells suggest that
dense arrays are not beneficial, as the size of the perceptive fields
indicate lower spatial discrimination (Figure 2 B). Additionally, one
should also consider that vibration travels through the skin, so even
receptive fields that are not adjacent to the point of stimulation
might still respond to it.

A crucial factor for placement and density of the actuators is
the two-point discrimination threshold (Figure 2 C). At a frequency
of 200 Hz this distance ranges from approximately 1.5 cm at the
big toe to 3.4 cm at the heel [33]. In the arch region, the thresh-
olds slightly increases from the lateral (2.61 cm) to the medial arch
(2.99 cm), whereas the threshold is almost constant at metatarsal
area (2.1 cm) [33]. If the discrimination of certain actuators is cru-
cial for the intended augmentation, one should not exceed these
area-depended distances, though the physiological measures of
receptive fields we discuss suggest that lower frequency devices
might achieve a higher spatial discrimination.

The actuator placement might also depend on the types of inter-
actions that should be augmented. For instance, augmenting the
weight shifting in a balancing task would need actuation in the
longitudinal and lateral direction independently. Therefore, at least
two actuators are needed per axis, but the number can be increased
depending on the desired spatial fidelity. Depending on the form
factor of the actuator, placing them between the metatarsal and
arch area might be challenging. While walking, the extension of the
toes right before the toe-off causes a deformation (bending) of the
shoe sole and hence could dampen the vibration or even damage the
actuator. Large actuators should therefore not be placed in this area.
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Figure 2: Receptive fields of individual instances of fast adapting mechanoreceptors (A) Meissner corpuscles (FAI) and (B)
Pacinian corpuscles (after Strzalkowski et al. [63]). (C) Two-point discrimination thresholds at 200 Hz stimuli (after Kowalzik
et al. [33]). Illustration of multiple actuators attached to a (D) rigid material to vibrate the entire object, and (E) embedded in a

soft material to provide solely localized vibrations.

Placing actuators on the top or at the side of the foot instead could

be an alternative, depending on the form factor of the footwear.

Experiments demonstrated that providing vibrotactile stimuli on
the instep of the foot can also evoke illusory tactile sensations on
the foot sole [23, 34].

3.2.2  Mechanical Integration. We divide the vibrotactile actuation
in footwear into two main approaches: vibrating the entire shoe, and

actuating specific areas of the shoe (Figure 2 D and E respectively).

For the latter, a key challenge is the propagation of the vibrations in
the entire shoe. To vibrate specific areas in physiologically relevant
regions while walking, it is important to localize the vibrations
to those particular regions. A soft material which dampens the
vibrations more than a rigid material can be used to encapsulate the
actuator such that the maximum vibrational energy is transferred
in the desired (vertical) direction. For instance, inlays made from
silicone can encapsulate the actuator to serve two primary purposes:
1) decouple vibration from the soles which limits the energy
dissipation in multiple directions, thus focusing the vibration to a
pre-defined target area (illustrated in Figure 2 E), and 2) prevent
grounding of the actuator if the pressure on the actuator is
exceeded and thus the vibrotactile rendering is not perceivable
anymore. Moreover, such a targeted vibration can create realistic
effects like stepping on a pebble or having successive actuation
from the heel strike to toe-off phases of the gait cycle.

3.3 Sensing

Sensing of interactions and movements in the shoe provides crucial
information, for instance, regarding the different phases of the foot

|

pressure

movement during a gait cycle. However, sensing these interactions
and movements is challenging, since the sensing setup must not
interfere with the natural gait cycle of the user and needs to fit
inside the footwear.

3.3.1 Technologies. Several sensing technologies have been suc-
cessfully used in various applications, and smart insoles became
popular and affordable in the last decade [4]. Pressure sensing and
motion sensing are the two main types of sensing required for ap-
plications ranging from balancing tasks and sports movements to
gait analysis in rehabilitation, as well as healthy adults [12]. For
sensing pressure, various approaches have been implemented in
research. Martini et al. used opto-electronic sensing, in which a
silicone layer deforms based on the applied load, thus closing the
light path between the emitter and the receiver which causes a
change in the output voltage [37]. On the other hand, capacitive
sensing is one of the recently used techniques [7, 35], in which a
capacitive sensor consisting of two conductive plates is separated
by a dielectric material. Based on the load applied, the distance be-
tween the conductive plates is modified, thus generating a variation
in capacitance. Although opto-electronic and capacitive sensors
provide increased accuracy, due to comparatively high latency, ex-
pensive setup and durability concerns, Force Sensitive Resistors
(FSRs) are a suitable and affordable alternative and are widely used
in research (e.g., in[18, 47, 58, 60]).

Pressure sensors can be used to retrieve information about the
motion properties during the stance phases or to identify implicit
interactions like the surface type a user is walking on [38]. As soon
as the foot is lifted or rotates, one need to use different sensor

between foot

and sole _\

between sole o

and ground @

Figure 3: (A) shows the plantar pressure distribution. (B) highlights four uncorrelated regions while walking that are useful to
sense pressure dynamics for gait analysis [28]. (C) illustrates two types of interactions that can be sensed with pressure sensors.
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Table 1: Comparison of features of selected augmented shoes. GymSoles [14] has more input and output options than others,
but low signal resolution, CapSoles [38] and the open source "Build your Own" [50] are purely input devices. The prototypes by
Turchet et al. [43, 72] are unable to respond to real time signal dynamics. bARefoot [60] only uses a single sensor/actuator

paring.
Sensors Actuators
Number ngisri(r)]rémental K\&ﬁgg&%ant
GymSoles 16 No 8
CapSoles 9 Yes -
Turchet et al. 2 No 2 (4 total)
bARefoot 1 No 1 (4 total)
Build your Own! 1 No -
Proposed System 4 No 4

technologies to retrieve these types of information. A common type
of sensor for such purposes are Inertial Measurement Units (IMUs).
IMUs combine a set of sensors, usually gyroscope, accelerometer,
and magnetometer and fuse the data streams to calculate linear
accelerations and orientation. These sensors are available as small
breakout boards that allow the integration inside the shoe, e.g., in
the insole.

3.3.2  Physiological Properties and Positioning. An important de-
cision for an augmented footwear is the number, locations, and
the size of the pressure sensors. This is mostly determined by the
physiology of the foot (i.e., pressure distribution) and the type of
activity that needs to be analyzed. Figure 3 A) illustrates a typical
pressure distribution for gait. Kanitthika and Soo Chan investigated
the distribution of the plantar pressure while walking. Their goal
was to find a minimal set of optimal sensor positions on the foot
by identifying regions where the pressure dynamics were mini-
mally correlated with other foot areas [28]. Based on an insole
equipped with 99 sensing elements (Pedar-X system by Novel) they
identified four regions: 1) the heel, 2) the outline of the arch, 3)
the metatarsal, and 4) the toes [28] (illustrated in Figure 3 B). In
a typical gait cycle each (or a set) of these areas can be related to
a specific phase, for instance, a rapid peak at the heel indicates a
heel-strike whereas a rapidly reduced pressure at the toe indicate
the toe-off (i.e., beginning of the swing phase of the corresponding
leg).

However, the number of sensors depends on the intended appli-
cation. While simple trigger (e.g., for foot tapping) only require a
single sensor, two to four sensors are suitable to investigate gait pat-
terns, but other interactions might need more sensors. For instance,
to sense the dynamics of foot movements during a balancing task
each area would need at least two sensors in the longitudinal as
well as the lateral direction.

When using pressure sensors to investigate the users’ move-
ments and interaction, it is also worth thinking about the type
of interaction that should be sensed. This could be the pressure
dynamics between the shoe sole and the ground or the pressure
dynamics between the foot and the insole (Figure 3 C). These mea-
sures are highly correlated, but different from each other. The small
discrepancies are particularly important for rendering material ex-
periences, where using pressure dynamics between the shoe sole
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and ground for generating the augmentation might be perceived as
if the properties of the ground change, while the pressure dynamics
between the foot and insole might be perceived as an augmentation
of the shoe itself.

3.4 Construction

One might have a bespoke shoe handcrafted by an expert shoe-
maker according to our specifications. Alternatively, one might
build upon some of the impressive generative work available in the
design and HCI literature (e.g., [6, 16, 41, 42, 84]). Here, again, there
is no clear best solution, as different approaches have their own
benefits and drawbacks.

A professionally handcrafted shoe would be an optimal solution
in terms of comfort, the robustness related to the chosen materials
and fabrication techniques, as well as the customized integration
of the electronics. However, this specialized knowledge and skills
would reduce the reproducibility. The parametric and generative
3D design approach addresses this, for example with algorithms
that generate shoe soles considering different physiological prop-
erties (e.g., foot shapes or sizes) for 3D printing [6]. Even though
this simplifies the reproducibility and offers opportunities towards
customization and personalization of the designs [42, 84], the inte-
gration of electronics is not part of such systems and hence needs
additional effort. Hence, one might consider reducing the complex-
ity by only using rather simple CAD software to design a shoe (or
shoe sole) for a naive 3D printed approach (e.g., with flexible fila-
ment like TPE or TPU). While this would allow many researchers
to replicate the devices easily, the prototypes might lack comfort
or are not as robust to last for longer than a couple of studies.

4 EXAMPLE IMPLEMENTATION

In this section we demonstrate how the above considerations, in
conjunction with real world constraints and requirements, lead to
concrete design choices. In this case, we set out to create a proto-
type to be used in the exploration of tactile renderings. Moreover,
our goal was to create a device which is easy to create, so any ex-
periment run with it can be replicated, and which is sturdy enough
to withstand the trials of an experimental session.
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4.1 Prototype Constraints

4.1.1  Application Constraints. In this work, we focused on tactile
rendering to augment the human experiences of walking on dif-
ferent surfaces and textures as well as the body perception while
balancing. Therefore, an augmented footwear needs to sense the
dynamics of the human motion (i.e., progression of the pressure dis-
tribution on the plantar region) and create the vibrotactile feedback
accordingly. While the perception of textures could be realized by
augmenting the entire foot sole at once [60], the augmentation of
shifting the center of pressure (COP) during a balancing task should
be localized depending on the current COP and the direction of
change [13, 14]. Since we aimed to augment a variety of activities,
we decided to incorporate multiple sensors and actuators to enable
such localized vibrotactile renderings. We decided to use the four
sensing regions discussed in Section 3.3.2. Moreover, we chose the
same positions for the actuators to spatially couple the sensing and
actuation for localized augmentations.

4.1.2  Construction Constraints. We focused on simple techniques
for the design and construction, i.e. semi-parametric CAD modeling
and fused deposition modeling (FDM) 3D printing. Decisions were
made due to available materials, machines and tools in the lab as
well as the authors’ knowledge and skills (e.g., CAD modeling, sili-
cone molding, 3D printing, laser cutting, PCB design). We aimed to
construct sandals that are suitable for slightly ditferent shoe sizes.
Since none of the authors had skills in traditional shoe manufactur-
ing, we for example relied on retail sandals for the strap system to
reduce the efforts to get a certain level of comfort for the wearer.
Additionally, we aimed for robustness of the 3D printed soles, so
they can withstand bending or scratching over rough materials.

4.1.3  Scientific Constraints. In scientific contexts, it is important
to enable other researchers to reproduce the apparatus and recreate
studies to prove or falsify the results or to build upon previous
work. Even parameters that are given on datasheets need to be
contextualized in the actual prototype to understand their effects in
the entire system (e.g., the frequency response curve of an actuator).
Hence, it needs detailed information on the construction as well.
This also applies to the fabrication methods, materials, and tools.
In terms of tools, the accessibility in other labs could be a limiting
factor. We therefore suggest to use widely available and affordable
tools (e.g., FDM printers), and if possible to prefer simple fabrication
methods over complex ones which would need special skills or tool
chains.

4.2 Construction

Based on the highlighted constraints, we designed and build a pair
of sandals. In particular with regards to actuator capabilities and
sensor numbers, we were unable to use existing available designs
(See also Table 1). The soles were designed in a semi-parametric
manner in a CAD modelling software (Fusion 360 by Autodesk)
and 3D-printed, whereas the straps were taken from retail sandals
(C and D in Figure 4) to further simplify the construction and
to provide a certain level of comfort. To encapsulate the sensors
and actuators, we designed a bottom and top layer, that are glued
together in the final assembly (Figure 4). All 3D models were sliced
with 20% infill of a Gyroid pattern using the Cura Slicer (Ultimaker)
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Figure 4: The first iteration of the augmented footwear: (A)
Positioning of the sensors and actuators; (B) The bottom and
top part of a sandal with four FSR sensors (left) and four
actuators (right) embedded into the sole with silicone inlays;
(C) The top part with off-the-shelf straps (left) and the profile
of the bottom part (right); (D) The fully assembled sandal.

and printed with a flexible Thermoplastic Elastomer (TPE) filament
(TPE95A by Jabil) on an Ultimaker S5. This infill pattern was chosen
to reduce the weight of the 3D-printed parts. The overall weight
of a single, fully assembled sandal (incl. electronics) was approx.
300 g. The weight of 3D-printed parts per sandal were 134 g (top:
86 g, bottom: 48 g).

Four FSR sensors were integrated in the bottom layer and four
actuators were integrated in the top layer. The cables were routed in
pre-defined grooves. Figure 4 A) illustrates the positions of the com-
ponents and how sensors and actuators are stacked. To focus the
vibration to a targeted area and to prevent the vibration grounding,
we cast silicone inlays (MoldStar 20T, Shore 20A) for the actuators.
We opted against wide-band actuators as we did not require them
for our desired application, and so we can use smaller actuators.
The straps were fixed with hot-glue inside pre-defined slotted holes.

4.3 Electronics and Software

The sandals with the integrated sensors and actuators are connected
to a custom PCB that holds all the electronics to communicate with
the control software and to provide the vibrotactile augmentation.
Figure 5 presents on the left all components, as well as the tech-
nologies and protocols used for communication (i.e., transfer of
control signals and data).

4.3.1 Electronics. The embedded system design is based on the
open-source Haptic Servo by Sabnis et al. [53]. Haptic Servos are
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Figure 5: Top: Schematic illustration of system components
and the communication protocols. Bottom: GUI software to
control the augmentation and record sensor data streamed
from the augmented footwear.

embedded devices which contain an analog input for measuring
human action dynamics, a microcontroller for creating a control
signal based on these sensor readings, a digital to analog converter
to output this signal, and an amplifier for driving haptic actuators.
This enables fast prototyping of haptic rendering systems [53].

In the case at hand, the Haptic Servo system was implemented us-
ing Teensy 4.0s and modified to drive two actuators simultaneously.
Each sandal was connected to two of these Teensy 4.0s (Figure 5 left).
Each Teensy reads two analog signals from FSR sensors (FSRO6BE
by Ohmite) and generates two independent output signals (i2s),
respectively. The Teensy’s audio output channels are fed into a
16 bit DAC (PT8211 Audio Kit) and the line level audio is amplified
by a 3.7 W class D stereo amplifier (Adafruit MAX98306). Because
of their small footprint, we used the VLV101040A wideband LRAs
by Vibronics to turn the amplified audio signal into vibrations.

The signal generators (Teensys) are connected to an ESP32
(M5Stack M5Stamp Pico) that acts as a communication relay (bidi-
rectional via I2C). The relay-controller receives and transfers con-
trol commands to the signal generators and receives sensor data
(FSR) from the signal generators and forwards them to the control
software (subsubsection 4.3.3). Additionally, the ESP32 has an IMU
(BNOO055) attached to retrieve the orientation and acceleration of
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Figure 6: Illustration of the tactile rendering approach. Im-
pulses are played back at a frequency proportional to how
fast the pressure changes. As a result vibration is experienced
as caused by the interaction between the user and the suface
they are stepping on.

the sandal. This information is synchronized with the FSR data and
sent to the control software via Bluetooth Low Energy (BLE 4.2).
The wireless communication allows the system to be freely used
within a radius of approx. 10 m (distance to PC).

Another ESP32 is connected via USB to the PC and acts as a BLE
transceiver. It receives control commands from the GUI software
via UART and forwards the commands via BLE to the sandals’ relay
controllers. With this additional controller, it is possible to use the
system with a computer that doesn’t support Bluetooth.

4.3.2 Firmware. The system involves three different firmware: 1)
the signal generators running on Teensy 4.0 as well as 2) and 3) the
two communication relays running on ESP32, where 2) is also used
to synchronize FSR sensor data with readings from an IMU. Each
signal generator serves four major tasks: 1) monitors two analog
pins connected with the FSR sensors, 2) generate vibrotactile pulses
using the stereo audio capabilities of the Teensy Audio Library
based on the sensor readings, 3) process control commands from
the control software, and 4) send the sensor data to the control
software. The augmentation we use in the work is inspired by a
method developed by Kildal to make a rigid object being perceived
as compliant [31]. The 10 bit value range of the analog readings is
divided into a given number of regions (bins). Each bin is defined by
an upper and lower bound and is associated with a set of vibration
parameters (e.g. duration, amplitude, frequency). If the sensor value
crosses a bin border, a pulse with the defined set of parameters
will be generated as an audio signal and played back as a vibration
(Figure 6). Hence, the dynamics of the vibrotactile feedback unfolds
in sync with the dynamics of the pressure applied on the FSR while
walking. The definitions of bin borders, associated parameter set,
as well as the set themselves are provided as header files in the
firmware code. At runtime, the user can switch between different
augmentations using the control software.

The firmware for the two communication relays is fairly sim-
ple. These implement a BLE central and peripheral respectively to
transmit control signals (e.g., start/stop/select augmentation) and to
stream sensor data wirelessly. While the controller that is connected
to the computer uses a serial connection (UART) to communicate
with the control software, the relay controllers at the sandals use
a I12C communication to send commands to the signal generators
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and to retrieve sensor data from them. This controller retrieves
orientation and acceleration data from an IMU via I2C.

4.3.3 Control Software. The augmented footwear is connected to
a GUI software (Figure 5 right). This software is used to control
the augmentation and to record sensor data (i.e., FSR and IMU). At
runtime, the user can toggle on or off the augmentation for each
sandal separately or for both at once, and can select the type of
augmentation itself. A second purpose of this tool is to record sensor
data sent from the sandals that can be used for motion analysis later.
Users can select a directory and name, as well as a sampling speed
before starting to record data. Time-profiles of the FSR data will be
visualized while recording. To ensure cross-platform compatibility,
we developed the tool in Processing (version 4.0b1). The source
code is available in the project’s repository?.

5 EXPERIENCES

To better convey the opportunities of our prototype, we present
initial anecdotal experiences. We expect these observations to act
as a foundation for future experimental work. We do not claim
that they can be systematically reproduced. We share them here to
highlight the opportunities of this type of augmented footwear for
VR and AR, as inspiration for future directions to explore, and to
highlight how choices within the design space might influence the
experiences a haptic shoe can convey.

5.1 Setup and Tasks

We tested our prototype on a variety of surfaces for about an hour
using two vibrotactile rendering types while walking on these sur-
faces or balancing on objects (Figure 7). The first rendering type
provided a continuous playing vibration as soon as the pressure ex-
ceeds a certain threshold, i.e. while standing or shifting the weight.
The inverted case, i.e. while lifting the foot, was also tested. The
second type of tactile rendering used motion-coupled vibrotactile
pulses as described in Section 4.3.2. Here, we used two settings:
one with pulses of 11.74 ms (2 cycles), while the second used 50 ms
pulses. All vibrations were produced by a sinusoidal signal at 170 Hz
(resonance frequency of the actuator).

We also worked with two naive users, Ata and Rishabh (both
male, aged 31 and 28, respectively) from different research groups
at our institution to test the augmented footwear. The users were
naive in the sense that they were not familiar with the design and
research goals. These users wore the prototype in a series of tasks
which involved weight shifting and lifting the feet in place and
walking on different surface textures (in total approx. 40 minutes
per user). Both users experienced two motion-coupled vibrotactile
renderings, as in our tests among the authors. The main goals of
the tasks were to examine the quality of the feedback delivered
by the multiple sensor-actuator placement in the implementation
and the experience of the compliance illusion as felt in different
walking and standing behaviors.

Figure 8 depicts the tasks (T) completed, in the following order: 1)
standing and shifting the center of weight while in a confined space,
without lifting the feet, 2) walking in a marked rectangular outline,
with 90 degree pivots, 3) walking in a marked figure-eight outline,
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Figure 7: In preliminary tests, the authors explored the ex-
perience of walking with the augmented sandals on differ-
ent surfaces, i.e. (1) walking up and down stairs (stone), (2)
asphalt, (3) wood chips, (4) grass, (5) tree trunk, and (6) bal-
ancing on a springy plate.

with smoother curved pivots, 4) walking indoors, back and forth
between tiled and carpeted flooring, 5) walking up and down a flight
of stairs, and 6) walking outdoors, back and forth between grass and
mulched wood chips. T1 provided an introduction to the feedback
while standing and shifting weight, T2 and T3 different weight
shifts and foot contact with the ground while walking/pivoting, T5
lifting the feet individually and climbing, and T4 and Té contrasts
between different surface textures.

5.2 Key Experiences

5.2.1 Compliance. The augmentation provided sensations of com-
pliance for both Ata and Rishabh. While shifting his center of
weight, Rishabh described this compliance as like "bubble wrap,'
something "triggering" with his movement. The compliance was
particularly notable in the users’ experience of textures underfoot
when walking indoors and outdoors, and in applying more pressure
in the step when shifting weight and climbing stairs.

The softer textures of the carpet and mulched wood chips were
accentuated by the augmentation, creating an experience that the
materials were much softer with the vibrations. Rishabh described
these materials similarly, with the carpet being "damp" and the
mulch "wet": "Walking on the cushion [carpet] makes it softer... I
notice the difference. The vibrations are pretty damp... Right now
[on the mulch] it feels like walking on a moist surface. Not very
hard... when I'm doing this I can feel it’s not so soft down there, but
when I move it, it is kind of soft, at least softer than there [on the
grass]". These softer sensations in turn impacted the perception of
the grass as being "harder definitely" and more uniform, although
Rishabh recognized that the grass, like the mulch, was not a flat
area: "I can feel it is harder than that [the mulch] but then it’s also
not a plane area, so I doubt it."

The compliance illusion also created an augmented "pressing”
sensation when climbing the stairs. Ata felt "the vibration is a bit
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Figure 8: Exploring vibrotactile augmentation indoors and
outdoors: (1) exploring the augmentation while standing and
shifting the center of mass in a small area, (2) walking along
a 3 by 3 meter square, (3) walking an eight-shape between
two piles, (4) walking a hallway on two different surfaces
(stone and carpet), (5) walking up and down stairs, and (6)
walking outside on grass and wood chips.

stronger here with more pressing horizontal than vertical” across
his foot. It feels more like a pressing sensation." Rishabh described
that "While going down, it does not feel much, but while going
up it does vibrate... it feels that the surface is softer. In fact, while
coming down I don’t feel the vibrations at all... Because I'm going
down, I am shifting weight on my toes, and that’s why."

5.2.2  Sensor-Actuator Positions. The position of the sensor-actuator
pairs across the sole created experiences of differences across the
foot and awareness of weight distribution for Ata. While standing
still and shifting his center of weight, Ata commented that "As I am
leaning on one direction, I'm feeling more vibrations happening on
that direction on both feet." He also described how the vibrations
at the tip of his foot were the most able to be sensed. While walk-
ing along the marked shapes, the shifting of the weight through
the step were most notable when walking slowly: "I can sense the
pivoting slowly like shifting my weight from that side to this side."
With the sharp corners of the rectangular shape, "I feel the front
side and the central sites of the foot vibrate more than the back and
the outer side”

5.2.3 Discomfort. While using the inverted continuous vibration
(feedback applied to lack of pressure), the prototype was able to
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deliver a feeling of being uncomfortable to move. Because the vi-
bration is constant while no pressure is applied to the sole, Nihar
experienced feeling not wanting to move and needing to stand still
with full weight on both feet in order to not receive the constant
feedback. In contrast, when the continuous vibration based feed-
back was applied on press (e.g., while standing) Nihar preferred to
keep on walking to avoid the continuous feedback.

5.24 Returning to Reality. Another notable experience described
by Ata came after the vibration was turned off. Ata commented
during walking along the figure-eight shape that he was "much
more aware of my state of walking... it seems very natural" After
the tasks were completed and the feedback was turned off, Ata
remarked that his walking "Feels heavy... It does feel weird because
I think the nicest feeling was [being] aware of your walking" This
experience is particularly interesting, as it indicates the potential
for designing dedicated experiences for this transition phase, as
investigated by Knibbe et al. for VR scenarios [32]. Furthermore,
Ata described the feedback from the shoe as providing a kind of
extension for what the foot naturally feels but is normally masked
by a shoe: "It’s like walking in the dark and not understanding
what you’re stepping on. When you close your eyes, you get more
sensations of feedback [because] we need to focus on it. You already
get that feedback. I really like that feature [about the haptic shoe]. I
feel like it was like walking on sand barefoot. It feels like your shoes
cause you to not have those sensations normally, but when you
wear this it helps you to have a sensation of your walking cycle."

6 DISCUSSION

6.1 Reflections on the Implementation

Generally speaking, the sandals performed as expected. We demon-
strate that a relatively simple and low-cost implementation is able
to create experiences such as compliance, material textures, weight
shifts, motivation to move or not move, and a heightened aware-
ness of walking and their tactile surroundings, which people missed
once they no longer had it. In general, the sandals provided a certain
level of comfort and did not interfere with the natural gait when the
augmentation was turned off. All users were able to perceive the
vibrations at all four locations on each sole, however, the perceived
strength differed between users. This is likely due to the ditfer-
ences in body weight, with vibration appearing more prominent
for lighter users.

However, the design was not free of flaws (Figure 9). The applied
physical stress like scratching the soles over rough surface textures
(e.g., asphalt) or getting stuck on the edges of stairs with the tip
of the soles caused the glued parts to lose connection (Figure 9 A)
and defibering of the 3D printed material on the heel (Figure 9 B).
Also, the continuous bending of the soles while walking created
crease marks on the top part of the sole (Figure 9 C) and the com-
pression and shear forces inside the soles caused the infill structure
to collapse and defiber (Figure 9 D).

To make the sandals more sturdy, we will change the infill pattern
from Gyroid to Triangles [49] and increase the infill density from
20% to 35% in future iterations. This will also increase the weight
of the 3D printed parts from 134 g to 184 g (top: 112 g, bottom: 72 g).
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Sturdiness can be further increased by coating the edges with liquid
rubber (mibenco PUR) to seal and protect the edges.

We also found that the tolerance of actuator placement to varia-
tions in foot size is low: while a given shoe can fit a range of sizes
in practice, deviations smaller than a centimeter can cause mis-
alignment between the shape of the foot and the placement of the
actuators. For this, we intend to implement multiple sandals of dif-
ferent sizes for future experimental work. Creating these manually
is not optimal, in future we intend to look towards parameterized
design tools (e.g., [19, 44]), which might be especially interesting
in the context of generative design work (e.g., [16, 41, 42]).

6.2 Design Space

The sandal we designed is not a one-size-fits-all solution, nor is it a
general purpose device. Rather it is tailored towards our interests
as designers. For example, our choice of relatively high frequency
signals, allows us to use a relatively low number of actuators, due
to the relatively large receptive fields of the Pacinian corpuscles.
However, our approach of mechanical integration still allows for
some localization. Finally the actuator we chose has a relatively
narrow bandwidth, a concession we made to simplify construction.
These are choices made from a design space that include techni-
cal considerations such as actuator properties and sensor design
constrained by the physiological considerations of human sensing
and acting capabilities. It also contains mechanical considerations
which modulate how sensors and actuators function. Finally, it
considers construction considerations, which influence the ease of
replication.

An observation we made, which we believe is often not explicitly
addressed, is that in practice the final choice for sensors, actuators,
or design approach is based on soft factors, that is, social consid-
erations. These social considerations are rarely discussed, in part
because they are implicit, in part because it sounds more scientific
to claim "we chose this actuator due to its resonant frequency" than

Figure 9: Problems with the first prototype. The outer shell
of the print dispersed on the front (A) and especially on the
heel (B). (C) Crease marks occurred on the top of the sole at
the metatarsals. (D) The infill structure broke.
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to say "we chose this actuator because it is easy to purchase". How-
ever, these soft factors are important, and have scientific relevance,
in particular when looking towards replicability of experiments,
validity of results, and fostering an inclusive and diverse research
community.

Presenting this design space is intended not just to help others
build their own prototypes, but also as a tool to systematically re-
view differences and similarities between existing prototypes. They
will help outline the important differences between a high fidelity
and low fidelity device, so that we might better understand what
factors are responsible for differences in experimental findings.

6.3 Design Diversity

Working with augmented footwear is different from other aug-
mented reality technologies for a number of reasons: visual and
acoustic AR and VR has matured to the point where devices are
readily available to researchers and consumers alike. Having access
to such mature products is beneficial for research as it makes it easy
for novices to start engaging with the research area. It also allows
experts to deploy their respective studies on the same or similar
hardware, which improves the validity, as it reduces the chance
that etfects are attributed to the design of the device, rather than
the specific research question explored.

The technical capabilities of these more matured devices are,
however, not the biggest difference to the augmented footwear
space. They do not only represent a significant expertise in how
they are built, but also in what to build. This what is shaped by
years of exploration which has lead to an understanding of the
relevant psychophysical factors, such as representation of color
spaces in displays, or desired frequency responses of headphones,
as well as a consensus between users and designers of the type of
content and style of content the devices are optimized for.

Designing augmented footwear then is not just a technical prob-
lem, rather it is a massive design challenge, as it is unclear what
properties such an augmented shoe should have. There is no con-
sensus on what, specifically, the useful applications, the type and
style of content of such a device should be. Will future users want
dramatic effects that can be achieved through devices such as Level-
Ups [54]? Will the more subtle approaches we highlight here be
more desirable in everyday life? As these questions are not an-
swered, a "standard" haptic shoe cannot be designed. The biggest
problem here is not a technical one, but rather a soft problem, based
on social norms and expectations.

To address this, we explicitly decided to dedicate a significant
amount of effort in communicating the design space, and design con-
siderations which went into creating our prototype sandal. While
our prototype is open source, and we invite anyone to copy and
build on it, we do not expect it to serve all possible purposes. This
is why we provide reflections in the design choices, so that others
might learn from our thoughts, even if they decide to design some-
thing radically different. While we do not believe that our specific
prototype is relevant for all future work in this space, we believe
that sharing the underlying considerations will.

In summary, we provided an overview of the design space of vi-
brotactile interactive shoes for improving VR and AR including a
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sample implementation from the design space, along with anec-
dotal reports of experiences the system can evoke. This overview
supports researchers in either copying the existing implementation,
or help identify how their needs require a different design. This
enables researchers to compare and to discuss different approaches
and prototypes, and will help in decision-making for the design
of future augmented footwear and augmentation approaches. Ulti-
mately, we wish for our contribution to encourage others to engage
with this research area, while simultaneously improving the overall
quality of research on tactile AR and VR for augmented footwear.

7 CONCLUSION

Augmented Footwear can provide a powerful platform which might
act as an alternative or addition to traditional AR and VR systems.
However, as this is a comparatively new direction in HCI, there are
no products which researchers might build upon, and few shared
standards or platforms shared between researchers. We discussed
the design space of shoes for augmented tactile reality, highlighting
how physiological factors provide a guide for actuator placements
and biomechanical factors can guide sensor placement. Mechanical
considerations provide further constraints. Finally, we presented
an open-source example implementation from this space, which
can be used as an experimental platform for vibrotactile rendering
and tactile AR. Explorations of such renderings while walking and
balancing tasks evoked different experiences in naive users, such as
material properties (compliance) or agency. We hope our work will
contribute to further diversity and exploration of new and creative
ideas in this research area, by lowering the barrier of entry for new
researchers. We also hope that this type of work will support the
scientific quality of research output in the field by making it easier
to compare results between studies.
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