
9

Learning to Simulate Sequentially Generated Data via

Neural Networks and Wasserstein Training

TINGYU ZHU and HAOYU LIU, Peking University, China

ZEYU ZHENG, University of California, Berkeley, USA

We propose a new framework of a neural network-assisted sequential structured simulator to model, estimate,

and simulate a wide class of sequentially generated data. Neural networks are integrated into the sequentially

structured simulators in order to capture potential nonlinear and complicated sequential structures. Given

representative real data, the neural network parameters in the simulator are estimated and calibrated through

a Wasserstein training process, without restrictive distributional assumptions. The target of Wasserstein train-

ing is to enforce the joint distribution of the simulated data to match the joint distribution of the real data in

terms of Wasserstein distance. Moreover, the neural network-assisted sequential structured simulator can flex-

ibly incorporate various kinds of elementary randomness and generate distributions with certain properties

such as heavy-tail, without the need to redesign the estimation and training procedures. Further, regarding

statistical properties, we provide results on consistency and convergence rate for the estimation procedure of

the proposed simulator, which are the first set of results that allow the training data samples to be correlated.

We then present numerical experiments with synthetic and real data sets to illustrate the performance of the

proposed simulator and estimation procedure.

CCS Concepts: • Computing methodologies→ Modeling and simulation;

Additional Key Words and Phrases: Sequential simulator, neural network, Wasserstein training, statistical

properties

ACM Reference format:

Tingyu Zhu, Haoyu Liu, and Zeyu Zheng. 2023. Learning to Simulate Sequentially Generated Data via Neural

Networks and Wasserstein Training. ACM Trans. Model. Comput. Simul. 33, 3, Article 9 (August 2023), 34 pages.

https://doi.org/10.1145/3583070

1 INTRODUCTION

In many applications, such as finance, transportation, and service systems, stochastic simulation
models (simulators) that have a sequential structure are widely used to create sample paths and
capture the dynamics of relevant multi-dimensional random objects. A sequential-structured sim-
ulator typically involves multiple discrete time periods at a certain resolution and models a sto-
chastic process with multi-dimensional state variables. In each time period, the simulator takes
the state from the previous time period as input, and generates, along with some new randomness,
a new state passing on the next time period. Such simulators are used to simulate sequentially

Authors’ addresses: T. Zhu and H. Liu, Peking University, Yiheyuan Rd. 5, Haidian, Beijing, China, 100871; emails:

{1800017813, 1800015905}@pku.edu.cn; Z. Zheng, University of California, Berkeley, 4125 Etcheverry Hall, Berkeley, CA,

USA; email: zyzheng@berkeley.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1049-3301/2023/08-ART9 $15.00

https://doi.org/10.1145/3583070

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

https://orcid.org/0009-0003-0946-4194
https://orcid.org/0000-0003-1304-3563
https://orcid.org/0000-0001-5653-152X
https://doi.org/10.1145/3583070
https://doi.org/10.1145/3583070
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583070&domain=pdf&date_stamp=2023-08-10

9:2 T. Zhu et al.

generated data, which is slightly more general than time series models. The data is in turn used
to evaluate expectations/quantiles of functions of the sample paths or to support decision making
tasks. For example, in financial applications, a simulator may be used to simulate sequential data
that represents the dynamics of prices and volatilities for multiple correlated assets, possibly as
well as other relevant factors that impact the asset prices. The simulated data can then be used to
evaluate the risks and performances of a portfolio that are composed of these assets.

For some applications, real data are available to calibrate such sequential-structured simula-
tors. Specifically, representative real data may record the dynamics of some, but maybe not all,
dimensions of the stochastic process modeled by the sequential-structured simulator. With real
data in hand, there is a natural need to tailor the simulator such that the sequentially generated
data from the simulator “matches” real data in the corresponding dimensions. Such tasks have
always been challenging in terms of both statistical properties and computational demands, due
to large data dimension and/or partial observations. In order to calibrate a sequential-structured
simulation model, existing methods largely rely on parametric models with specific distributional
assumption, such that maximum likelihood method can be used to estimate the parameters using
real data. In general, these methods bring up difficult-to-solve estimation procedures especially
when real data only contains partial observations in a subset of dimensions. Moreover, specific
distributional assumptions are often needed to compute the likelihood function. In addition to the
risk of mis-specification, different distributional assumptions may require completely different op-
timization, computation, and statistical analysis.

To address such challenges, we propose a new framework of sequential simulation assisted
by generative adversarial neural networks and Wasserstein training. At each time step, the neu-
ral networks take the state vector of the previous time as input, and generate the next state with
some additional randomness known as elementary randomness. The elementary randomness is pre-
specified by users according to domain knowledge, whereas parameters of the neural networks,
which aim to capture the potential non-linear and complicated dependence of the dynamics on
the previous state, are estimated from data. Such estimation is carried out through a Wasserstein
training process, which aims to match the (possibly high-dimensional) joint distribution of the
simulated data with that of the real data. More specifically, batches of simulated data and real
data are passed to another neural network known as the discriminator, which then produces a
loss function indicating the similarity of the underlying distributions of both data. The loss func-
tion is then alternately maximized via updating the network parameters of the discriminator and
minimized via updating the parameters of the simulator networks. We note that this estimation
procedure does not require computing likelihood functions, and does not change significantly
if the dimensions increase or the type of elementary randomness changes. With such flexibility,
the sequential-structured simulator fitted to real data can provide us with information regarding
“what-if” scenarios. By altering some parts of the simulator, such as the elementary randomness
and length of the sequences, we can answer questions such as “what happens if the variances
increase by 10%” and “what happens if the length of the sequences increases by 10%”. Further,
such modeling scheme allows us to discuss its statistical aspect, which involves three research
questions: What types of underlying sequential-structured simulation model can be consistently
learned by such framework? What is the statistical rate of convergence if consistency is achieved?
To what extent is correlation allowed to exist between different sequences in the sample set, and
how much impact does it have on the convergence rate? To the best of our knowledge, such the-
oretical guarantees do not exist for general sequential-structured simulators assisted by neural
networks, especially when the associated distributions have unbounded support.

The modeling and simulation of sequentially generated data has been introduced and inten-
sively studied in the literature. An important class of models is based on parametric assumptions

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:3

to capture the dependence structure in the sequences, of which one most representative example
is the stochastic volatility model (SVM). As [29] points out, a key intuition in the SVM litera-
ture is that the variations in the level of activity is directed by an underlying stochastic process.
As an early example of discrete-time stochastic volatility modeling, [32] models the risky part
of returns as a product process, integrating an underlying indicator of volatility which follows a
non-zero mean Gaussian linear process. Later, continuous-time SVMs formulated as diffusion pro-
cesses, such as the Heston model presented by [21], become more favorable in portfolio choice and
derivatives pricing. The multivariate generalizations of SVMs are presented by [4]. Estimating such
models poses substantial challenge due to difficulties in evaluating the exact likelihood function.
It is concluded in [8] that there are mainly three categories of estimation techniques to address
the challenge, namely estimators based on the method of moments, such as [25]; estimators based
on the maximum likelihood principle, such as [28] and estimators based on an auxiliary model,
such as [6]. A most representative application of auxiliary models is model calibration, which uses
current information such as the option price in parameter estimation, see [1] for example. How-
ever, these techniques can become intractable or computationally demanding when the dimension
becomes even moderately high. Moreover, considerable assumptions are required, rendering these
techniques vulnerable to model mis-specifications.

An alternative way of modeling sequential data and estimating such models is to use the neural
network framework. A representative class of models is the recurrent neural network (RNN),
which, along with other variants such as gated recurrent unit (GRU) and long-short-term

memory (LSTM), aims to capture the transition and dependencies between the state vectors in the
time-series. Recently, variational autoencoder (VAE) provided by [23] is combined with RNN to
model and estimate sequentially generated data with a latent stochastic process, see [9, 17, 24, 35]
for examples. We also note that [9] and [35] are among the first that integrate these frameworks
with Monte Carlo simulation. Such frameworks in general adopt a likelihood-based statistical infer-
ence method, using VAE to learn the posterior distributions of latent process variables whose prior
distribution and randomness-generation distribution need to be pre-specified. Another branch of
neural network-based sequential modeling, including our work, is based on the generative ad-

versarial network (GAN) [18]. A GAN is a generative model consisting of a generator and a
discriminator, both of which are often neural networks. The generator produces data of some dis-
tribution, and the discriminator compares such distributions with the empirical distribution of
the sample set. By alternately maximizing the loss function via updating the discriminator and
minimizing the loss function via updating the generator, people train the generator network to
produce data with the same underlying distribution as the sample set. What is noteworthy about
GAN is that it inherently provides a way to compare (possibly high-dimensional) distributions via
capturing the most characteristic features, instead of conducting point-wise comparisons or com-
paring less informative statistics. This serves as an important foundation for application of GANs
in stochastic process modeling, which requires learning distributions from data. Representative
works such as [16, 31, 36] and [37] design network architectures and loss functions for various
specific purposes, such as incorporating extra information as conditions [16], and capturing long-
term dependence [36, 37]. We refer to [7] for an overview of application of GANs in time-series
modeling, and [14] for an overview of such application in specifically financial time-series data.
As stated in both overviews, instability of training, especially when the sample size is limited and
severe randomness is included, and lack of proper measurement of how well the distributions are
generated are the main problems suffered by applications of GAN in time-series modeling. An-
swering to such concerns, we use a more model-based approach instead of completely relying on
the neural network architectures to capture the distribution from representative data. Also, we use
the Wasserstein generative adversarial network (WGAN) training framework with gradient

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:4 T. Zhu et al.

penalty [19] in the estimation procedure to improve training stability as well as provide a basis
for our proof of statistical convergence. Apart from that, we propose our own illustrative measure-
ments in the numerical experiments, which either directly use statistics of distributions or resort
to a downstream task to provide assessment from an operational aspect. In terms of the sequen-
tial structure, [34] consider a different task from ours, inventory optimization, and proposed an
RNN-inspired simulation approach to improve computational capabilities for large-scale inventory
management.

The Wasserstein training of our neural network-based simulator is inspired by GAN [18],
WGAN [2], and the doubly stochastic WGAN framework by [38]. Representative theoretical works
like [5, 11] and [12] serve as fundamentals of the proof of our theorem. We also refer to [13]
and [20] for descriptions and efficient estimators for general distribution distance metrics such as
Wasserstein distance and Kullback-Liebler divergence. We adopt the use of Wasserstein distance to
measure distribution distance in this work. We additionally remark that, in financial applications,
the drift term and volatility term are separately and explicitly constructed in our framework, which
indicates that the induced stochastic process allows a transition to its risk-neutral distribution. The
generated risk-neutral paths can be used to estimate the option prices of underlying assets. There-
fore, option data can be incorporated, for instance, by adding the mean square error of estimated
option prices into the loss function, to jointly learn the real and risk-neutral dynamics. Moreover,
options data can be used to fine-tune the parameters in order to assist the training process on price
sequences.

The rest of this paper is organized as follows. Section 2 discusses the model setup of the simulator.
Section 3 discusses the estimation framework. Section 3.3 discusses the statistical theory for the
estimation method. Section 4 provides numerical experiments.

2 MODEL SETUP

We consider a class of simulators that are used to simulate sequential data. A simulator consists of
two functions μ (·, ·) and Σ(·, ·), which take current information as input to generate information
about the next step, and incorporate a sequence of elementary randomness, denoted as {ηk }, which
contributes to all the randomness in the simulation process. Such simulators generate the dynamics
of a stochastic process (Xk : k = 0, 1, 2, . . .) that takes value in a d-dimensional multi-dimensional
real space. That is, Xk ∈ Rd for any k . The simulator sequentially updates (Xk : k = 0, 1, 2, . . .)
according to

Xk+1 = μ (lk ,Xk) + Σ(lk ,Xk)ηk+1, k = 0, 1, 2, . . . , (1)

in which lk is a real-valued deterministic label that can be used to represent the time-of-day effect
or seasonality associated with time period k . The notion μ (·, ·) is a d-dimensional function of the
label and the state of the stochastic process in the previous time period. Similarly, Σ(·, ·) has the
same input variables as μ (·, ·), and outputs a d × d ′ matrix. The expressions of μ (·, ·) and Σ(·, ·)
can be further specified to incorporate background knowledge. The notion ηk+1 is referred to as
elementary randomness, which represents a d ′-dimensional mean-zero random vector that is used
by the simulator in the time period k + 1, and ηk : k = 1, 2, . . . are assumed to be independent and
identically distributed.

We consider practical applications in which the probability distribution of the elementary ran-
domness ηk ’s are specified by the users according to background domain knowledge, whereas both
μ (·, ·) and Σ(·, ·) are unknown functions that need to be estimated from empirical data. For many
applications, not all dimensions of Xk and not all time periods of data can be observed. Therefore,
we consider a flexible data framework for which only the first d1 ≤ d dimension of Xk can be
observed at selected time periods. Specifically, we write Xk as (Sk ,Yk)�, where Sk denotes the d1-

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:5

dimensional observed process, and Yk denotes the (d − d1)-dimensional latent process that is not
observed in empirical data. In terms of generality, suppose that the sequence of Sk ’s can only be
observed at p selected time periods labeled as 0 ≤ k1 < k2 < · · · < kp . Set S = (Ski

: i = 1, 2, . . . ,p).
We presume that the empirical data is composed of n copies of S , denoted as

S1, S2, . . . , Sn ,

which are n identically distributed copies of S . Note that both the number of unobserved points
between ki and ki+1 (i = 1, 2, . . . ,p − 1) and the dimension d −d1 can be either known or specified
by the user as part of the modeling assumptions.

The copies of S do not need to be mutually independent in practice. Our goal is to provide a
statistical and computational framework to train (or equivalently, to estimate) the simulator given
by (1) such that the sequentially generated data (Xk : k = 0, 1, 2, . . .) matches the joint distribution
of S on the corresponding dimensions and time periods.

Before discussing the statistical and computational framework, we briefly describe two examples
to demonstrate the relevance of the class of simulators of interest, given by the form of (1). The
first example is given by the multivariate stochastic volatility model (MSVM) formulated by
a stochastic differential equation, which is widely used within the fields of financial economics
and mathematical finance to capture the dynamics of asset prices. Specifically, the vector of state
variables Xt follows a multivariate diffusion process,

dXt = μc (Xt)dt + Σc (Xt)dWt , t ∈ [0,T], (2)

where Xt = (St ,Yt)�, with St denoting the observed price process and Yt denoting the latent
volatility process, and (Wt : t ∈ [0,T]) is a canonical multi-dimensional Brownian motion. Most
practical simulation tools for the multi-dimensional diffusion model use the idea of discretization,
at a user-specified discretization resolution. Using the Euler-Maruyama discretization scheme [27]
for example, once a discretization resolution Δt is selected, the simulation process fits into the
general simulator considered in (1). Specifically, we have

μ (lk ,Xk) = Xk + μc (Xk)Δt ,

Σ(lk ,Xk) = Σc (Xk)
√

Δt ,

ηk+1 ∼ N (0, Id ′).

(3)

Namely, (Xk : k = 0, 1, 2, . . .) is sequentially generated according to

Xk+1 = Xk + μc (Xk)Δt + Σc (Xk)
√

Δtηk+1, (4)

where ηk ,k = 1, 2, . . . are independent standard d ′-dimensional multi-variate normal random vari-
ables. We use the subscript c for μc and Σc to indicate that the label lk is a constant. We additionally
remark that, when the empirical data process follows a stationary pattern, we can always set lk as
a constant, which is often the case in practical applications. Therefore, in the rest of this work we
mostly consider stationary cases where lk = c , and μ (·, ·) and Σ(·, ·) are viewed as functions of Xk

only. Besides that the simulator considered in (1) covers the simulation process of MSVM, our data
framework also accommodates a practical possibility that the resolution at which data is observed
can be lower than the resolution at which the simulation of the stochastic process is conducted.

Not only does the simulator defined by (1) allow simulation of the MSVM, but our data frame-
work also accommodates sequential data with heavy-tailed distributions. As the second example,
this simulator sequentially updates (Xk ,k = 0, 1, 2, . . .) according to

Xk+1 = Xk + μh (Xk)Δt + Σh (Xk)Δηk+1, (5)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:6 T. Zhu et al.

where Δt can be any given resolution, and Δηk ,k = 1, 2, . . . are i.i.d. variables with some given
heavy-tailed distribution, such as the t distribution or Pareto distribution. This simulator can be
used for data modeling within the fields of spectroscopy, particle motion, finance, and so on, where
heavy-tailed behaviors are frequently observed. As a more specific case, we take

μh (Xk) = b (Xk ,α), Σh (Xk) = 1, Δηk+1 = Lα
k+1Δt1/α , α ∈ (0, 2) (6)

where the definition of b (·) is specified in [30], and Lα
k

: k = 1, 2, . . . is a sequence of i.i.d.
standard symmetric α-stable random variables which have heavy tails when α ∈ (0, 2). This is
the discretized version of a stochastic differential equation driven by a symmetric α-stable Lévy
process.

3 METHOD

In this section, we use a new framework to estimate the simulator so as to match its simulated data
with real data. More specifically, we use neural networks (NN) to approximate μ (·) and Σ(·) of the
simulator, and update the NN parameters to minimize the distance between the joint distribution
of simulated data and the joint distribution of real data. To achieve this, we need to specify how
the output distribution is generated by the NN-based simulator, how the distance between the two
distributions is formulated and computed, and how the NN parameters are updated according to
the computed distance. In the following part of this section, Sections 3.1 and 3.2 provide answers
to the first two questions, and formulate the estimation problem into a minimax optimization
problem. Section 3.3 answers the third question by discussing the training process to solve the
optimization problem.

3.1 Neural Network-integrated Simulator

Recall that S = (Sk1
, Sk2
, . . . , Skp

) represents the observed sequence. Let π denote the true joint
probability distribution of S . The training data are n identically distributed copies of S , given by
S1, S2, . . . , Sn . These sequences can be either independent or weakly correlated. Let π̃ denote the
empirical distribution of the data.

The neural network-based simulator generates a sequence of state vectors (Xk : k = 1, 2, . . .)
according to

Xk+1 = μθ (Xk) + Σϕ (Xk)ηk+1, (7)

where ηk ,k = 1, 2, . . . are given d ′-dimensional random vectors, μθ (·) is a d-dimensional func-
tion of Xk , and Σϕ (·) is a d × d ′-dimensional function of Xk which outputs a d × d ′ matrix. Both
functions adopt the NN architecture, parameterized by NN parameters θ and ϕ, and are approxi-
mations of μ (·) and Σ(·) of the simulator. Specifically, given the number of layers L ∈ Z+ and the
width of the l-th layer nl , l = 1, 2, . . . ,L, for an input variable X ∈ Rd , the functional forms of
μ (X ;θ = (W θ ,bθ)) and Σ(X ;ϕ = (W ϕ ,bϕ)) (expanded forms of μθ and Σϕ) are given as

μ0 = X ; μk = σ (Wθ,k · μk−1 + bθ,k−1), k = 1, 2, . . . ,L − 1;

μ (X ;θ = (W θ ,bθ)) =Wθ,L · μL−1 + bθ,L,
(8)

and
Σ0 = X ; Σk = σ (Wϕ,k · Σk−1 + bϕ,k−1), k = 1, 2, . . . ,L − 1;

Σ(X ;ϕ = (W ϕ ,bϕ)) =Wϕ,L · ΣL−1 + bϕ,L,
(9)

where (W θ ,bθ) and (W ϕ ,bϕ) represent all the parameters in the neural networks, which is the
aggregation ofWθ,k , bθ,k ,Wϕ,k and bϕ,k (k = 1, 2, . . . ,L), the parameters of each neural network
layer. The notation “·" represents a dot product. The dimensionality of (W θ ,bθ) and (W ϕ ,bϕ) can
be flexibly adjusted for better simulation outcomes, as long as the dimensionalities of the input and

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:7

output of μ (·;θ) and the input of Σ(·;ϕ) match that ofXk , and the output of Σ(·;ϕ) can be reshaped
into a matrix to multiply with the elementary random variables ηk+1. To train the neural networks
to produce results that fit observations is to search for optimal choices of such parameters. The
operator σ (·) takes a vector of any dimension as input and is a component-wise operator. We
specify the operator σ (·) as a rectified linear activation unit, or ReLU for short. Specifically, for
Z ∈ Rd , we have

σ (Z) = (max(Z1, 0),max(Z2, 0), . . . ,max(Zd , 0)) . (10)

LetX0 be a given constant or a random vector with a given probability distribution π0. Recall that
Xk = (Sk ,Yk), where Sk is the d1-dimensional observed process, and Yk is the (d −d1)-dimensional
latent process. We additionally remark that even though μ (·) and Σ(·) of the underlying true model
are assumed to be stationary, it is still necessary to generate a full sequence instead of modeling
a single step of transition. This is due to our assumption of an existing latent process (Yk : k =
1, 2, . . .), which is intractable and has to be sequentially simulated. Finally, the joint probability

distribution of the generated d-dimensional observed sequence at the measured data points Ŝ =
(Ŝk1
, Ŝk2
, . . . , Ŝkp

), denoted as π̂ , is taken as the output of the generator. Note that π̂ and Ŝ are also

functions of θ and ϕ, and are therefore sometimes denoted as π̂ (θ ,ϕ) and Ŝ (θ ,ϕ).

3.2 Wasserstein Distance and Discriminator

Next, we introduce the Wasserstein distance, which is used to quantify the distance between two
given distributions. The Wasserstein distance of the generated distribution π̂ and the real distribu-
tion π is given by

W (π̂ ,π) = inf
γ ∈Π(π̂ ,π)

E(Ŝ,S)∼γ
[‖Ŝ − S ‖2], (11)

where Π(π̂ ,π) denotes the set of all joint distributions of which the marginals are respectively π̂
and π , and ‖ · ‖ denotes the L2 norm. Since the Wasserstein distance in high dimensions does not
have a closed form for computation, we often use the Kantorovich-Rubinstein duality given by

W (π̂ ,π) = sup
‖f ‖L ≤1

EŜ∼π̂
[f (Ŝ)] − ES∼π [f (S)], (12)

where ‖ f ‖L ≤ 1 denotes the class of all 1-Lipschitz functions f , i.e., | f (x1) − f (x2) | ≤ ‖x1 −
x2‖2 for any x1,x2 ∈ Rdπ . Computation of the supremum over all 1-Lipschitz functions is also
analytically intractable, but we can use a neural network fψ to approximate f , and search over all
such approximations parameterized by NN parametersψ . With the same network architecture as
the simulator networks, fψ has functional form given as

f0 = X ; fk = σ (Wψ ,k · fk−1 + bψ ,k−1), k = 1, 2, . . . ,L − 1;

f (X ;ψ = (W ψ ,bψ)) =Wψ ,L · fL−1 + bψ ,L .
(13)

In the framework of the classical WGAN, a function with the same purpose as fψ is known as
the discriminator. Our method aims to match the generated distribution to the real distribution,
which can be achieved through minimizing the Wasserstein distance of the two distributions. We
formulate the estimation method as solving the following minimax optimization problem:

min
θ ∈Θ,ϕ ∈Φ

max
ψ ∈Ψ
EŜ∼π̂ (θ,ϕ)[fψ (Ŝ)] − ES∼π [fψ (S)]. (14)

The empirical version of problem (14) is given by

min
θ ∈Θ,ϕ ∈Φ

max
ψ ∈Ψ

1

n

n∑
j=1

fψ (Ŝ j (θ ,ϕ)) − 1

n

n∑
j=1

fψ (S j). (15)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:8 T. Zhu et al.

3.3 Training

In this section, we discuss the training process for model estimation optimization problem (15). We
adopt a classical training strategy to solve the minimax problem, which is to alternately update the
parameters of the NN-based discriminator and the simulator. Updating the discriminator increases
the difference between the two summation terms of (15), which is then attenuated by updating
parameters of the simulator. During this process, the discriminator converges to the supreme f
over the class of candidate functions, while the output distribution of the simulator converges to
the empirical distribution.

We apply the gradient descent method for the training process, which is based on computing

gradients of the objective functions to the model parameters. The gradient ∇θ,ϕ fψ (Ŝ (θ ,ϕ)) is eval-
uated through backpropagation using the chain rule, which involves differentiating the entire pro-
cess of simulation. The diagram for such computation is illustrated in Appendix A.

sectionStatistical Properties In this section, we discuss the statistical property of the estimation
method. We prove that the framework proposed in Sections 3.1 and 3.2 can effectively learn distri-
butions of a wide class of sequential data, if the neural network architectures are properly chosen,
and the number of copies of S , denoted as n, is large enough. In the following Section 3.4, we
formulate the statistical convergence problem and describe the requirements and assumptions.

3.4 Formulation of Problem

In this section, we propose three basic requirements on real data, data preparation, and neural
network functional class, and explain the reasons for them. Such explanations also shed light on
the main ideas of our proof.

3.4.1 Underlying Distribution of Real Data. Let X j = (S j ,Y j) denote the sequence. In this sec-
tion, we prove that the solution of the optimization problem (15) can generate a distribution π̂S of
the observed dimensions S that converges to the underlying real distribution πS of the observed
dimensions. Without loss of generality, we assume in this section that all dimensions and time
points of the real data are observed, i.e., we have X = S . We make this assumption because the
convergence of distribution does not include the unobserved dimensions Y . Besides, given the
value of S , the choice of Y has no effect on the optimality of S as a solution of the optimization
problem (15). Suppose that the real data, X j = (X j,0,X j,1, . . . ,X j,p), j = 1, 2, . . . ,n, is generated as

follows: the sequence starts from an initial distribution X0 ∼ π0, where X0 ∈ Rd , and sequentially
proceeds according to

Xi+1 − Xi = μ (Xi) + Σ(Xi)ξi . xi ∈ Rd , i = 1, 2, . . . ,p, (16)

where ξi is some given elementary randomness. The initial distribution π0 and the integrated
functions (μ, Σ) jointly determine the underlying distribution of the real data, denoted as π . To
ensure statistical convergence, we assume that π0 is a known distribution provided to the simulator,
and (ξi : i = 1, 2, . . . ,p) have the same distribution as the elementary randomness (ηk : k =
1, 2, . . . ,p) of the simulator.

Additionally, we can assume different sequences to be independent and identically distributed,
or weakly dependent. It is noteworthy that weak correlation allows for applicational situations
where all sequences in the sample set are segmented from one single sequence of time-series data.
To characterize weak correlation across sequences, we let the first element X0 of two arbitrary

sequences be correlated, namely, cov (X (j)
0 ,X

(l)
0) � 0 for some j, l ∈ {1, 2, . . . ,n}, where n is the

sample size. The specific assumption of constraint on correlation will be formulated in the main
theorem, where statistical convergence results for both i.i.d. and weakly dependent data will also
be presented.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:9

3.4.2 Truncation. Classical theoretical results of neural network approximation require the
input of the neural network to have bounded support, while in our framework the sequence
(ηk : k = 1, 2, . . .) is often set to follow the Gaussian distribution or some heavy-tailed distri-
bution, resulting in unboundedness of the sequence (Xk : k = 1, 2, . . .). To address the challenge
due to unboundedness, we perform truncation methods on both the empirical data and the sim-
ulated data. Specifically, we transform the empirical data into its bounded version X B

j according
to

X B
j,i =

{
X j,i , if |X j,i | ≤ B1;
B1, else.

i = 0, 1, 2, . . .p, j = 1, 2, . . . ,n,

and the bounded version of simulated data is simulated with bounded elementary randomness
given as

ηB
k =

{
ηk , if |ηk | ≤ B2;
B2, else.

k = 1, 2, . . .

We note that the real data and simulated data are truncated in different ways. We perform trun-
cation on elementary randomness, instead of truncating after simulating a whole unbounded se-
quence, because the approximability of μθ and Σϕ can only be ensured within bounded areas. We
lose control if an unbounded Xi is generated and fed to the networks during the sequential sim-
ulation process. However, to ensure that the simulated sequence is also bounded by B1, we can
find some constantC such that B2 = C · B1, as both truncation bounds B1 and B2 increase to infin-
ity. Therefore, for simplicity of notation, we use a common truncation bound B on the truncated
data.

We denote the bounded versions of the empirical data and the simulated data as X B
j and X̂

B

j ,

and their distributions as πB and π̂B . The empirical optimization problem (15) is then transformed
into the bounded version:

min
θ ∈Θ,ϕ ∈Φ

max
ψ ∈Ψ

1

n

n∑
j=1

fψ (X̂
B

j (θ ,ϕ)) − 1

n

n∑
j=1

fψ (X B
j). (17)

The Wasserstein distance between the bounded distributions, denoted as W (πB , π̂B), can be
controlled. As the size of NN goes to infinity, the truncation bounds also increase to infinity,
which, with certain restrictions on ηk that will be presented in the following specific assump-
tion, results in the convergence of the bounded distribution towards its unbounded version, i.e.,
limB→∞W (π ,πB) = 0. This convergence enables the controlling ofW (π ,πB), and thusW (π , π̂B).

3.4.3 Restrictions on the Discriminator Class. Since taking the supremum over a whole function
class, e.g., the bounded 1-Lipschitz class, is computationally intractable, we replace it with a func-
tion class of neural networks with bounded size. In this case, the discriminator is a neural network
with parameters to be optimized, and defines a metric dF (·, ·) of distributions. A proper discrimi-
nator should define a metric under which convergence is equivalent to Wasserstein convergence.
This equivalence guarantees that the discriminator effectively distinguishes different distributions,
while also making sure that if the training fails to find a solution with small distance under dF (·, ·),
then indeed the distributions are far away under Wasserstein distance. Therefore, we impose cer-
tain restrictions on the size and components of the discriminator class, so that its discriminative
power is proportional to that of the bounded 1-Lipschitz class. Further, such restrictions are helpful
when controlling the error induced by weak correlation.

Specifically, restrictions on the discriminator class are imposed through the following
definitions.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:10 T. Zhu et al.

Definition 3.1 (function class FΨ).

FΨ(κ,L, P ,K) =

{
f : Rd → R⏐⏐⏐ f in the form of ReLU neural networks with L layers

and width bounded by P , ‖Wi ‖∞ ≤ κ, ‖bi ‖∞ ≤ κ,
L∑

i=1

‖Wi ‖0 + ‖bi ‖0 ≤ K

}
.

whereWi and bi , i = 1, 2, . . . ,L are the weight matrices and bias vectors of the layers.

Definition 3.2 (restricted function class FΨ).

FΨ(κ,L, P ,K , ϵf) =
{
f ∈ FΨ(κ,L, P ,K)⏐⏐⏐‖ f (x1) − f (x2)‖ ≤ ‖x1 − x2‖ + 2ϵf ,∀x1,x2 ∈ [−B,B]d

}
.

Throughout our proof, we assume that the discriminator class FΨ is restricted as in
Definition 3.2, with parameters κ,L, P ,K , ϵf . In proof of the main theorem, we derive specific or-
der of such parameters with regard to sample size n, to ensure statistical convergence. We remark
that the additional 2ϵf term in 3.2 serves to allow for approximation, in the sense of infinity norm
and within a bounded area, of any 1-Lipschitz function by Fψ (κ,L,p,K , ϵf), which will be cru-
cial in controlling certain error terms. This is because there is no guarantee of the approximation
power of the strictly 1-Lipschitz neural network function class, but with theoretical guarantee that
Fψ (κ,L, P ,K), for large enough parameters κ,L, P ,K , can approximate any 1-Lipschitz function f
within distance ϵf , we know that Fψ (κ,L,p,K , ϵf) is dense enough to approximate any 1-Lipschitz
function within a bounded area. Conversely, the fact that Fψ (κ,L, P ,K , ϵf) can be approximated
by any 1-Lipschitz function f within distance 2ϵf is also a basis for controlling certain error terms.

3.5 Specific Assumption and Theorem

We make the following assumption on the underlying true model of the sample data:

Assumption 1. The following conditions are satisfied for the generation process of sample

data (16):

(1) All sequences X j are independent and identically distributed or weakly dependent. A specified

characterization of weak dependence is given as follows:

Let Πn denote the joint distribution of (X 1,X 2, . . . ,Xn). Let {X̄ j }nj=1 be independent and iden-

tically distributed variables, where X̄ j has the same distribution as X j . Let Π̄n denote the joint

distribution of (X̄ 1, X̄ 2, . . . , X̄n), we have

W (Πn , Π̄n) ≤ O (n
1
2−β),n → ∞ (18)

for some β > 0.

(2) μ : Rd → Rd and Σ : Rd → Rd×d ′ are Lipschitz continuous and bounded on Rd .

(3) The tail order of the probability density function of every random variable in the sequence of

elementary randomness (ξk : k = 1, 2, . . .) is no more than x−(2+α) , for some α > 0. Namely,

pξk
(x) ≤ O (x−(2+α)),x → ∞, for all k = 1, 2, . . ., where pξk

(x) is the density function of ξk .

The first condition is assumed in order to effectively control the statistical error, which we
will elaborate on in the following subsection. The two requirements of the second condition are
interpreted as follows: the Lipschitz continuous requirement for μ (·) and Σ(·) ensures that they can
be sufficiently approximated within a bounded area by neural networks with proper architectures.
The bounded requirement for μ (·) and Σ(·) restricts the output, and thus everyXk in the sequence,
to a bounded area, when the sequence of elementary randomness (ηk : k = 1, 2, . . .) is also bounded
or truncated to its bounded version. The third condition is imposed for controlling the bounding

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:11

error, which is defined as the Wasserstein distance between the real distribution and its bounded
counterpart, i.e.,W (π ,πB).

The main result of statistical analysis is presented as follows:

Theorem 3.3. Suppose that n copies of i.i.d. or weakly correlated data are available and that the

underlying generation model satisfies Assumption 1. Under appropriate specifications of the neural

network architecture, let θ ∗ andϕ∗ be the parameters that solve the optimization problem given as (17),

and let the truncation boundary B increase to infinity along with n, by order B = O (n
2

3pd+6),n → ∞.

We have

E

[
W (π , π̂B (μθ ∗ , Σϕ∗))

]
≤ O

(
n−

1
3pd+6 (logn)

3
2 + n−

2α
3pd+6 + n−β

)
,n → ∞. (19)

where α and β have the same meanings as in Assumption 1, p is the length of the observed sequence,

d is the dimension of the observed process. We hide constant coefficients that are independent of n and

B, but relevant to p, d , α , the Lipschitz constants and bounds of μ (·) and Σ(·).
The implication of the three terms, n−1/(3pd+6) (logn)3/2, n−2α /(3pd+6) , and n−β , can be explained

as follows:

• n−1/(3pd+6) (logn)3/2 is the balanced statistical error. Roughly speaking, balancing is to decide
on an appropriate size for the discriminator class, and two groups of parameters are taken
into consideration.

(1) The truncation bound B, which is also proportional to the domain size of the discriminator
function, and thus the size of the discriminator class. It should increase fast enough to
ensure the convergence rate ofW (π ,πB).

(2) Other parameters that control the size of the neural network, such as width, depth, number
of neurons, and maximum weight.

The size of the discriminator class should increase at a proper rate, so that the discrimi-
native power of the discriminator class is proportional to that of the 1-Lipschitz function
class, but does not become oversize to induce an uncontrollable statistical error. We refer to
Section 3.6.4 for details.
• n−2α /(3pd+6) is the bounding error induced by truncation, which is balanced together with

the statistical error term. The order of B is selected to make both error terms convergent at
similar rates. The bigger α is, the smaller is the tail order of π , and thus also the bounding
error.
• n−β is the statistical error induced by weak correlation among data. Note that the bigger β

is, the bigger are both the weak correlation and this portion of statistical error.

These terms together demonstrate the impact of the dimensionality of data, tail order, and weak
correlation on the statistical convergence rate.

Compared with existing work on GAN theory, our statistical theory discusses situations when
the input of the discriminator network is sequentially generated and unbounded. Further, most
theoretical work such as [3] and [5] lower bounds the discriminative power and upper bounds
the generalization error with regard to the discriminator class, but does not derive the statistical
convergence rate of W (π ,π ∗n), where π ∗n denotes the optimal solution of the empirical minimax
optimization problem for GAN training, and π is the underlying real distribution.

We additionally remark that the assumptions, as well as the truncation strategies, are imposed
only to guarantee statistical convergence in the following theorem, and are sometimes unnecessary
in practical applications, especially when we have a moderate tolerance for approximation error.
For example, to achieve the numerical results in Section 4, we did not perform truncation on the
empirical data or the elementary randomness.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:12 T. Zhu et al.

3.6 Analysis

In this section, we briefly describe how Theorem 3.3 is proved. We refer to the appendix for details.

3.6.1 Decomposition of Error. The main framework of proof is to control the Wasserstein dis-
tance of real distribution and learned simulated distribution using an oracle inequality, decompos-
ing it into generator approximation error, discriminator approximation error, bounding error, and
statistical error.

Adopting the idea of [12], we have

W (π , π̂B (μθ ∗ , Σϕ∗))
(i)
≤ W (π̃B , π̂B (μθ ∗ , Σϕ∗)) +W (πB , π̃B)︸�������︷︷�������︸

statistical error

+ W (π ,πB)︸�����︷︷�����︸
bounding error

, (20)

W (π̃B , π̂B (μθ ∗ , Σϕ∗)) = dFΨ (π̃B , π̂B (μθ ∗ , Σϕ∗)) +W (π̃B , π̂B (μθ ∗ , Σϕ∗)) − dFΨ (π̃B , π̂B (μθ ∗ , Σϕ∗))︸���︷︷���︸
discriminator approximation error I

,

(21)

dFΨ (π̃B , π̂B (μθ ∗ , Σϕ∗))
(ii)
≤ dFΨ (π̃B , π̂B (μθ , Σϕ))

(iii)
≤ dFΨ (πB , π̂B (μθ , Σϕ)) + dFΨ (π̃B ,πB)︸���������︷︷���������︸

statistical error

, (22)

dFΨ (πB , π̂B (μθ , Σϕ)) = W (πB , π̂B (μθ , Σϕ))︸�������������������︷︷�������������������︸
generator approximation error

+dFΨ (πB , π̂B (μθ , Σϕ)) −W (πB , π̂B (μθ , Σϕ))︸���︷︷���︸
discriminator approximation error II

.

(23)

Here we carry out the explanation of the inequalities along with specification of some notations.
As a general rule, upper subscript B denotes truncated data bounded by some constant B, hat ·̂ is a
notation for simulated distributions, and tilde ·̃ is for the empirical distribution of real data, (θ ∗,ϕ∗)
and (θ ,ϕ) denote solutions of different optimization problems described in the following.

• For two distributions P and Q , we have

dFΨ (P ,Q) = sup
fψ ∈FΨ

EX P∼P [fψ (X P)] − EX Q∼Q [fψ (XQ)].

We remark that dFΨ (·, ·), which serves as an approximation to W (·, ·), is not necessarily
nonnegative, but satisfies the inequality

dFΨ (P ,Q) ≤ dFΨ (P ,R) + dFΨ (R,Q),

which serves as the reason for (iii). Also, note that (i) is due to the triangular inequality of
Wasserstein distance.
• π̃B is the bounded empirical distribution, of which distance from the bounded real distribu-

tion πB is due to
(1) limitation in sample size
(2) weak correlation among the sample sequences, if we allow for it to exist
• The two pairs of parameters for the neural networks integrated in the generator, namely

(θ ∗,ϕ∗) and (θ ,ϕ), are solutions to different optimization problems defined as follows:

(θ ∗,ϕ∗) = arg min
θ,ϕ

dFΨ (π̃B , π̂B (μθ , Σϕ)), (24)

(θ ,ϕ) = arg min
θ,ϕ
‖μθ − μ‖L∞ ([−B,B]) + ‖Σϕ − Σ‖L∞ ([−B,B]) . (25)

Note that (24) is the reason for (ii).

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:13

• μθ and Σϕ are likely to be different from the optimal solutions μθ ∗ and Σϕ∗ for the following
reasons:

(1) In the minimax optimization problem, the distribution simulated with μθ ∗ and Σϕ∗ is di-

rected towards π̃B but not π .
(2) The difference between the function classes FΨ = FΨ(κ,L, P ,K , ϵf) and FLip := { f :
‖ f ‖L ≤ 1} also induces some difference between the “optimal solutions" and the “opti-
mal networks". This portion of error is bounded by discriminator approximation error I
and II.

3.6.2 Network Approximation. Before controlling the error terms, we introduce the foundation
of proof, which is the deep neural network approximation theory. We first present a theorem of
approximating CL-Lipschitz functions on [−B,B]d . Ideas and proofs of this theorem are adopted
from [11, 12] and [15].

Theorem 3.4 (Approximation with Explicit Order Dependence on Bound B). For

f ∈ [B,B]d s.t. ‖ f (x) − f (y)‖ ≤ CL ‖x −y‖,
we have a neural network Φf with L (Φf) = O (logB + logδ−1), W (Φf) = O (Bdδ−d), B (Φf) =

O (Bδ−1) andM (Φf) = O ((logB + logδ−1) · Bdδ−d), B → ∞ and δ → 0, satisfying

‖Φf (x) − f (x)‖L∞ ([−B,B]d) ≤ δ . (26)

where notations for the size of ReLU network Φ are defined as

• depth L (Φ) = L
• widthW (Φ) = maxl=0, ...,L Nl , where Nl is the width of the lth layer

• weight magnitude B (Φ) = maxl=1, ...,L max{‖Wl ‖∞, ‖bl ‖∞}
• number of neuronsM (Φ) =

∑L
l=1 ‖Wl ‖ + ‖bl ‖

The proof of Theorem 3.4 consists of two steps: approximating Lipschitz functions with inter-
polation polynomials, and approximating the polynomials with neural networks. We refer to Ap-
pendix B for details.

3.6.3 Controlling Error Terms. In this section, we describe how each error term is controlled.
We defer more details to the appendix to complete the proof.

First, for bounding error W (π ,πB), applying the definition of Wasserstein distance and using

the condition that pηk
(x) ≤ O (x−(2+α)), x → ∞, we have

W (π ,πB) ≤ O (B−α), B → ∞. (27)

Second, for generator approximation error W (πB , π̂B (μθ , Σϕ)), which is induced by the errors
of approximating μ and Σ with optimal neural networks μθ and Σϕ , denoted as ϵμ and ϵΣ, we apply
the law of total expectation on the sequence to derive that the generator approximation error can
be bounded as

W (πB , π̂B (μθ , Σϕ)) ≤ O (ϵμ + ϵΣ), ϵμ → 0 and ϵΣ → 0. (28)

Note that, replacing δ in Theorem 3.4 with ϵμ and ϵΣ, we can derive the required sizes of generator
networks μθ and Σϕ to achieve levels ϵμ , ϵΣ of approximation errors.

Next, we control the discriminator approximation error terms. We have the following lemma,
the proof of which is given in Appendix D.

Lemma 3.5. The two function classes FΨ(κ,L, P ,K , ϵf) and 1-Lipchitz class FLip can approximate

each other within the bounded area [−B,B]d , namely,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:14 T. Zhu et al.

(1) ∀f ∈ FLip, ∃fψ ∈ FΨ, such that ‖ f − fψ ‖L∞[−B,B]d ≤ ϵf ;

(2) ∀f ∈ FΨ, ∃fψ ∈ FLip, such that ‖ f − fψ ‖L∞[−B,B]d ≤ 3ϵf .

Using Lemma 3.5, we have for the discriminator approximation error terms,

W (π̃B , π̂B (μθ ∗ , Σϕ∗)) − dFΨ (π̃B , π̂B (μθ ∗ , Σϕ∗))

= sup
‖f ‖L ≤1

[
EX ∼π̃ B f (X) − EX ∼π̂ B f (X)

] − sup
fψ ∈FΨ

[
EX ∼π̃ B fψ (X) − EX ∼π̂ B fψ (X)

]
= inf

fψ ∈FΨ

sup
‖f ‖L ≤1

EX ∼π̃ B

[
f (X) − fψ (X)

]
+ inf

fψ ∈FΨ

sup
‖f ‖L ≤1

EX ∼π̂ B

[
fψ (X) − f (X)

]
≤ inf

fψ ∈FΨ

sup
‖f ‖L ≤1

2‖ f − fψ ‖∞ ≤ 2ϵf .

(29)

Also,

dFΨ (πB , π̂B (μθ , Σϕ)) −W (πB , π̂B (μθ , Σϕ))

= sup
fψ ∈FΨ

[
EX∼π B fψ (X) − EX ∼π̂ B fψ (X)

]
− sup
‖f ‖L ≤1

[
EX ∼π B f (X) − EX ∼π̂ B f (X)

]

= inf
‖f ‖L ≤1

sup
fψ ∈FΨ

EX ∼π B

[
f (X) − fψ (X)

]
+ inf
‖f ‖L ≤1

sup
fψ ∈FΨ

EX ∼π̂ B

[
fψ (X) − f (X)

]
≤ inf
‖f ‖L ≤1

sup
fψ ∈FΨ

2‖ f − fψ ‖∞ ≤ 6ϵf ,

(30)

After that, we control the statistical error terms dFΨ (π̃B ,πB) andW (πB , π̃B). We have

E

[
dFΨ (π̃B ,πB)

]
= E

⎡⎢⎢⎢⎢⎢⎣ sup
fψ ∈FΨ

1

n

n∑
j=1

fψ (X j) − EY ∼π B [fψ (Y)]

⎤⎥⎥⎥⎥⎥⎦
≤ EX EY j∼π B,i .i .d .

⎡⎢⎢⎢⎢⎢⎣ sup
f ∈FΨ

1

n

n∑
j=1

[fψ (X j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦ . (31)

If X j are correlated, according to the assumption of weak correlation, we created independent

variables X̄ j such that the joint distribution of (X 1,X 2, . . . ,Xn) and (X̄ 1, X̄ 2, . . . , X̄n), denoted as
γ (Πn , Π̄n), satisfies

γ ∗ (Πn , Π̄n) = arg inf
γ ∈γ (Πn, Π̄n)

E(X ,X̄)∼γ (Πn, Π̄n)

[
‖X − X̄ ‖

]
.

According to the definition of function class FΨ(κ,L, P ,K , ϵf), we have

EX EY j∼π B,i .i .d .

⎡⎢⎢⎢⎢⎢⎣ sup
f ∈FΨ

1

n

n∑
j=1

[fψ (X j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦
≤E

⎡⎢⎢⎢⎢⎢⎣ sup
f ∈FΨ

1

n

n∑
j=1

[fψ (X̄ j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦ + E
⎡⎢⎢⎢⎢⎢⎣

1

n

n∑
j=1

‖X j − X̄ j ‖
⎤⎥⎥⎥⎥⎥⎦ + 2ϵf .

[12] suggests that

E

⎡⎢⎢⎢⎢⎢⎣ sup
fψ ∈FΨ

1

n

n∑
j=1

[fψ (X̄ j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦ ≤ 2 inf
0<δ<M

(
2δ +

12
√
n

∫ M

δ

√
logN (ϵ,FΨ, ‖ · ‖∞)dϵ

)
, (32)

where M = diam(FΨ(κ,L, P ,K , ϵf)) ≤ R = O (B), andN (ϵ,FΨ, ‖ · ‖∞) is the covering number [26]
of ϵ-balls over the functional class FΨ under distance ‖ ·‖∞. Further, let fψ , fψ ′ ∈ FΨ(κ,L, P ,K) with

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:15

all weight parameters at most h from each other, [12] shows that with bounded support ‖x ‖∞ ≤ B,
we have

‖ fψ − fψ ′ ‖∞ ≤ hL(PB + 2) (κP)L−1.

Discretizing each parameter uniformly into κ/h grids yields a δ -covering on FΨ, therefore,

N (δ ,FΨ(κ,L, P ,K), ‖ · ‖∞) ≤ (LP2)K
(

2κ

h

)K

,

where

h =
δ

L(PB + 2) (κP)L−1
.

Further, we have

N (δ ,FΨ(κ,L, P ,K , ϵf), ‖ · ‖∞) ≤ N
(
δ

2
,FΨ(κ,L, P ,K), ‖ · ‖∞

)
≤

(
4L2 (PB + 2) (κP)L+1

δ

)K

. (33)

Substituting (33) into (32) and taking δ = 1/n yields

E

⎡⎢⎢⎢⎢⎢⎣ sup
f ∈FΨ

1

n

n∑
j=1

[fψ (X̄ j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦ ≤ O
(
B
√
n−1KL log(nLκPB)

)
.

Also, by Chebyshev inequality,

E

⎡⎢⎢⎢⎢⎢⎣
1

n

n∑
j=1

‖X j − X̄ j ‖
⎤⎥⎥⎥⎥⎥⎦ ≤

1
√
n
W (Πn , Π̄n) = O

(
n−β

)
.

Similarly, for the Wasserstein statistical errorW (πB , π̃B), we have

N (δ ,FLip, ‖ · ‖∞) ≤
(

2B

δ
+ 1

)pd (2B/δ+1)

.

Therefore, taking δ−1 = n(pd−1)/(pd+1) , we have

2 inf
0<δ<B

(
2δ +

12
√
n

∫ B

δ

√
logN (δ ,FLip, ‖ · ‖∞)dϵ

)
≤ O

(
B

3
2n−

1
pd+1

√
log(Bn)

)
.

And finally,

W (πB , π̃B) ≤ O
(
B

3
2n−

1
pd+1

√
log(nB) + n−β

)
+ 2ϵf .

3.6.4 Balancing. Finally, we balance the error terms relevant to the discriminator class. Sum-
marizing the four parts of errors, we have

E

[
W (π , π̂B (μθ ∗ , Σϕ∗))

]
= O

(
B−α + ϵΣ + ϵμ + ϵf + B

√
n−1KL log(nLκPB) + B

3
2n−

1
pd+1

√
log(Bn) + n−β

)
. (34)

Also, since ϵf is the approximation tolerance of the discriminator class, we have from Theorem 3.4,

L = O (logB + log ϵ−1
f

), κ = O (Bϵ−1
f

), P = O (Bpdϵ
−pd

f
) and K = O ((logB + log ϵ−1

f
) · Bpdϵ

−pd

f
). To

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:16 T. Zhu et al.

balance these terms, we mostly pay attention to B
√
n−1KL log(nLκPB) and B

3
2n−

1
pd+1

√
log(Bn). To

make sure that these two terms converge to 0 as n → ∞, let B = nk1 and ϵf = n
−k2 , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
pd

2
+ 1

)
k1 +

pd

2
k2 <

1

2
.

3

2
k1 <

1

pd + 1
,

We can set k1 =
2

3pd+6 and k2 =
1

3pd+6 . Also, make the generator network classes large enough so

that ϵΣ and ϵμ are not of leading order, then

E

[
W (π , π̂B (μθ ∗ , Σϕ∗))

]
≤ O

(
n−

1
3pd+6 (logn)

3
2 + n

− 1
(pd+2)(pd+1) (logn)

1
2 + n−

2α
3pd+6 + n−β

)
.

With pd ≥ 3, we have

E

[
W (π , π̂B (μθ ∗ , Σϕ∗))

]
≤ O

(
n−

1
3pd+6 (logn)

3
2 + n−

2α
3pd+6 + n−β

)
. (35)

and this is achieved by taking B = O (n
2

3pd+6),

L = O (logn) , κ = O
(
n

1
pd+2

)
, P = O

(
n

pd
pd+2

)
, K = O

(
n

pd
pd+2 logn

)
,

for the discriminator, where n → ∞. For the generator networks μθ and Σϕ , we take

ϵμ = ϵΣ = O
(
min

{
n−

1
3pd+6 (logn)

3
2 , n−

2α
3pd+6 , n−β

})
,

and the network sizes of μθ and Σϕ are accordingly

L = O (logn) , κ = O
(
n

2
3pd+6 ϵ−1

μ

)
, P =

(
n

2pd
3pd+6 ϵ

−pd
μ

)
, K = O

(
n

2pd
3pd+6 ϵ

−pd
μ logn

)
This result provides insights for selecting the neural network sizes, when the training set is large
and high precision of modeling is expected to be achieved.

4 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the simulator estimated by our proposed frame-
work, using four sets of synthetic data (Sections 4.1, 4.2, 4.3, and 4.4) and one set of real data
(Section 4.5) as the training data.1 In all experiments, we illustrate the use of the simulator by
considering scenarios where the simulator is applied to generate sequences of prices of multiple
correlated assets. Our proposed framework then aims to estimate the simulators such that the joint
distribution of the simulated data has a close Wasserstein distance compared to that of the train-
ing data. To demonstrate the performance of estimated simulators in their practical use, we first
consider the task of evaluating the distribution of the maximal drawdown (MDD) for all the as-
sets in consideration. In each experiment, we consider the distribution of the MDD of all observed
dimensions of the sequential data. We compare the MDD distribution of the simulated data-based
portfolio against the MDD distribution of the empirical data-based portfolio. The simulator that
simulates the sequential price data is estimated by our proposed method. In this way, we aim to
demonstrate the performance of our method from an operational performance point of view. We
present the definition of maximal drawdown, which is derived from [10]:

1see https://github.com/Goldenbean0521/Sequential-code for code.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

https://github.com/Goldenbean0521/Sequential-code

Learning to Simulate Sequentially Generated Data via Neural Networks 9:17

Definition 4.1. Let (Hi ∈ R : i = 0, 1, 2, . . . ,p) be a portfolio sequence, and let Hi be the portfolio
value at time step i . The portfolio drawdown at time step i is defined by

Di = max
0≤l ≤i

Hl − Hi

Hi
, (36)

and the maximal drawdown of a sequence is the maximum value of Di over all time steps i =
0, 1, 2, . . . ,p, namely, M = max0≤i≤p Di .

Apart from that, we demonstrate the ability of the network to capture the correlation among
the observed dimensions. Specifically, we use the trained networks to simulate 5,000 copies of
sequences, estimate the correlation matrices of all observed dimensions at certain time points, and
compare such matrices to that of the real (synthetic) data. Such operation is then replicated 100
times to produce a mean value and a standard deviation of the estimations.

4.1 Multi-dimensional Heston Model

In this subsection, we use a synthesized data set of three stock prices that is generated by a multi-
dimensional Heston model.

4.1.1 Underlying Model for Synthetic Data: Multi-dimensional Heston. The observed data is 3-
dimensional. For each dimension, the underlying stochastic process is formulated by a stochastic
differential equation known as the Heston model (see [1], which also presents the values of the
model parameters):

d

(
St

Yt

)
=

(
μSt

κ (γ − Yt)

)
dt +

(
St

√
(1 − ρ2)Yt ρSt

√
Yt

0 σ
√
Yt

)
dWt (37)

where μ,κ,γ , ρ,σ are given parameters, St is the observed price process, Yt is the latent volatility
process, andWt = (W S

t ,W
Y
t)� is the 2-dimensional canonical Brownian motion. We use a matrix

L to induce correlation among the three stochastic processes, namely, we let

d ���
X1,t

X2,t

X3,t

��� =
���
μ1,t

μ2,t

μ3,t

���dt + (L ⊗ I2) · ���
Σ1,t 0 0

0 Σ2,t 0
0 0 Σ3,t

���d
���
W1,t

W2,t

W3,t

��� , (38)

where

Xi,t =

(
Si,t

Yi,t

)
, μi,t =

(
μiSi,t

κi (γi − Yi,t)

)
, Σi,t = ��

Si,t

√
(1 − ρ2

i)Yi,t ρiSi,t

√
Yi,t

0 σi

√
Yi,t

�� ,
Wi,t =

(
W S

i,t

W Y
i,t

)
,

and ⊗ denotes the Kronecker product.
The model parameters are set as in Table 1. Additionally, we have μ = r−d , and L is the Cholesky

decomposition of P , given as

LL� = P = ���
1 0.3 0.2

0.3 1 0.4
0.2 0.4 1

��� .
We next describe how the data set is synthesized. The initial values are given by S0 ∼

N ((100, 100, 100) , 70P), and Y 0 = (0.1, 0.1, 0.1). There are n = 5,000 sequences generated in total,
each having p = 15 transitions, with the weekly frequency Δ = 7/365 as the resolution for obser-
vation. We use an Euler discretization of the process, setting 30 sub-intervals between every two

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:18 T. Zhu et al.

Table 1. Parameters of the Underlying

Multi-dimensional Heston Model

r d σ ρ κ γ
d1 0.04 0.015 0.25 −0.8 3 0.1
d2 0.04 0.015 0.2 −0.75 2.7 0.11
d3 0.04 0.015 0.15 −0.85 3.3 0.09

Fig. 1. Maximal draw down distribution, 3-dimensional Heston model, first dimension.

observations, which implies that the resolution for generation is set as 7/(365×30). This synthetic
data set is then used as input data for the discriminator.

4.1.2 Training Process and Results. We specify the structure of the simulator as

Xk+1 = Xk + μθ (Xk)Δt + Σϕ (Xk)
√

Δtηk+1 (39)

where ηk : k = 1, 2, . . . are independent 6-dimensional canonical normal variables, Δt is set as
0.01/15, which is not the same as the length of the sub-intervals used in synthetic data gener-
ation, but induces only scaling differences that can be eliminated by network parameters. The
parameterization of μθ is given by L = 2, ñ = (n1,n2) = (100, 6). The parameterization of Σϕ

is given by L = 2, ñ = (n1,n2) = (100, 36). The parameterization of fψ is given by L = 3,
ñ = (n1,n2,n3) = (500, 500, 1). The initialization of all the parameters of the weight matrices
Wl ’s of μθ , Σϕ , fψ are given by independent Gaussian random variables with mean 0 and variance
0.1. The vectors bl ’s are initialized as constant 3. The gradient penalty coefficient for fψ is set as
1, and the batch size for sampling from synthetic data and for simulator generation is set as 256.
The initial values S0 of each simulation process is set to be the same as the initial values of the
sample batch, and Y 0 is set as (0.1, 0.1, 0.1). The training process is carried out with 500 iterations
using the Adam optimizer [22] with coefficients β1 = 0.5 and β2 = 0.9. Within each iteration, fψ is
updated five times. The learning rate of μθ , Σϕ and fψ decays exponentially from 1e − 4 to 1e − 6.
The training takes about 10 minutes using the GPU resource on Google Colab.

For evaluation of training, we first illustrate the comparison between maximal drawdown dis-
tribution of the three dimensions. The sizes of the synthesized data set and the simulated data set
used for comparison are both 5,000. The results are illustrated in the following Figures 1, 2, and 3.

We also investigate the correlation matrix of the three observed dimensions of data at the 15th
observation. By simulating 5,000 sequences using the trained networks μθ and Σϕ each time to
estimate the correlation matrix, and replicating 100 times to derive the mean value and standard
deviation of simulated estimations, we have the following result in Table 2.

4.2 Multi-dimensional Heston Model with Highly Correlated Training Sequences

In this subsection, we demonstrate the performance of our proposed framework when the training
sequences are correlated with each other.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:19

Fig. 2. Maximal draw down distribution, 3-dimensional Heston model, second dimension.

Fig. 3. Maximal draw down distribution, 3-dimensional Heston model, third dimension.

Table 2. Simulated Correlation of the Three Observed

Dimensions at Time Step i = 15, Multi-dimensional

Heston Model

True value Sim. mean Std. dev.

corr(S1, S2) 0.3 0.295 0.012
corr(S1, S3) 0.2 0.200 0.014
corr(S2, S3) 0.4 0.383 0.011

4.2.1 Underlying Model for Synthetic Data: Multi-dimensional Heston. The underlying stochas-
tic process is formulated by the same stochastic differential equation as (37) and (38).

We next describe how the data set is synthesized. The initial values are given by S0 ∼
N ((100, 100, 100) , 70P), and Y 0 = (0.1, 0.1, 0.1). There are n = 5,000 sequences generated in to-
tal, each having p = 15 transitions, with the weekly frequency Δ = 7/365 as the resolution for
observation. We use an Euler discretization of the process, setting 30 sub-intervals between every
two observations, which implies that the resolution for generation is set as 7/(365 × 30). Namely,
(Xi,k : i = 1, 2, 3;k = 0, 1, 2, . . .) is sequentially generated according to

���
X1,k+1

X2,k+1

X3,k+1

��� =
���
X1,k

X2,k

X3,k

��� +
���
μ1,k

μ2,k

μ3,k

��� Δt + (L ⊗ I2) · ���
Σ1,k 0 0

0 Σ2,k 0
0 0 Σ3,k

���d
����
√

Δtη1,k+1√
Δtη2,k+1√
Δtη3,k+1

���� , (40)

where

Xi,k =

(
Si,k

Yi,k

)
, μi,k =

(
μiSi,k

κi (γi − Yi,k)

)
, Σi,k = ��

Si,k

√
(1 − ρ2

i)Yi,k ρiSi,k

√
Yi,k

0 σi

√
Yi,k

�� ,
ηi,k+1 =

(
ηS

i,k+1

ηY
i,k+1

)
.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:20 T. Zhu et al.

Fig. 4. Maximal draw down distribution, 3-dimensional Heston model with highly correlated training se-

quences, first dimension.

ηj

i,k
, i = 1, 2, 3;k = 1, 2, . . . , j = S,Y are independent standard normal random variables. To

create correlation among the 5,000 training-sequences, for each i,k, and j, the ηj

i,k
’s in the 5,000

sequences are simultaneously generated from a 5,000-dimensional multivariate normal distribu-
tion N (0, Σ), where

Σ =

�������

1 ρ · · · ρ
ρ 1 · · · ρ
...
...
. . .

...
ρ ρ · · · 1

�������
.

We set ρ = 0.9 in our synthetic data set. In other words, for each i ∈ {1, 2, 3},k ∈ {1, 2, . . .}, j ∈
{S,Y }, the correlation of ηj

i,k
’s (i.e., the random noises) in any two different sequences is 0.9, which

ensures that the training-sequences are highly correlated with each other. This synthetic data set
is then used as input data for the discriminator.

4.2.2 Training Process and Results. We specify the structure of the simulator to have the same
form as (39). The parameterization and initialization of the neural networks μθ , Σϕ and fψ , as well
as the iterative optimization process are similar to those of the first experiment. Note that although
the training sequences are highly correlated with each other, the sequences in the simulated set
generated by our framework are independent. The training takes about 10 minutes.

Since the training sequences are highly correlated with each other, the empirical distribution of
the training data might deviate from the real distribution of the underlying process. Considering
this difference, we generate another data set with independent sequences (hereafter "uncorrelated
set") according to (40). The statistics of the uncorrelated set will be unbiased estimators of the real
statistics of the underlying process. For evaluation of training, we compare the distribution of our
simulated data set with the distribution of both the training set and the uncorrelated set.

First, we illustrate the comparison among the maximal drawdown distribution of the three di-
mensions. The sizes of the synthesized data set and the simulated data set used for comparison are
both 5,000. We have the following results in Figures 4, 5, and 6. The results indicate that although
the empirical distribution of the training data has deviated from the real distribution of the under-
lying process, the distribution of the synthesized data set is still comparable to the distribution of
the training set.

We also investigate the correlation matrix of the three observed dimensions of data at the 15th
observation. By simulating 5,000 sequences using the trained networks μθ and Σϕ each time to
estimate the correlation matrix, and replicating 100 times to derive the mean value and standard
deviation of simulated estimations, we have the following result in Table 3.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:21

Fig. 5. Maximal draw down distribution, 3-dimensional Heston model with highly correlated training se-

quences, second dimension.

Fig. 6. Maximal draw down distribution, 3-dimensional Heston model with highly correlated training se-

quences, third dimension.

Table 3. Simulated Correlation of the Three Observed Dimensions at Time

Step i = 15, Multi-dimensional Heston Model with Highly Correlated

Training Sequences

Training Set Uncorrelated Set Sim. mean Std. dev.

corr(S1, S2) 0.28 0.27 0.29 0.008
corr(S1, S3) 0.20 0.19 0.17 0.009
corr(S2, S3) 0.42 0.42 0.43 0.008

4.3 Multi-dimensional Polynomial Model

In this subsection, we use a synthesized data set generated by a nonlinear SDE-based stochastic
process.

4.3.1 Underlying Model for Synthetic Data: Multi-dimensional Polynomial. The underlying sto-
chastic process is formulated by a stochastic differential equation given by:

d (St ,Y t)�

= μ (St ,Y t)dt + Σ(St ,Y t)dWt (41)

where

μ (St ,Y t)

=
(
S0.2

1,t + S
0.2
2,t + 1 S0.3

2,t + 0.02S1,tS3,t S0.25
3,t + 0.01S1,t Y2,t + Y3,t Y3,t + Y1,t Y1,t + Y2,t

)�
,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:22 T. Zhu et al.

Fig. 7. Maximal draw down distribution, 3-dimensional polynomial model, first dimension.

Fig. 8. Maximal draw down distribution, 3-dimensional polynomial model, second dimension.

and

Σ(St ,Y t) =

�����������

−2S1.2
1,t Y1,t S1,tS2,tY2,t 2S1,tS3,tY3,t 0.1S1,tY1,t 0.5S1,tY2,t 0.7S1,tY3,t

01.5S1,tS2,tY1,t 7S1.1
2,t Y2,t S1,tS3,tY3,t 0.1S2,tY1,t 0.2S2,tY2,t 0.2S2,tY2,t

3S1,tS3,tY1,t S2,tS3,tY2,t −Y3,tS1,tS
1.2
3,t 0.2S3,tY1,t 0.6S3,tY2,t 0.3S3,tY3,t

Y1,t 0 0 Y2,tY3,t Y3,tY1,t Y1,tY2,t

0 Y2,t 0 Y1,tY3,t Y1,tY2,t Y3,tY2,t

0 0 Y3,t Y2,tY1,t Y3,tY2,t Y1,tY3,t

�����������
.

We next describe how the data set is synthesized. The initial values are given by S0 ∼
N ((25, 25, 15), 1), where all three dimensions are independent, and Y 0 = (0.1, 0.1, 0.1). There
are n = 5,000 sequences generated in total, each having p = 25 observed points with frequency
Δ = 0.01 as the resolution for observation. We use an Euler discretization of the process, setting
15 sub-intervals between every two observations, which implies that the resolution for generation
is set as Δt = 0.00067. This synthetic data set is then used as input data for the discriminator.

4.3.2 Training Process and Results. We specify the structure of the simulator to have the same
form as (39). The parameterization and initialization of the neural networks μθ , Σϕ and fψ , as well
as the iterative optimization process are similar to those of the first experiment. The training takes
about 10 minutes.

For evaluation of training, we first illustrate the comparison between maximal drawdown dis-
tribution of the three dimensions. The sizes of the synthesized data set and the simulated data set
used for comparison are both 5,000. The results are illustrated in the following Figures 7, 8, and 9.

We also investigate the correlation matrix of the three dimensions of data at the 25th observation.
By generating 5,000 sequences using the trained networks μθ and Σϕ each time to estimate the
correlation matrix, and replicating 100 times to derive the mean value and standard deviation of
simulated estimations, we have the following results in Table 4. Note that the true value is now
estimated from real (synthetic) data.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:23

Fig. 9. Maximal draw down distribution, 3-dimensional polynomial model, third dimension.

Table 4. Simulated Correlation of the Three Observed

Dimensions at Time Step i = 15, Polynomial Model

Est. true value Sim. mean Std. dev.

cor(S1, S2) 0.187 0.213 0.014
cor(S1, S3) −0.157 −0.164 0.015
cor(S2, S3) 0.442 0.441 0.010

4.4 Multi-dimensional Polynomial Model with Heavy-tailed Noises

In this subsection, we demonstrate the performance of our proposed framework when the distri-
bution of the elementary randomness (i.e., ηk ’s) are heavy-tailed.

4.4.1 Underlying Model for Synthetic Data: Multi-dimensional Polynomial with Heavy-tailed

Randomness. The underlying stochastic process is sequentially generated according to

(Sk+1,Yk+1)� = (Sk ,Yk)� + μ (Sk ,Yk)Δt + Σ(Sk ,Yk)ΔtΔηk+1, (42)

where Sk : k = 0, 1, 2, . . . and Yk : k = 0, 1, 2, . . . are 3-dimensional vectors; μ (Sk ,Yk) and Σ(Sk ,Yk)
have the same form with (41). Specifically, we have

μ (Sk ,Y k)

=
(
S0.2

1,k
+ S0.2

2,k
+ 1 S0.3

2,k
+ 0.02S1,kS3,k S0.25

3,k
+ 0.01S1,k Y2,k + Y3,k Y3,k + Y1,k Y1,k + Y2,k

)�
,

and

Σ(Sk ,Y k)

=

�����������

−2S1.2
1,k

Y1,k S1,kS2,kY2,k 2S1,kS3,kY3,k 0.1S1,kY1,k 0.5S1,kY2,k 0.7S1,kY3,k

01.5S1,kS2,kY1,k 7S1.1
2,k

Y2,k S1,kS3,kY3,k 0.1S2,kY1,k 0.2S2,kY2,k 0.2S2,kY2,k

3S1,kS3,kY1,k S2,kS3,kY2,k −Y3,kS1,kS
1.2
3,k

0.2S3,kY1,k 0.6S3,kY2,k 0.3S3,kY3,k

Y1,k 0 0 Y2,kY3,k Y3,kY1,k Y1,kY2,k

0 Y2,k 0 Y1,kY3,k Y1,kY2,k Y3,kY2,k

0 0 Y3,k Y2,kY1,k Y3,kY2,k Y1,kY3,k

�����������
.

Δηk : k = 1, 2, . . . are i.i.d. 6-dimensional vectors. In each Δηk , the 6 dimensions are i.i.d. variables
following t-distribution with 2.5 degrees of freedom.

We next describe how the data set is synthesized. The initial values are given by S0 ∼
N ((25, 25, 15), 1), where all three dimensions are independent, and Y 0 = (0.1, 0.1, 0.1). The reso-
lution for generation is set as Δt = 0.00067. There are n = 5,000 sequences generated in total, each
having p = 25 observed points with frequency Δ = 0.01 as the resolution for observation. Thus,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:24 T. Zhu et al.

Fig. 10. Maximal draw down distribution, 3-dimensional polynomial model with heavy-tailed noises, first

dimension.

Fig. 11. Maximal draw down distribution, 3-dimensional polynomial model with heavy-tailed noises, second

dimension.

Fig. 12. Maximal draw down distribution, 3-dimensional polynomial model with heavy-tailed noises, third

dimension.

there are 15 sub-intervals between every two observations. This synthetic data set is then used as
input data for the discriminator.

4.4.2 Training Process and Results. We specify the structure of the simulator to have the same
form as (39). The parameterization and initialization of the neural networks μθ , Σϕ and fψ , as well
as the iterative optimization process are similar to those of the first experiment. The training takes
about 10 minutes.

For evaluation of training, we first illustrate the comparison between maximal drawdown dis-
tribution of the three dimensions. The sizes of the synthesized data set and the simulated data
set used for comparison are both 5,000. The results are illustrated in the following Figures 10, 11,
and 12.

We also investigate the correlation matrix of the three dimensions of data at the 25th observation.
By generating 5,000 sequences using the trained networks μθ and Σϕ each time to estimate the
correlation matrix, and replicating 100 times to derive the mean value and standard deviation of

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:25

Table 5. Simulated Correlation of the Three Observed

Dimensions at Time Step i = 15, Polynomial Model

Est. true value Sim. mean Std. dev.

cor(S1, S2) 0.31 0.29 0.10
cor(S1, S3) −0.24 −0.12 0.14
cor(S2, S3) 0.62 0.56 0.15

Fig. 13. Maximal draw down distribution, real stock price.

simulated estimations, we have the following results in Table 5. Note that the true value is now
estimated from real (synthetic) data.

4.5 Stock Price

4.5.1 The Real Data Set. In this subsection, we use a real data set from a data vendor from a
platform Wind to test the performance of our estimated simulator. The data set consists of the price
variations of a stock (Facebook) from Oct. 8th, 2020 to Mar. 22nd, 2021. The observation frequency
is 15 minutes, and 26 data points (Si : i = 0, 1, 2, . . . , 25) are recorded for every transaction day. The
empirical data is processed as follows. Since stock returns are usually stationary while prices are
not, we take logarithm of the data points (Si : i = 0, 1, 2, . . . , 25), and derive the log return sequence
(Ri : i = 1, 2, . . . , 25), where Ri = log Si − log Si−1. With such transformation, all log return
sequences can be regarded as weakly correlated identical copies of an underlying real distribution.
After removing the sequences with missing data, we retain n = 186 such copies.

4.5.2 Training Process and Results. We specify the structure of the simulator as

Xk+1 = Xk + μθ (Xk)Δt + Σϕ (Xk)
√

Δtηk+1 (43)

whereXk = (Rk ,Yk)�, ηk : k = 1, 2, . . . are independent 2-dimensional canonical normal variables.
The latent volatility process Yk is assumed to be 1-dimensional. We first simulate a sequence of

log Ŝi using the sequential simulator, and derive the log return sequence as part of the input of
the discriminator. Thus, the discriminator compares distributions of log returns. The resolution is
set as the daily frequency with Δt = 1/252 year. The parameterization of μθ is given by L = 2,
ñ = (n1,n2) = (50, 2). The parameterization of Σϕ is given by L = 2, ñ = (n1,n2) = (80, 4). The
parameterization of fψ is given by L = 3, ñ = (n1,n2,n3) = (200, 200, 1). The neural network
initialization of μθ , Σϕ and fψ , as well as the iterative optimization process are similar to those of
the first experiment. The training takes about 1.5 minutes.

We next evaluate the training results. Since the stock price is 1-dimensional, we take itself as
the portfolio, i.e., Ht = St . The comparison between the distribution of the maximal drawdown of

real data-based Ht and that of the simulated data-based Ĥt is illustrated in the following Figure 13.
The sizes of the real data set and the simulated data set used for comparison are both 186.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:26 T. Zhu et al.

5 CONCLUSION

We propose a new framework of a sequential-structured simulator assisted by neural networks
and Wasserstein training to model, estimate, and simulate a wide class of sequentially generated
data. Neural networks are integrated into the sequentially structured simulators to capture poten-
tial nonlinear and complicated sequential structures. Given representative real data, the neural
network parameters in the simulator are estimated and calibrated through a Wasserstein train-
ing process, which matches the joint distribution of the simulated data and real data in terms
of Wasserstein distance. Moreover, the neural network-assisted sequential structured simulator
can flexibly incorporate various kinds of elementary randomness and generate distributions with
certain properties such as heavy-tail, without the need to redesign the estimation and training
procedures. Further, regarding statistical properties, we provide results on consistency and con-
vergence rate for the estimation procedure of the proposed simulator, which are the first set of
results that allow the training data samples to be correlated.

ACKNOWLEDGMENTS

The authors are thankful to the anonymous reviewers and editors for their very helpful comments
and suggestions, which have significantly benefited this work. The authors thank the participants
and organizers of 2021 INFORMS Simulation Society Workshop (I-Sim) for helpful comments and
feedback. A preliminary conference version of this work, [33], has appeared in the Proceedings
of the Winter Simulation Conference 2021. The theory and analysis in this manuscript are new,
compared to the conference version.

APPENDICES

A BACKPROPOGATION DIAGRAM ON GRADIENT EVALUATION

The backpropagation diagram (red dashed line) on the gradient evaluation of fψ (Ŝ (θ ,ϕ)) with
respect to the parameters θ ,ϕ in the simulator neural network μθ ,Σϕ is shown in Figure A.1.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:27

Fig. A.1. Backpropagation diagram (red dashed line) on the gradient evaluation of fψ (Ŝ (θ ,ϕ)) with respect

to the parameters θ ,ϕ in the simulator neural network μθ ,Σϕ .

B PROOF OF THEOREM 3.4

In the following subsections, we present a proof of Theorem 3.4 consisting of two main steps:
Approximating Lipschitz functions with interpolation polynomials and approximating the poly-
nomials with neural networks.

B.1 Polynomial Approximation of Lipschitz Functions

We first perform a linear transformation on f , namely, let

Ψ : [−B,B]d → [0, 1]d Ψ(z) =
1

2B
(z + B · 1). (44)

Let f Ψ = f ◦ Ψ−1, we have

f Ψ ∈ [0, 1]d , ‖ f Ψ(x) − f Ψ(y)‖ ≤ 2BCL ‖x −y‖. (45)

Without loss of generality, suppose that ‖ f Ψ‖L∞ ([0,1]d) ≤ BCL . Note that if the 2BCL-Lipschitz

function f Ψ can be approximated by a neural network Φ in the sense that ‖Φ(x) − f Ψ(x)‖ ≤
δ ,∀x ∈ [0, 1]d , we have

• Φ ◦ Ψ can also be expressed in the form of a neural network, where L (Φ ◦ Ψ) = L (Φ)
• ‖Φ ◦ Ψ(x) − f Ψ ◦ Ψ(x)‖ = ‖Φ ◦ Ψ(x) − f (x)‖ ≤ δ ,∀x ∈ [−B,B]d

The next step is to approximate an arbitrary 2BCL-Lipschitz function f Ψ on [0, 1]d with a ex-
plicitly constructed interpolation polynomial. Our construction and proof are a simplified version
of those in [11].

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:28 T. Zhu et al.

Fig. B.1. Construction of Φζm
.

Define the trapezoid function

ψ (x) =
⎧⎪⎪⎨⎪⎪⎩

1 |x | < 1,
2 − |x | 1 ≤ |x | ≤ 2,
0 |x | > 2,

x ∈ R, (46)

and let

ζN ,m (x) =
d∏

k=1

ψ
(
3N (xk −

mk

N
)
)

:=

d∏
k=1

ψN (xk), (47)

where m = (m1,m2, . . . ,md), mi ∈ {0, 1, . . . ,N }. Note that 0 ≤ ζN ,m (x) ≤ 1 and
∑

m ζN ,m (x) = 1,

∀x ∈ [0, 1]d . Further, let

PN ,m = f Ψ
(

1

N
·m

)
, f̄N =

∑
m

PN ,mζN ,m (x). (48)

We show that ‖ f̄N − f Ψ‖∞ can be bounded as follows:

max
x ∈[0,1]d

| f̄N (x) − f Ψ(x) | = max
x ∈[0,1]d

������
∑
m

ζN ,m (x) (PN ,m − f Ψ(x))
������

(i)
≤ max

x ∈[0,1]d

∑
m:

���xk−
mk
N

���< 1
N

���PN ,m − f Ψ(x)���
≤ max

x ∈[0,1]d
2d max

m:
���xk−

mk
N

���< 1
N

����f Ψ
(

1

N
·m

)
− f Ψ(x)

����
≤ max

x ∈[0,1]d
2d max

m:
���xk−

mk
N

���< 1
N

2BCL

���� 1

N
·m − x

����
≤ 2d+1

√
dBCL

N
.

(49)

Note that

ζN ,m (x) = 0 if ∃k ∈ {1, 2, . . . ,d } , s.t.
����xk −

mk

N

���� ≥ 1

N
, (50)

which is due to the definition (47) of ζN ,m (x) and is the reason for (i). Therefore, for N ≥
2d+2
√
dBCL/δ , we have ‖ f̄N − f Ψ‖∞ ≤ δ/2.

B.2 Neural Network Approximation of Polynomials

In this section, we use neural networks to approximate f̄N constructed in Section B.1. We first intro-
duce the following Theorem B.1 which constructs a neural network to approximate multiplication
of two constants, i.e., Φ(x ,y) ≈ xy.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:29

Theorem B.1 (Neural Network Approximation of the Product Operator, Proposition
3.3 of [15]). There exists a constant C > 0 such that, for all D ∈ R+ and ϵ ∈ (0, 1/2), there is a

network Φ ∈ N2,1, with L (Φ) ≤ C (log(�D�) + log(ϵ−1)),W (Φ) ≤ 5, B (Φ) ≤ 1,M (Φ) = O (L (Φ)),
Φ(0,x) = Φ(x , 0) = 0, for all x ∈ R, and

‖Φ(x ,y) − xy‖L∞ ([D,D]) ≤ ϵ . (51)

Now, using Theorem B.1 as a building block, we approximate ζN ,m (x) defined in Section B.1,
which is the product ofψN (xk) : k = 1, 2, . . . ,d . One useful way to analyze such approximation is
to view the neural network as not just a composition of linear and activation functions, but also a
combination of layers with operational connections between the elements of every two adjacent
layers.

First, the mapping xk → ψN (xk) can be expressed by a neural network. Consider the hat func-
tion h : R→ [0, 1],

h(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2x , if 0 ≤ x ≤ 1

2
,

2(1 − x), if
1

2
≤ x ≤ 1,

0, else,

(52)

we have

(1) According to [15], h(x) can be expressed by a neural network Φh (x), where L (Φh) = 2,
W (Φh) = 3, B (Φh) = 4 andM (Φh) = 8. Also note that the 2-Layer network is given as
W1 ◦σ ◦W2, and if a ReLU activation is not involved in the middle, any composition of linear
transformations can be compressed into a single layer.

(2) ψ (x) given as (46) can be expressed as follows:

ψ (x) = h
(

1

2
x
)
+ h

(
1

2
(x + 1)

)
+ h

(
1

2
(x + 2)

)
. (53)

Therefore, ψN (xk) can be expressed by a neural network Φψ ,N (xk) ∈ N1,1, where L (Φ)ψ ,N = 2,
W (Φψ ,N) = 9, and B (Φψ ,N) = O (N). We denote byNd1,d2

the set of all ReLU networks with input
dimension d1 and output dimension d2. Note that N will be balanced with ϵ and δ later on.

The next step is to iteratively approximate the product
∏d

k=1ψk with neural network approx-
imators of multiplication. Observe that ψk ,k = 1, 2, . . . ,d and their products are all bounded by
[0, 1]. Specifically, by Theorem B.1, we have a network Φ2 ∈ N2,1, with L (Φ2) = O (log(dϵ−1)),
W (Φ2) ≤ 5, B (Φ2) ≤ 1 andM (Φ2) = O (L (Φ2)) satisfying

‖Φ2 (ψ1,ψ2) −ψ1ψ2‖L∞ ([0,1]) ≤
ϵ

d
. (54)

Iteratively, we have a network Φ3 ∈ N2,1, with L (Φ3) = O (log(dϵ−1)),W (Φ3) ≤ 5, B (Φ3) ≤ 1 and
M (Φ3) = O (L (Φ3)) satisfying

‖Φ3 (Φ2 (ψ1,ψ2),ϕ3) −ψ1ψ2ψ3‖L∞ ([0,1])

≤‖Φ3 (Φ2 (ψ1,ψ2),ψ3) − Ψ2 (ψ1,ψ2)ψ3‖L∞ ([0,1]) + ‖Φ2 (ψ1,ψ2)ψ3 −ψ1ψ2ψ3‖L∞ ([0,1]) ≤
2ϵ

d
+O (ϵ2).

(55)
In total, we have a network ΦζN ,m ∈ Nd,1 composite of Φi , i = 2, 3, . . .d and Φψ ,N s, with

L (ΦζN ,m) = O (d log(dϵ−1)),W (ΦζN ,m) = O (d), B (ΦζN ,m) = O (N) andM (ΦζN ,m) = O (L (ΦζN ,m)
W (ΦζN ,m)) where

‖ΦζN ,m (x) − ζN ,m (x)‖L∞ ([0,1]d) ≤ 2ϵ . (56)

The following Figure B.1 illustrates how ΦζN ,m is constructed through combining and paralleling
small networks.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:30 T. Zhu et al.

Finally, the network Φf̄N
=

∑
m PN ,mΦζN ,m with L (Φf̄N

) = O (d log(dϵ−1)),W (Φf̄N
) = O (d (N +

1)d), B (Φf̄N
) = O (N + BCL) andM (Φf̄N

) +O (L (Φf̄)W (Φf̄N
)) satisfies

‖Φf̄N
(x) − f̄N (x)‖L∞ ([0,1]d) ≤ 2d+1BCLϵ . (57)

Note that ∀x ∈ [0, 1]d , only 2d out of the (N + 1)d elements of {ζN ,m },∀m are non-zero, and
according to Theorem B.1, the approximation error is exactly 0 when zero elements are contained
in the multipliers. This explains the term 2d+1 on R.H.S. of (57). The term BCL on R.H.S. of (57)
comes from the fact that |PN ,m | = | f Ψ(1

N
·M) | ≤ BCL .

B.3 Balance and Conclusion

To have ‖ f̄N − f Ψ‖∞ for Section B.1 and ‖Φf̄N
(x)− f̄N (x)‖L∞ ([0,1]d) ≤ 2d+1BCLϵ ≤ δ

2 for Section B.2,

let

N = 2d+2
√
dBCL

1

δ
, ϵ =

δ

2d+2BCL

, (58)

we can replace the orders of the network approximator Φf with L (Φf) = O (logB + logδ−1),

W (Φf) = O (Bdδ−d), B (Φf) = O (Bδ−1) and M (Φf) = O ((logB + logδ−1) · Bdδ−d), and Φf

satisfies

‖Φf (x) − f (x)‖L∞ ([−B,B]d) ≤ ‖ f̄N − f Ψ‖∞ + ‖Φf̄N
(x) − f̄N (x)‖L∞ ([0,1]d) ≤ δ . (59)

C CONTROLLING BOUNDING ERROR AND GENERATOR APPROXIMATION ERROR

C.1 Bounding Error

In this section, we control the bounding error termW (π ,πB). With the assumption that

Pηk
(x) ≤ O (x−(α+2)), α > 0, (60)

the bounding error term can be bounded as follows:

W (π ,πB) ≤W (π ,πB) = inf
γ ∈γ (π B,π)

Eγ (‖X − Y‖) ≤ E
(
‖X − X

B ‖
)
≤ O (B−α). (61)

C.2 Generator Approximation Error

In this section, we control the generator approximation errorW (πB , π̂B (μθ , Σϕ)). Note that

W (πB , π̂B (μθ , Σϕ)) ≤ W (π̂B (μ, Σ), π̂B (μθ , Σϕ))︸��������������������������︷︷��������������������������︸
identically bounded generator approximation error

+W (π , π̂B (μ, Σ)) +W (π ,πB)︸������������������������������︷︷������������������������������︸
bounding error

. (62)

As in Section C.1, the bounding error can be controlled by

W (π , π̂B (μ, Σ)) +W (π ,πB) ≤ O (B−α). (63)

Next, denote the network approximation error of μ and Σ on [−B,B]d as ϵμ and ϵΣ, respectively.
We have

W (π̂B (μ, Σ), π̂B (μθ , Σϕ)) = inf
γ ∈S (π̂ B (μθ ,Σϕ), π̂ B (μ,Σ))

E(X̂B, ŶB)∼γ

[
‖X̂B − Ŷ

B ‖
]

≤ E(X̂B, ŶB)∼γe

[
‖X̂B − Ŷ

B ‖
]
,

(64)

where, denoting the elementary randomness of the simulator of X̂
B

and Ŷ
B

as {ξi }pi=1 and {ηi }pi=1
respectively, we have

Eγe

[
‖X̂B − Ŷ

B ‖
]

:= E
[
‖X̂B − Ŷ

B ‖
����ξi ≡ ηi ,∀i

]
. (65)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:31

Since

Eγe

[
‖X̂B − Ŷ

B ‖
]
≤

p∑
k=1

Eγe

[
‖X̂ B

i − Ŷ B
i ‖

]
:=

p∑
i=1

Eγe
Δi , (66)

and by law of total expectation, we have

Eγe
Δi = Eγe

[
Eγe

(Δi |Δi−1)
]
, (67)

further,

Eγe

[
Δi

����Δi−1, X̂
B
i−1, Ŷ

B
i−1

]
≤Eγe

[
Δi−1 + |μ (Ŷ B

i−1) − μθ (X̂ B
i−1) | + ‖Σ(Ŷ B

i−1) − Σϕ (X̂ B
i−1)ηi ‖

����Δi−1, X̂
B
i−1, Ŷ

B
i−1

]
≤Eγe

[
Δi−1 + (ϵμ + Δi−1) + (ϵΣ + Δi−1)‖ηi ‖

����Δi−1

]
≤(2 + d)Δi−1 + (ϵμ + dϵΣ).

(68)

Therefore,

Eγe
Δi ≤

(2 + d)i − 1

1 + d
(dϵΣ + ϵμ), (69)

and
p∑

i=1

Eγe
Δi ≤ ��

1

1 + d

p∑
i=1

(2 + d)i �� · (dϵΣ + ϵμ) = O (ϵΣ + ϵμ). (70)

D PROOF OF LEMMA D.1

In this section, we first prove that the two function classes FN N (κ,L, P ,K , ϵf) and FLip can approx-
imate each other, namely,

(1) ∀f ∈ FLip, ∃fψ ∈ FN N , such that ‖ f − fψ ‖L∞[−B,B]d ≤ ϵf ,

(2) ∀f ∈ FN N , ∃fψ ∈ FLip, such that ‖ f − fψ ‖L∞[−B,B]d ≤ 3ϵf .

For 2, we have the following lemma:

Lemma D.1. Suppose that f : Rd → R, f ∈ C ([a,b]) satisfies | f (x) − f (y) | ≤ ‖x − y‖ + 2ϵ ,

∀x ,y ∈ [a,b]. Then there is a 1-Lipschitz function д : Rd → R, д ∈ C ([a,b]), such that

| f (x) − д(x) | ≤ 3ϵ, ∀x ∈ [a,b]. (71)

Proof: Without loss of generality, we assume that d = 1,a = 0,b = 1 and f (0) = 0. We prove by
contradiction. Let

x (д) := sup{x ∈ [0, 1] : | f (x ′) − д(x ′) | ≤ 2ϵ,∀x ′ < x }, (72)

and

д∗ = arg sup
‖д ‖L ≤1

x (д). (73)

The contradiction assumption suggests that x∗ := x (д∗) < 1. We first show that x∗ > 0 and that
д∗ exists. Note that for x ′ < ϵ , we have, by definition of the functional class FNN (κ,L, P ,K , ϵ),

| f (x ′) − f (0) | ≤ |x ′ | + ϵ < 3ϵ .

Therefore, taking д(x) ≡ f (0) yields an approximation of f with precision of 3ϵ on [0, ϵ], implying
that x∗ is at least ϵ . To demonstrate the existence of д∗, suppose that | f (x) | < C on [0, 1] for some
constantC . The 1-Lipschitz functional class bounded by 2C on [0, 1], denoted as F C

Lip is uniformly

bounded and equicontinuous. Arzelà-Ascoli theorem suggests that F C
Lip is sequentially compact.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:32 T. Zhu et al.

Further, for any convergent sequence in F C
Lip, it can be verified that the limit also lies in F C

Lip.

Therefore, F C
Lip is a compact set. It remains to be proved that x (д) is upper semi-continuous on

FLip, so that the supremum point д∗ exists. In fact, for a fixed element д0 ∈ FLip, for all small
enough ϵ > 0, let

δ = sup
x (д0)≤x ≤x (д0)+ϵ

[| f (x) − д0 (x) | − 3ϵ
]
.

By definition of x (д), we have δ > 0, and for all д ∈ FLip such that ‖д − д0‖L∞[0,B]d < δ , we have
x (д) < x (д0) + ϵ . The existence of д∗ is proved.

We next return to the contradiction assumption, which suggests that x∗ < 1. Note that both f
and д are continuous. Therefore, by the definition of sup, we have

|д∗ (x∗) − f (x∗) | = 3ϵ . (74)

Without loss of generality, let f (x∗) = д∗ (x∗) + 3ϵ . Also,

∀Δ > 0,∃x∗ < xΔ < min{x∗ + δ , 1}, s.t. f (xΔ) > д∗ (x∗) + (xΔ − x∗) + 3ϵ . (75)

Now, we claim that ∃δ0 > 0,

д∗ (x∗) − д∗ (x)

x∗ − x = 1, ∀x ∈ [x∗ − δ0,x
∗).

If this is contradicted, we have some δ < ϵ , and

д∗ (x∗) − δ < д∗ (x∗ − δ) < д∗ (x∗) + 3ϵ − δ .

In this case, we can move д∗ upward on [x∗ − δ ,x∗] by modifying it into

д̃∗ (x) =
⎧⎪⎪⎨⎪⎪⎩
д∗ (x), x ∈ [0,x∗ − δ];

д∗ (x∗ − δ) + x − (x∗ − δ), x ∈ (x∗ − δ ,x∗],

so that д̃∗ (x∗) > д∗ (x∗), and ‖д̃∗ (x∗)‖L ≤ 1 still holds. Also, note that ∀x ∈ [0, 1],

f (x) ≥ f (x∗) + x − x∗ − 3ϵ = д∗ (x∗) + x − x∗ > д̃∗ (x) − 3ϵ,

f (x) ≤ д∗ (x) + 3ϵ ≤ д̃∗ (x) + 3ϵf .

so x (д̃∗) > x (д∗), which contradicts (73). Therefore, the claim is valid.
Let

x1 = inf
x ∈[0,x ∗−δ0]

д∗ (x∗) − д∗ (x)

x∗ − x = 1

Note that f (xΔ) > д∗ (x1) + (xΔ − x1) + 3ϵ , therefore, f (x1) > д∗ (x1), which implies that x1 > 0.
In this case, we can find δ ′ > 0, such that

д∗ (x1) − δ ′ ≤ д∗ (x1 − δ ′) ≤ д∗ (x1) + 3ϵ − δ ′.

We can similarly define

д̃∗ (x) =
⎧⎪⎪⎨⎪⎪⎩
д∗ (x), x ∈ [0,x1 − δ ′];

д∗ (x1 − δ ′) + x − (x1 − δ ′), x ∈ (x1 − δ ′,x∗],

and verify that ‖д̃∗ (x∗)‖L ≤ 1 and x (д̃∗) > x (д∗), which also contradicts (73). The proof is complete.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:33

REFERENCES

[1] Yacine Aı, Robert Kimmel, et al. 2007. Maximum likelihood estimation of stochastic volatility models. Journal of

Financial Economics 83, 2 (2007), 413–452.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In Inter-

national Conference on Machine Learning. PMLR, 214–223.

[3] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. 2017. Generalization and equilibrium in generative

adversarial nets (GANs). In International Conference on Machine Learning. PMLR, 224–232.

[4] Manabu Asai, Michael McAleer, and Jun Yu. 2006. Multivariate stochastic volatility: A review. Econometric Reviews

25, 2-3 (2006), 145–175.

[5] Yu Bai, Tengyu Ma, and Andrej Risteski. 2018. Approximability of discriminators implies diversity in GANs. arXiv

preprint arXiv:1806.10586 (2018).

[6] Ravi Bansal, A. Ronald Gallant, Robert Hussey, and George Tauchen. 1994. Computational aspects of nonparametric

simulation estimation. In Computational Techniques for Econometrics and Economic Analysis. Springer, 3–22.

[7] Eoin Brophy, Zhengwei Wang, Qi She, and Tomas Ward. 2021. Generative adversarial networks in time series: A

survey and taxonomy. arXiv preprint arXiv:2107.11098 (2021).

[8] Carmen Broto and Esther Ruiz. 2004. Estimation methods for stochastic volatility models: A survey. Journal of Eco-

nomic Surveys 18, 5 (2004), 613–649.

[9] Wang Cen, Emily A. Herbert, and Peter J. Haas. 2020. NIM: Modeling and generation of simulation inputs via gener-

ative neural networks. In Proceedings of the 2020 Winter Simulation Conference, Bae, K., Feng, B., Kim, S., Lazarova-

Molnar, S., Zheng, Z., Roeder, T., and Thiesing, R. (Ed.). Institute of Electrical and Electronic Engineers, Inc., Piscat-

away, New Jersey, 584–595.

[10] Alexei Chekhlov, Stanislav Uryasev, and Michael Zabarankin. 2005. Drawdown measure in portfolio optimization.

International Journal of Theoretical and Applied Finance 8, 01 (2005), 13–58.

[11] Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. 2022. Nonparametric regression on low-dimensional

manifolds using deep ReLU networks: Function approximation and statistical recovery. Information and Inference: A

Journal of the IMA 11, 4 (2022), 1203–1253.

[12] Minshuo Chen, Wenjing Liao, Hongyuan Zha, and Tuo Zhao. 2020. Statistical guarantees of generative adversarial

networks for distribution estimation. arXiv preprint arXiv:2002.03938 (2020).

[13] Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural Informa-

tion Processing Systems 26 (2013), 2292–2300.

[14] Florian Eckerli. 2021. Generative adversarial networks in finance: An overview. Available at SSRN 3864965 (2021).

[15] Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei. 2021. Deep neural network approx-

imation theory. IEEE Transactions on Information Theory 67, 5 (2021), 2581–2623.

[16] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. 2017. Real-valued (medical) time series generation with

recurrent conditional GANs. arXiv preprint arXiv:1706.02633 (2017).

[17] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. 2016. Sequential neural models with stochas-

tic layers. Advances in Neural Information Processing Systems 29 (2016).

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. 2020. Generative adversarial networks. Commun. ACM 63, 11 (2020), 139–144.

[19] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville. 2017. Improved train-

ing of Wasserstein GANs. Advances in Neural Information Processing Systems 30 (2017).

[20] Linyun He and Eunhye Song. 2021. Nonparametric Kullback-Liebler divergence estimation using M-spacing. In 2021

Winter Simulation Conference (WSC). IEEE.

[21] Steven L. Heston. 1993. A closed-form solution for options with stochastic volatility with applications to bond and

currency options. The Review of Financial Studies 6, 2 (1993), 327–343.

[22] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014).

[23] Diederik P. Kingma and Max Welling. 2013. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013).

[24] Rui Luo, Weinan Zhang, Xiaojun Xu, and Jun Wang. 2018. A neural stochastic volatility model. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 32.

[25] Angelo Melino and Stuart M. Turnbull. 1990. Pricing foreign currency options with stochastic volatility. Journal of

Econometrics 45, 1-2 (1990), 239–265.

[26] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations of Machine Learning. MIT Press.

[27] Eckhard Platen and Nicola Bruti-Liberati. 2010. Numerical Solution of Stochastic Differential Equations with Jumps in

Finance. Vol. 64. Springer Science & Business Media.

[28] Neil Shephard. 1993. Fitting nonlinear time-series models with applications to stochastic variance models. Journal

of Applied Econometrics 8, S1 (1993), S135–S152.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:34 T. Zhu et al.

[29] Neil Shephard and Torben G. Andersen. 2009. Stochastic volatility: Origins and overview. In Handbook of Financial

Time Series. Springer, 233–254.

[30] Umut Şimşekli. 2017. Fractional Langevin Monte Carlo: Exploring Lévy driven stochastic differential equations for

Markov chain Monte Carlo. In International Conference on Machine Learning. PMLR, 3200–3209.

[31] Shuntaro Takahashi, Yu Chen, and Kumiko Tanaka-Ishii. 2019. Modeling financial time-series with generative ad-

versarial networks. Physica A: Statistical Mechanics and its Applications 527 (2019), 121261.

[32] Stephen John Taylor. 1982. Financial returns modelled by the product of two stochastic processes-a study of the daily

sugar prices 1961-75. Time Series Analysis: Theory and Practice 1 (1982), 203–226.

[33] Zhu Tingyu and Zheng Zeyu. 2021. Learning to simulate sequentially generated data via neural networks and Wasser-

stein training. In 2021 Winter Simulation Conference (WSC). IEEE.

[34] Tan Wan and L. Jeff Hong. 2022. Large-scale inventory optimization: A recurrent-neural-networks-inspired simula-

tion approach. INFORMS Journal on Computing (2022).

[35] Ruixin Wang, Prateek Jaiswal, and Harsha Honnappa. 2020. Estimating stochastic Poisson intensities using deep

latent models. In 2020 Winter Simulation Conference (WSC). IEEE, 596–607.

[36] Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. 2020. Quant GANs: Deep generation of financial

time series. Quantitative Finance 20, 9 (2020), 1419–1440.

[37] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. 2019. Time-series generative adversarial networks. (2019).

[38] Yufeng Zheng, Zeyu Zheng, and Tingyu Zhu. 2020. A doubly stochastic simulator with applications in arrivals mod-

eling and simulation. arXiv preprint arXiv:2012.13940 (2020).

Received 14 January 2022; revised 4 January 2023; accepted 10 January 2023

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

