CMA-ES with Learning Rate Adaptation: Can CMA-ES with Default Population Size Solve Multimodal and Noisy Problems? Supplementary Material

A Derivation for Section 3.2

A. 1 Derivation of Eq. (12)

This section presents the detailed derivation of Eq. (12). By ignoring $(1-\beta)^{n}, \mathcal{E}^{(t+n)}$ can be approximately calculated as follows:

$$
\begin{aligned}
\mathcal{E}^{(t+n)} & =(1-\beta) \mathcal{E}^{(t+n-1)}+\beta \tilde{\Delta}^{(t+n-1)} \\
& =(1-\beta)\left\{(1-\beta) \mathcal{E}^{(t+n-2)}+\beta \tilde{\Delta}^{(t+n-2)}\right\}+\beta \tilde{\Delta}^{(t+n-1)} \\
& =\ldots \\
& =(1-\beta)^{n} \mathcal{E}^{(t)}+\sum_{i=0}^{n-1}(1-\beta)^{i} \beta \tilde{\Delta}^{(t+n-1-i)} \\
& \approx \sum_{i=0}^{n-1}(1-\beta)^{i} \beta \tilde{\Delta}^{(t+n-1-i)} .
\end{aligned}
$$

Here, we assume the $\tilde{\Delta}^{(\cdot)}$ are uncorrelated with each other; this corresponds to the scenario where η is sufficiently small. In this case, we can ignore the dependence of t, i.e., $\mathbb{E}\left[\tilde{\Delta}^{(t+n-1-i)}\right]=: \mathbb{E}[\tilde{\Delta}]$. Thus,

$$
\mathbb{E}\left[\mathcal{E}^{(t+n)}\right]=\sum_{i=0}^{n-1}(1-\beta)^{i} \beta \mathbb{E}[\tilde{\Delta}] .
$$

Here,

$$
\sum_{i=0}^{n-1}(1-\beta)^{i}=\frac{1 \cdot\left\{1-(1-\beta)^{n}\right\}}{1-(1-\beta)}=\frac{1-(1-\beta)^{n}}{\beta}
$$

Then, by ignoring $(1-\beta)^{n}$, we can approximate $\mathbb{E}\left[\mathcal{E}^{(t+n)}\right]$ as follows:

$$
\mathbb{E}\left[\mathcal{E}^{(t+n)}\right]=\left[1-(1-\beta)^{n}\right] \mathbb{E}[\tilde{\Delta}] \approx \mathbb{E}[\tilde{\Delta}] .
$$

Next, we consider the covariance $\operatorname{Cov}\left[\mathcal{E}^{(t+n)}\right]$:

$$
\operatorname{Cov}\left[\mathcal{E}^{(t+n)}\right]=\mathbb{E}\left[\mathcal{E}^{(t+n)}\left(\mathcal{E}^{(t+n)}\right)^{\top}\right]-\mathbb{E}\left[\left[\mathcal{E}^{(t+n)}\right]\left(\left[\mathcal{E}^{(t+n)}\right]\right)^{\top}\right.
$$

First, we find the exact expression of $\mathcal{E}^{(t+n)}\left(\mathcal{E}^{(t+n)}\right)^{\top}$:

$$
\begin{aligned}
& \mathcal{E}^{(t+n)}\left(\mathcal{E}^{(t+n)}\right)^{\top}=\beta^{2} \sum_{i=0}^{n-1}(1-\beta)^{2 i} \tilde{\Delta}^{(t+n-1-i)}\left(\tilde{\Delta}^{(t+n-1-i)}\right)^{\top} \\
& \quad+2 \beta^{2} \sum_{i, j=0: i \neq j}^{n-1}(1-\beta)^{i}(1-\beta)^{j} \tilde{\Delta}^{(t+n-1-i)}\left(\tilde{\Delta}^{(t+n-1-i)}\right)^{\top}
\end{aligned}
$$

Note that, for $i, j \in\{0, \cdots n-1\}(i \neq j)$, $\mathbb{E}\left[\tilde{\Delta}^{(t+n-1-i)}\left(\tilde{\Delta}^{(t+n-1-j)}\right)^{\top}\right]=\mathbb{E}[\tilde{\Delta}](\mathbb{E}[\tilde{\Delta}])^{\top}$, as we assume that they are uncorrelated. For $i \in\{0, \cdots n-1\}$,
$\mathbb{E}\left[\tilde{\Delta}^{(t+n-1-i)}\left(\tilde{\Delta}^{(t+n-1-i)}\right)^{\top}\right]=\mathbb{E}[\tilde{\Delta}](\mathbb{E}[\tilde{\Delta}])^{\top}+\operatorname{Cov}[\tilde{\Delta}]$. Thus, $\mathbb{E}\left[\mathcal{E}^{(t+n)}\left(\mathcal{E}^{(t+n)}\right)^{\top}\right]$

$$
\begin{aligned}
= & \beta^{2} \sum_{i=0}^{n-1}(1-\beta)^{2 i}\left(\mathbb{E}[\tilde{\Delta}](\mathbb{E}[\tilde{\Delta}])^{\top}+\operatorname{Cov}[\tilde{\Delta}]\right) \\
& +2 \beta^{2} \sum_{i, j=0: i \neq j}^{n-1}(1-\beta)^{i}(1-\beta)^{j} \mathbb{E}[\tilde{\Delta}](\mathbb{E}[\tilde{\Delta}])^{\top}, \\
= & \mathbb{E}\left[\mathcal{E}^{(t+n)}\right]\left(\mathbb{E}\left[\mathcal{E}^{(t+n)}\right]\right)^{\top}+\beta^{2} \sum_{i=0}^{n-1}(1-\beta)^{2 i} \operatorname{Cov}[\tilde{\Delta}] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Cov}\left[\mathcal{E}^{(t+n)}\right] & =\mathbb{E}\left[\mathcal{E}^{(t+n)}\left(\mathcal{E}^{(t+n)}\right)^{\top}\right]-\mathbb{E}\left[\left[\mathcal{E}^{(t+n)}\right]\left(\left[\mathcal{E}^{(t+n)}\right]\right)^{\top}\right. \\
& =\beta^{2} \sum_{i=0}^{n-1}(1-\beta)^{2 i} \operatorname{Cov}[\tilde{\Delta}] .
\end{aligned}
$$

Here,

$$
\sum_{i=0}^{n-1}(1-\beta)^{2 i}=\frac{1-(1-\beta)^{2 n}}{1-(1-\beta)^{2}}=\frac{1-(1-\beta)^{2 n}}{\beta(2-\beta)}
$$

Thus, by ignoring $(1-\beta)^{2 n}$, we can approximate $\operatorname{Cov}\left[\mathcal{E}^{(t+n)}\right]$ as follows:

$$
\begin{aligned}
\operatorname{Cov}\left[\mathcal{E}^{(t+n)}\right] & =\left[1-(1-\beta)^{2 n}\right] \frac{\beta}{2-\beta} \operatorname{Cov}[\tilde{\Delta}], \\
& \approx \frac{\beta}{2-\beta} \operatorname{Cov}[\tilde{\Delta}] .
\end{aligned}
$$

Therefore, $\mathcal{E}^{(t+n)}$ approximately follows the distribution

$$
\mathcal{E}^{(t+n)} \sim \mathcal{D}\left(\mathbb{E}[\tilde{\Delta}], \frac{\beta}{2-\beta} \operatorname{Cov}[\tilde{\Delta}]\right)
$$

This completes the derivation of Eq. (12).

A. 2 Derivation of Estimates for $\|\mathbb{E}[\tilde{\Delta}]\|_{2}^{2}$

We organize the relation between \mathcal{E} and $\tilde{\Delta}$ by the following equation:

$$
\begin{aligned}
\mathbb{E}\left[\|\mathcal{E}\|_{2}^{2}\right] & =\mathbb{E}[\mathcal{E}]^{\top} I \mathbb{E}[\mathcal{E}]+\operatorname{Tr}(\operatorname{Cov}[\mathcal{E}]) \\
& \approx\|\mathbb{E}[\tilde{\Delta}]\|_{2}^{2}+\operatorname{Tr}\left(\frac{\beta}{2-\beta} \operatorname{Cov}[\tilde{\Delta}]\right) \\
& =\|\mathbb{E}[\tilde{\Delta}]\|_{2}^{2}+\frac{\beta}{2-\beta} \operatorname{Tr}(\operatorname{Cov}[\tilde{\Delta}]) .
\end{aligned}
$$

Now we apply the same arguments to \mathcal{V} and obtain

$$
\begin{aligned}
\mathbb{E}[\mathcal{V}] & =\left[1-(1-\beta)^{t+1}\right] \mathbb{E}\left[\|\tilde{\Delta}\|_{2}^{2}\right] \\
& \approx \mathbb{E}\left[\|\tilde{\Delta}\|_{2}^{2}\right]=\|\mathbb{E}[\tilde{\Delta}]\|_{2}^{2}+\operatorname{Tr}(\operatorname{Cov}[\tilde{\Delta}]) .
\end{aligned}
$$

By reorganizing these arguments, we obtain

$$
\|\mathbb{E}[\tilde{\Delta}]\|_{2}^{2} \approx \frac{2-\beta}{2-2 \beta} \mathbb{E}\left[\|\mathcal{E}\|_{2}^{2}\right]-\frac{\beta}{2-2 \beta} \mathbb{E}[\mathcal{V}] .
$$

This gives the rationale of the estimates $\frac{2-\beta}{2-2 \beta}\|\mathcal{E}\|_{2}^{2}-\frac{\beta}{2-2 \beta} \mathcal{V}$ for $\|\mathbb{E}[\tilde{\Delta}]\|_{2}^{2}$.

B Additional Experiment Results

Figure 1 shows the success rate and SP1 results with respect to $\beta_{\Sigma} \in\{0.01,0.02, \ldots, 0.05\}$ on the $30-\mathrm{D}$ noiseless Sphere, Schaffer, and Rastrigin functions. Clearly, the performance was not significantly affected by β_{Σ} values within this range. However, similar to the case shown in Figure ??, an excessively small β_{Σ} setting decelerated the convergence for the Rastrigin function.

Figures 2 and 3 show the success rate and SP1 values with respect to β_{m} and γ, respectively. The results show that the performance was relatively stable against these hyperparameters.

β_{Σ} vs. Success Rate and SP1 ($d=30,30$ trials)

Figure 1: Success rate and SP1 versus hyperparameter $\beta_{\Sigma} \in\{0.01,0.02, \ldots, 0.05\}$ on $30-\mathrm{D}$ noiseless problems.

β_{m} vs. Success Rate and SP1 ($d=30,30$ trials $)$

Figure 2: Success rate and SP1 versus hyperparameter β_{m} on 30-D noiseless problems.

γ vs. Success Rate and SP1 ($d=30,30$ trials $)$

Figure 3: Success rate and SP1 versus hyperparameter γ on 30-D noiseless problems.

