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Supplementary Material

A Derivation for Section 3.2

A.1 Derivation of Eq. (12)

This section presents the detailed derivation of Eq. (12). By
ignoring (1 — B)", &*" can be approximately calculated as
follows:
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Here, we assume the A(") are uncorrelated with each other;
this corresponds to the scenario where 1 is sufficiently
small. In this case, we can ignore the dependence of t, i.e.,

E[A(t*"=1-D] = E[A]. Thus,
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Then, by ignoring (1 — )", we can approximate E[&*"] as
follows:

E[&"*"] = [1- (1- p)"|E[A] ~ E[A].
Next, we consider the covariance Cov[&(+7]:

COV[S(t+n)] — E[8(2+n) (8(t+n))T] _ E[[S(t+n)]([8(t+n)])'r

First, we find the exact expression of &+ (§(#+m)T:
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Note that, for ij € {0---n — 3@ # j),
E[AE=1=D (An=1=]YT] = E[A](E[A])T, as we as-
sume that they are uncorrelated. For i € {0,---n — 1},
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Therefore,
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Thus, by ignoring (1 — §)?", we can approximate Cov[&(*+" ]

as follows:
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Therefore, &**" approximately follows the distribution

Cov[A],

Cov[A].
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This completes the derivation of Eq. (12).

A.2 Derivation of Estimates for ||E[A] 12

We organize the relation between & and A by the following
equation:
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Now we apply the same arguments to V and obtain
E[V]=[1- (1~ A E[IAIZ]
~ E[||AlI3] = [E[A]]I} + Tr(Cov[A]).

By reorganizing these arguments, we obtain
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This gives the rationale of the estimates 2 5 ﬁ ||8||2 "V

for ||E[A]]|2.



B Additional Experiment Results

Figure 1 shows the success rate and SP1 results with respect to
fs. € {0.01,0.02, ...,0.05} on the 30-D noiseless Sphere, Schaf-
fer, and Rastrigin functions. Clearly, the performance was not
significantly affected by fs values within this range. How-
ever, similar to the case shown in Figure ??, an excessively
small S5 setting decelerated the convergence for the Rastrigin
function.

Figures 2 and 3 show the success rate and SP1 values with
respect to f3,, and y, respectively. The results show that the
performance was relatively stable against these hyperparam-
eters.
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Figure 1: Success rate and SP1 versus hyperparameter S5 € {0.01,0.02, ...,0.05} on 30-D noiseless problems.
B vs. Success Rate and SP1 (d = 30, 30 trials)
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Figure 2: Success rate and SP1 versus hyperparameter f3,, on 30-D noiseless problems.
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Figure 3: Success rate and SP1 versus hyperparameter y on 30-D noiseless problems.




